
2014
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.8 AUGUST 2001

PAPER

Automatic Process-Oriented Asynchronous Control Unit

Generation from Control Data Flow Graphs

Euiseok KIM†a), Regular Member, Jeong-Gun LEE†, Nonmember,
and Dong-Ik LEE†b), Regular Member

SUMMARY Although many successful asynchronous control
circuit synthesis methods are available, it is still unwieldy to con-
ceive and describe the behaviors of a number of controllers which
constitute a control unit of a target system manually. In this
paper, an automatic and systematic method to derive an effi-
cient asynchronous control unit from a system specification, a
control data flow graph (CDFG), is suggested. In order to ac-
quire an asynchronous control unit of acceptable quality, a new
process-oriented method is proposed. In this method, the result-
ing asynchronous control unit has complete separation of ‘exe-
cution controllers’ and ‘execution order controllers’ according to
the hierarchical decomposition of a given CDFG. This distributive
feature leads to a significant improvement in area, performance,
implementability and synthesis time for the derived asynchronous
control units.
key words: automatic asynchronous control unit genera-

tion, process-oriented, control data ow graphs, signal transition

graphs

1. Introduction

In the last decade, many asynchronous logic synthe-
sis methods have been studied and suggested to meet
the increased interest in asynchronous circuit design
[1]. Although some of them have been implemented
as asynchronous logic synthesis tools successfully [2]–
[7], it remains difficult to conceive and describe the
behaviors for a number of controllers constituting the
control unit of a target system manually. For exam-
ple, when an asynchronous system specification of a
target system is first given to a designer, he must de-
scribe and implement the asynchronous control unit
manually, which may consist of tens of or hundreds of
asynchronous controllers. Moreover, an STG, which is
a most frequently used and popular specification lan-
guage for asynchronous controllers, is not user friendly
in our opinion. Therefore, we present a way to derive a
set of STGs automatically from a given high-level sys-
tem specification, a CDFG, in order to alleviate the de-
signer’s burden in terms of conceiving many STGs for
an asynchronous control unit. Derived STGs are syn-
thesized into asynchronous controllers constituting an

Manuscript received August 16, 2000.
Manuscript revised January 10, 2001.

†The authors are with the Department of Information
and Communications, K-JIST, 1, Oryong-Dong, Puk-Gu,
Kwangju, 500-712, Korea.
a) E-mail: uskim@geguri.kjist.ac.kr
b)E-mail: dilee@kjist.ac.kr

asynchronous control unit of the target system using an
existing asynchronous logic synthesis tool.

Automatic control unit generation has been stud-
ied in both synchronous and asynchronous system de-
signs as a part of High-Level Synthesis (HLS). Though
many achievements have been made in the automatic
generation of associated controllers for synchronous
high-level synthesis (SHLS) [8], [9], these cannot be di-
rectly applied to asynchronous circuit design due to in-
herent features such as the absence of a global clock.
However, some research has been undertaken on asyn-
chronous high-level synthesis (AHLS). References [10]
and [11] introduced a general way of generating an in-
dependent control circuit for each hardware component,
called a hardware-oriented controller through this pa-
per. Reference [12] presents a compiler from Verilog
HDL to an asynchronous controller and a synchronous
datapath. In [12], an asynchronous control unit is im-
plemented in a centralized form. In the above two
approaches [10]–[12], a set of signal transition graphs
(STGs), which are the most commonly used asyn-
chronous control circuit specifications, are derived from
a given initial system specification and are synthesized
into asynchronous controllers using an asynchronous
logic synthesis procedure. Although this work presents
complete methodologies for automatic asynchronous
control unit generation, the resulting circuits are rather
inefficient because their methods cannot guarantee the
derivation of small and regular sized STGs satisfying
complete state coding, in short CSC, property. There-
fore, their methods suffer from area overhead, perfor-
mance degradation, bad implementability and long syn-
thesis times. For example, in [12], it takes 9.5 CPU
hours on an UltraSparc machine to synthesize the con-
trol unit of a small sized filter. Moreover, the descrip-
tion in [10], [11] is a simple DFG∗ having no control con-
structs such as ‘if’ and ‘while’ and thus their description
power is very limited. Another method of synthesis, a
macromodule based method [13], may cause area over-
head due to its inherent redundancy [14].

In this paper, a method for automatic control unit
generation from a CDFG is proposed. In order to
acquire an asynchronous control unit with competent

∗The DFG corresponds to a DFG-unit defined in Def. 1
of this paper.



