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Abstract

The increase of 3D model data requires efficient
compression algorithm in order to reduce the cost of
data transmission and storage. In general, 3D models
are represented by 3D meshes, which are defined by
connectivity data, geometry data, and photometry data.
In this paper, we address the geometry coding of 3D
models. Using the parallelogram prediction, the
encoder first predicts vertex positions along a triangle
spanning tree. We encode those prediction errors using
the uniform quantizer. In some cases, the variance of
the predictioen errors is large due to a few large error
values, which make a visually unacceptable distortion.
Therefore, we resolve this problem by a recursive pull-
down operation. Since a 3D model is generally
composed of multiple components, we also encode root
vertices efficiently by exploiting the spatial correlation
of neighboring connected components. The proposed
scheme demonstrates improved coding efficiency for
the selected VRML test data.

1. Introduction

In recent days, the digital interactive multimedia
applications using 3D objects are increasing for the
internet services and .computer graphics, and the
MPEG-4 Synthetic/Natural Hybrid Coding (SNHC) [1]
group addresses coding of 3D models.

Generally, 3D polygonal models are structured by
triangular meshes, which are defined by connectivity
data, geometry data, and photometry data, as shown in
Figure 1. While the connectivity data describe the
connectivity information among vertices and
characterize the topology of the model, the geometry
data specify the overall shape of the 3D model. The
photometry data specify information of each surface
such as colors, surface normals, and texture
coordinates. Since the geometry data are specified in
the 3D space by 3D vectors of three floating-point
numbers, it contains a large amount of data. Therefore,

triangular meshes proposed by IBM [2,3],
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it is necessary to represent the geometry information
efficiently in order to store, transmit, render, or
manipulate 3D data.

(a) BEETHOVEN

(b) HORSE

Figure 1. 3D Models
In the geometry compression scheme for 3D

3D
coordinate values of each vertex point are initially
approximated using an evenly subdivided bounding
box along its x, y and z axes, independently. Then,
each coordinate value is predicted using a linear
combination of previous values along the triangle
spanning tree, and the difference of the evenly
approximated value and its predicted value is entropy
coded. This scheme is simple to implement; however,
it generates large quantization errors because the size
of the bounding box is large. The quantization error is
approximately A%/12, where A is the step size of the
evenly subdivided bounding box.

In this paper, we describe a new compression
scheme for 3D geometry information. Our proposed
scheme provides smaller quantization errors than the
IBM scheme, since the prediction errors are quantized.

2. A New Scheme for Geometry Compression

A block diagram of the proposed compression
scheme is shown in Figure 2. The encoder consists of
three stages: preprocessing, uniform quantization, and
entropy coder. In the preprocessing stage, the
histogram of the prediction errors, Ax, Ay, and Az, is



calculated, respectively. From each histogram, we
determine the quantization step size, and apply the
uniform quantization over the prediction errors. The
quantizer index is then encoded by a QM coder[4].
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Figure 2. Block Diagram of Geometry Encoder

2.1 Preprocessing

First of all, we examine prediction errors of 3D
vertex coordinates from the paralielogram predictor
[5] in order to select the optimal bounding values.
These values are delivered to the uniform quantizer for
the pull-down operation.

2.2 Parallelogram Prediction

We obtain a prediction value v, =(%,,y,,2,) of
each vertex point v, =(x,,y,,z,) based on the
parallelogram prediction in the triangle spanning tree

[2,3], as illustrated in Figure 3. The parallelogram
prediction is adapted for the triangle tree traversal.

Figure 3. Parallelogram Predictive Rule

When we pass from triangle 1 to triangle 2, the
vertices v;, V,, and v; are already decoded. The
opposite vertex v, from the common edge (v;, vy) is
predicted as v; + v, - v;. Thus, the predicted v,,
together with its three ancestors, forms a
parallelogram and belongs to the same plane. For
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some vertices, all three traversed ancestors may not be
available. If there are only two ancestors, the
prediction coefficients are set to 2 and —1. If only one
ancestor exists, it is directly used as a prediction value
for the current vertex. In case of no ancestors, a null
prediction is used.

We then calculate the prediction error Av, by

Avy =v, —vy.

2.3 Uniform Quantization and Pull-Down Scheme

We encode the prediction errors using a uniform
quantizer. The mean squared quantization error
(MSQE) is §%/12, where § is the step size of the evenly
subdivided prediction errors. MSQE of the IBM
scheme is A%/12, where A is the step size for original
values. Since § is smaller than A, the proposed scheme
produces less MSQE than the IBM scheme.

Occasionally, the variance of the distribution of the
prediction errors, Ax, Ay, and Az, is large due to
inadequate prediction. If a 3D model contains many
edges and boundaries, it produces some large
prediction residues. Although the number of large
prediction errors is small, they may generate a visually
unacceptable distortion, as shown in Figure 4.

Figure 4. Visual Distribution due to Large Errors

However, we can remedy the problem by a pull-
down operation, as explained in Figure 5.



Escape 2 M Escape 1
Max
| | ] |
i f I i 1\7 x
Shift Shift

Figure 5. Pull-down Operation

Once we make histogram of the prediction errors,
we select maximum bounds within which we have
99% of vertices. If the error value is outside of the
maximum bound, the error is subtracted by a
maximum value to pull down its magnitude until this
value is inside the bound. This process is indicated by
the escape code 1 or the escape code 2 in order to
recover the correct value at the decoder. It removes the
overload errors efficiently.

2.4 Coding of Multiple Components

Usually, a 3D model is composed of multiple
components. The first vertex of each component is
called as a root vertex. The root vertex plays a very
important role as an anchor point for the entire mesh
of the connected component. Any change of the root
vertex position may cause the crack problem, and the
error can be propagated successively. Since the root
vertex of each component has no preceding vertices,
this root vertex can’t be coded in the same way as
other vertices. If the root vertex is coded with its own
floating point numbers, it is not efficient. Therefore,
we propose an adaptive predictor for root vertices [9].

Root Vertex Root Vertex

Root Vertex Root Vertex
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Figure 6. Adaptive Prediction for Root Vertex

As shown in Figure 6, a root vertex can be
predicted by the root vertex of the first component, the
last vertex of the previous component, or the root
vertex of the previous component. Then, the smallest
residual value is selected. If the residual value is
greater than a predetermined threshold value, the root
vertex is directly coded with n bits.

Table 1: Flag Bits for Root Coding

Flag Prediction
00 No prediction
01 Root vertex of first component
10 Last vertex of previous component
11 Root vertex of previous component

As shown in Table 1, two bits are used to represent
how the root vertex is predicted.

2.5 Entropy Coding

After a modified uniform quantization process, the
index values are encoded by a binary arithmetic coder,
such as a QM coder[4].

Once we represent the quantization indices as
binary symbols, a bit-plane representation [6,7] is
possible. Every quantized prediction error is
represented by a binary string and encoded by a
context-based QM coder based on the 113 state
Markov model for the estimated probability {4]. The
binary representation of the residues is scanned from
the most significant to the least significant bit plane.
The context is chosen as the number of neighbors,
which have already significant residues at the current
quantization stage. If the number of the neighbors is
small, the residue is likely to remain insignificant. If
the number is large, the residue tends to become
significant.

3. Simulation Results

We have tested the performance of our coding
algorithm with some Virtual Reality Modeling
Language (VRML) [8] models: CAM-SHAFT,
HORSE, SKULL, BEETHOVEN, CROCODILE and
STCHEVY, as displayed in Figure 7. The

characteristics of the test models are summarized in
Table 2.
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(d) BEETHOVEN

(e) CROCODILE

(f) STCHEVY

Figure 7. Test Models

We have obtained the prediction errors of vertex
positions based on the father-son relationship in the
triangle spanning tree generated by EPFL {5].

To evaluate a distortion between the original 3D
polygonal model and the reconstructed one, we define
the following error metric. The original and the
reconstructed models have the same connectivity
information, but may have different values of vertex
positions. For each vertex of the original model, the
closest vertex of a reconstructed model is selected and
their distance d, is calculated. For each vertex of the
reconstructed model, the closest vertex in an original
model is determined and their distance d, is
calculated. The distortion metric is the average value
of two asymmetric terms, d, and d,. Therefore, the
error measure becomes symmetric with respect to the
original and the reconstructed models.

Table 2. Characteristics of Test Models

Model # of Vertices | # of Components
CAM-SHAFT 54898 209
HORSE 22258 3
SKULL 22104 1
BEETHOVEN 2845 20
CROCODILE 17332 65
57CHEVY 18472 585

Performances of the proposed and the IBM
schemes are compared in Table 3 at 10, 20 and 30 bits
per vertex (bpv), which shows that the proposed
scheme outperforms the IBM scheme.

Table 3. Mean Distortion of Test Models

Proposed IBM
Model BPV Sctll)eme Scheme
10 0.001302 0.008320
CAM-SHAFT] 20 0.000032 0.000513
30 0.000008 0.000032
10 0.045341 0.067075
HORSE

196

20 0.003865 0.004221

30 0.000300 0.000527

10 0.051718 0.228374

SKULL 20 0.003980 0.014252

30 0.000355 0.001774

10 0.230881 0.264210

BEETHOVEN} 20 0.017111 0.016763
30 0.001988 0.002104

10 0.016640 0.021934

CROCODILE] 20 0.000980 0.002757
30 0.000090 0.000343

10 | 0.012737 0.042835

57CHEVY | 20 0.000628 0.001313
30 0.000055 0.000083

4. Conclusion

In this paper, we propose a new coding scheme for
3D geometry information using properties of
prediction errors. The proposed method includes the
pull-down operation for the large prediction errors to
reduce a visually unacceptable noise. For a 3D model
with multiple connected components, we applied an
adaptive root vertex coding scheme. Experimental
results show that our proposed scheme outperforms the
bounding box approach. - '
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