KIM et al.: AUTOMATIC PROCESS-ORIENTED ASYNCHRONOUS CONTROL UNIT GENERATION FROM CDFGS
2015

quality, a new process-oriented method is proposed. A
control unit generated by the proposed method has the
following five noticeable features;

• to be separated into ‘execution controllers’ and ‘ex-
ecution order controllers’ completely according to
hierarchical decomposition of a given CDFG,

• to be uniformly distributed control circuits,
• to guarantee maximal concurrency between pro-
cesses,

• to be generated from a CDFG through a systematic
way,

• to be efficient in the aspects of area, performance,
implementability and synthesis time.

Specially, the first feature, complete division of
‘execution controllers’ and ‘execution order controllers’
makes other features possible and enables our process-
oriented asynchronous control unit generation method
to avoid problems which previous approaches experi-
enced.

This paper is organized as follows; Sect. 2 presents
preliminaries which are necessary to understand this
paper. Section 3 presents and compares several ap-
proaches to automatic control unit generation including
a process-oriented control unit generation approach. In
Sect. 4, we explain how to build a set of communicat-
ing controllers from a CDFG using the process-oriented
control unit generation method in detail. Section 5
presents timing conditions that a control unit generated
by a suggested method should satisfy for the correct op-
eration. In Sect. 6, experimental results to show the ef-
fectiveness and correctness of the suggested method are
given. Section 7 presents conclusion and future work.

2. Preliminaries

2.1 Control Data Flow Graphs

We assume that the initial behavioral description of a
target system is given in the form of a control data flow
graph, in short a CDFG, such as Fig. 1(a) in this paper.
Although a CDFG is a bit primitive compared to ex-
isting hardware description languages, it can represent
the behavior of a target system in a natural and explicit
way. Prior to defining a CDFG, two major constituent
components, a DFG-unit and a CDFG-unit, are defined.
Then we define a CDFG.

Definition 1: A DFG-unit is a triple Ω = (N, E, O),
where N is a set of operation nodes, E is a set of edges
between operation nodes, O is a set of operations de-
fined for each operation node.

Definition 2: A CDFG-unit is a 4-tuple Γ =
(X, Y, Z, E), where X is a control node, Y is a condi-
tional node, Z is the set of nodes in Γ except for X and
Y, where Z is said a child block of the Γ’s control node.
E is a set of edges between nodes.

Fig. 1 (a) A CDFG, (b) IF-node, (c) WHILE-node.

An operation node in a DFG-unit is mapped into
a concept of process because an operation consists of
‘read operands,’ ‘execute’ and ‘write the execution re-
sult.’ Therefore, we use an operation node and a pro-
cess in the same meaning in this paper. In a CDFG-unit,
the control node is responsible for the control of its child
block according to its predefined function. Figures 1(b)
and (c) show IF-node and WHILE-node. A conditional
node is a DFG-unit representing an execution condition
for the control node. A child block corresponds to an
execution block under the control of the control node
and consists of a set of DFG-units and CDFG-units.

Definition 3: A CDFG is a pair Σ = (U, E), where
U=Ω∪Γ is the set of units and E is the set of edges be-
tween units, where a unit is trivially either a DFG-unit
or a CDFG-unit. Each unit has at most one predecessor
and one successor. Moreover, each unit has at least one
predecessor and/or one successor except the case that
CDFG consists of only one DFG-unit or one CDFG-unit.

A CDFG is a sequential composition of DFG-units
and CDFG-units. Note here that a child block in a
CDFG-unit is another CDFG as a matter of fact and thus
a CDFG can describe the behavior of a target system hi-
erarchically. In order to implement the CDFG into hard-
ware, details about hardware implementation should be
associated to all the DFG-units constituting the initial
CDFG as shown in Fig. 2 through scheduling, resource
allocation and resource binding procedures. We call a
DFG-unit with hardware information a Scheduled, Al-
located, Bound-DFG unit, in short an SAB-DFG-unit.

Definition 4: An SAB-DFG-unit is a triple Ω′ =
(Ω, E′, H′). Where Ω = (N, E, O) is an initial DFG-unit,
E′ is the set of edges representing execution order be-



2016
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.8 AUGUST 2001

Fig. 2 A Scheduled, Allocated, Bound-CDFG(SAB-CDFG).

tween the operation nodes sharing the same hardware
and H′ is the multiset of hardwares associated with each
operation node or each edge in Ω. A CDFG, whose
all the DFG-units are SAB-DFG-units, is defined as an
SAB-CDFG.

For scheduling, resource allocation and resource
binding procedures, there have been little work related
to them in asynchronous high-level synthesis to our
knowledge. However, there have been a number of good
and efficient methods or tools performing them in syn-
chronous high-level synthesis although their exact solu-
tions require intractable computation time. Contrary
to automatic synchronous control unit generation, syn-
chronous methods performing them can be used in an
asynchronous high-level synthesis. Therefore, we can
derive an SAB-CDFG from a CDFG easily through ex-
isting synchronous scheduling, resource allocation and
resource binding procedures and thus we assume that
scheduling, resource allocation and resource binding are
performed prior to generating an asynchronous control
unit of a target system automatically. That is, we as-
sume that an SAB-CDFG is given as an input specifica-
tion for automatic control unit generation of a target
system. Since an SAB-CDFG is a default input specifica-
tion, we omit the prefix ‘SAB-’ for the sake of simplicity
in the rest of the paper.

2.2 An Architectural Model

The target architecture we consider in this paper is
shown in Fig. 3 and is composed of input/output (I/O)
processing part, a functional part and a control part.

The I/O processing part consists of input muxes,
output muxes and positive edge triggered registers.

Fig. 3 A target architecture for automatic asynchronous
control unit generation and its process-oriented controllers.

Furthermore, mux selectors (SEL) which are necessary
for choosing an input among mux inputs, register en-
abling signal generator (RE) for register writing, and
delay elements for registers are required. Muxes, which
are interconnected to I/O ports of registers, transport
data between functional units and registers.

Data processing modules such as adders, ALUs,
multipliers and shifters etc. comprise the functional
part. In the target architecture, 4-phase handshake
protocol and bundled data method for control and data
path protocols are assumed respectively for better per-
formance and smaller area. Therefore, each functional
unit is implemented in single-rail as synchronous one.
Note here that basically bundled data assumption is
not essential, but is introduced to reduce the area over-
head of functional units.

A control part based on process-oriented control
unit design style will be explained in the following sec-
tions in detail.

3. Approaches to Asynchronous Control Unit
Generation

3.1 Previous Approaches

The first previous approach is a traditional synchronous
control unit generation method. The synchronous con-
trol unit is described and synthesized through a finite
state machine (FSM), and generates proper control sig-
nals at the specified state transition according to a
global clock [8], [9]. However, the absence of a global
clock in an asynchronous system makes it difficult to
apply this method directly. Moreover, the clock based
state transitions severely restrict the autonomous and
parallel behavior of asynchronous systems.

There are two approaches to asynchronous con-
trol unit generation; a centralized control unit genera-
tion approach [12], shown in Fig. 4(a) and a hardware-



KIM et al.: AUTOMATIC PROCESS-ORIENTED ASYNCHRONOUS CONTROL UNIT GENERATION FROM CDFGS
2017

Fig. 4 (a) A centralized control unit, (b) A hardware-oriented
control unit.

oriented control unit generation approach [10], [11],
shown in Fig. 4(b). [12] presents a compiler from
Verilog to an asynchronous control unit and a syn-
chronous datapath. The control unit is implemented
in the centralized form and generates all the signals
necessary for system operation. [10], [11] present a
hardware-oriented asynchronous control unit genera-
tion method. In this method, a set of communicat-
ing small controllers, which are called control processes
(CPs) and constitute the asynchronous control unit, are
derived. A CP is generated for each self-timed hard-
ware block. Since CPs are controllers constituting a
hardware-oriented control unit, we call them hardware-
oriented controllers in this paper. The CP generates all
the control signals necessary for operation of the corre-
sponding hardware block, such as ‘operand fetch,’ ‘ex-
ecution’ and ‘writing the execution result.’ Moreover,
the CP includes information about the execution order
of operations allocated to the corresponding hardware
block. In the case of a synchronous control unit, ex-
ecution order is represented in the form of a state in
a FSM. That is, state transitions in a FSM describe
the execution order of the synchronous control unit.
However, an STG represents execution order through
sequential or concurrent connections of the control sig-
nals required in each state, instead of explicit repre-
sentation of states. Figure 5(a) shows a partial STG
for a CP, which is responsible for performing an oper-
ation allocated to an adder. The STG for the CP is
built by the sequential composition of the partial STGs
as shown in Fig. 5(b). For example, we assume that
n additions are allocated to an adder, and then the
corresponding STG for the adder is generated through
n time compositions of the partial STG in Fig. 5(a) as
shown in Fig. 5(b). Therefore, if more work is allocated
to a hardware block under the resource constraints, the
corresponding STG becomes larger linearly. Although
STGs for CPs differ from each other according to their

Fig. 5 (a) A partial STG for a CP, (b) A CP for an adder which
n addition operations are allocated to.

corresponding hardware blocks, their structures and ex-
pansions are similar to the STG in Fig. 5. Figure 4(b)
shows a hardware-oriented control unit consisting of
CPs for functional units, registers and muxes. Although
the above two approaches [10]–[12] present complete
methodologies for automatic asynchronous control unit
generation, the resulting circuits are rather inefficient
because special features in STG based logic synthesis,
such as state space explosion and complete state coding
(CSC) violation problems were not considered.

A state space explosion problem means that the
state space of a model is too large to analyze within
an acceptable time. The main cause of the state space
explosion problem for STGs is their size increase. Al-
though the relation between the size of an STG and the
number of states has not been proved theoretically, the
number of states of an STG may increase exponentially
with size of the STG in many cases. Figure 6 shows
the number of states and the synthesis time accord-
ing to the size of randomly selected STGs from an SIS
benchmark set [7]. For Fig. 6, we use an asynchronous
logic synthesis tool ‘Petrify’ [4], in order to obtain the
number of states, the synthesis time and the number
of literals. SIS benchmarks and ‘Petrify’ are the most
frequently used benchmarks and the most commonly
used asynchronous logic synthesis tool respectively. As
Fig. 6 shows, the number of states increases exponen-
tially, and hence the synthesis time also increases very
sharply according to the increasing size of STGs. For
[12], with increasing input system specification size, the
STG for a controller becomes larger and more complex
because only one centralized controller should control
the whole of the system. For [10], [11], a large input sys-
tem specification causes the sizes of the STGs for CPs
to be large, as in the centralized control unit genera-
tion method, under the resource constraints, as shown



2018
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.8 AUGUST 2001

Fig. 6 The number of states, synthesis time (sec.) and the
number of literals of SIS benchmark STGs according to increase
of STG size.

in Fig. 5(b). Therefore, their methods eventually suffer
from large synthesis times.

If an STG has two states that have the same binary
code but a distinct set of enabled non-input signals,
then it has CSC violations [15]. CSC violations requir-
ing internal signal insertion for solving them cause a
rapid increase in circuit area, delay and synthesis time
due to inserted internal signals. The formal definition
of CSC property and several problems which CSC vi-
olations cause will be explained in detail in Appendix
of this paper. Centralized [12] and hardware-oriented
[10], [11] asynchronous control unit generation methods
do not consider CSC property and assume that they
depend on CSC violation solving tools completely. The
STG derivation in [10]–[12] is based on a straightfor-
ward 4-phase handshake expansion of control signals
as shown in Fig. 5(a). Therefore, if careful considera-
tion is not given to CSC property, a derived STG may
have a number of CSC violations. For example, the
simple 4-phase handshake expansion of control signals
such as vor1+ →cor1+ →vor1− →cor1− in Fig. 5(a)
causes a CSC violation because different sets of output
signals, ‘vor1+’ and ‘r−, ci1+ and ci2+,’ can be enabled
at the same binary codes. Moreover, although Petrify,
which is the state of art in solving CSC violations, is
used, many internal signals are inserted, which results
in area and speed inefficient circuits consuming much
time. Moreover, sometimes CSC violations cannot be
solved by the tool. Therefore, these methods [10]–[12]
suffer from CSC violations eventually.

3.2 A Process-Oriented Approach

The process-oriented control unit generation method
shown in Fig. 3 is a new way to derive a decentral-
ized asynchronous control unit according to hierarchical

decomposition of a CDFG. A process-oriented control
unit shown in Fig. 3 is composed of process controllers
(PCs), process sequencing controllers (PSCs), control
node controllers (CNCs) and unit sequencing controllers
(USCs) that communicate with each other. The first
two controllers, PCs and PSCs, work as controllers for
a DFG-unit and the rest, CNCs and USCs, take respon-
sibility for controlling higher level than DFG-units in a
CDFG.

A PC, which is built for a process in a DFG-unit,
generates all the control signals necessary for executing
one process in the DFG-unit. Since each process is reg-
ular in sense of behavior, that is each process consists
of ‘read operand,’ ‘execute’ and ‘write the execution re-
sult,’ sizes of PCs are also regular and small. A PSC
corresponds to a DFG-unit and coordinates execution
order among PCs based on dependencies in the DFG-
unit. Therefore, a PSC is considered as a centralized
one basically, while PCs are distributed for a DFG-unit.
A CNC corresponds to a control node in a CDFG-unit
and thus there are two kinds of CNCs, WHILE-CNC
and IF-CNC. Each CNC handles a child block under
its control according to the function of the correspond-
ing control node in a CDFG-unit. A USC coordinates
execution order among CNCs and PSCs as a PSC does
among PCs. As previously mentioned, the important
distinctive feature of a process-oriented control unit is
complete separation of ‘execution controllers’ and ‘ex-
ecution order controllers’ according to hierarchical de-
composition of a given CDFG. Actually, that means that
a process-oriented asynchronous control unit consists of
PCs, PSCs, CNCs and USCs explained above. That is,
PCs correspond to ‘execution controllers’ and the others
correspond to ‘execution order controllers.’ Figure 7(a)
presents hierarchical structure of process-oriented con-
trol unit for Fig. 2 and Fig. 7(b) shows general hierarchy
of process-oriented controllers.

STGs for 4 kinds of process-oriented controllers
which are derived from a hierarchical decomposition of
a CDFG are always small and Sect. 4 will show that
fact explicitly. Therefore, the process-oriented method
do not experience the state space explosion inherently.
Moreover STGs for 4 kinds of process-oriented con-
trollers satisfy CSC property inherently through careful
signal coding in STG derivation procedure or algorithm.
In the following section, for each STG, it will be proved†

that each STG satisfies CSC property inherently. The
fact that no state space explosion and no CSC viola-
tion do not occur in our process-oriented method is
a very important advantage of our method over pre-
vious approaches. Therefore, you should understand
how those features can be achieved or guaranteed in the
following section. Note here that a hardware-oriented

†For CSC property, a proof in Prop.1 shows that process-
oriented controllers have no CSC violations through careful
interleavings of signal transitions inherently.



KIM et al.: AUTOMATIC PROCESS-ORIENTED ASYNCHRONOUS CONTROL UNIT GENERATION FROM CDFGS
2019

Fig. 7 (a) Hierarchical structure of process-oriented control
unit for Fig. 2, (b) General hierarchy of process-oriented con-
trollers.

method and our process-oriented method use a different
decomposition criterion. That is, the former derives a
control unit decomposed according to hardware compo-
nent blocks but the latter derives a control unit decom-
posed according to processes in a DFG-unit and hier-
archical interconnection of DFG-units and CDFG-units.
Therefore, degree of decomposition in the hardware-
oriented method varies according to hardware alloca-
tion but degree of decomposition in the process-oriented
method is always uniform. Moreover, the hardware-
oriented method is restricted to DFG specifications but
our process-oriented method can handle CDFGs.

4. Generation of Process-Oriented Controllers

In this section, we explain how to derive a distributed
control unit based on a process-oriented method in de-
tail. The first, STGs for controllers are derived and then
they are synthesized into asynchronous control circuits.

4.1 Generating Process Controllers

A process controller, in short PC, is a module to gen-
erate proper control signals necessary for performing a
process corresponding to an operation node in a DFG-
unit. In order to perform a process, a PC exchanges
several control signals with a PSC, a functional unit,
muxes and registers as shown in Fig. 8(a). The general
behavior of a PC is described as follows;

step 1 A PC is activated by receiving ReqStart+ from
the associated PSC.
step 2 The PC sends request signals necessary for
operand fetch such as ReqOP1+ and ReqOPn+. If nec-
essary, OPcode+ is generated as an OP code signal.

Fig. 8 (a)Signal exchanges in a PC, (b) An STG for a PC, (c)
Gate-level implementation of the STG given in (b).

step 3 The PC activates the bound functional unit by
sending a ReqFU+.

Since all signal exchanges are based on a 4-phase
bundled handshake protocol, AckFU+ arrives at
the PC after some fixed delay. Timing constraints
for correct operation is discussed in Sect. 5 in de-
tail.

step 4 The PC generates ReqWDR+ and sends it to
the destination register in order to store the execution
result.

Similar to AckFU+, AckWDR+ arrives at the PC
after some fixed delay.

step 5 After whole procedures of a process have been
completed, the PC sends AckStart+ to the PSC and
enters an idling phase immediately.

Behavior of a PC is described in a signal transi-
tion graph (STG) that has been widely accepted as a
description language of asynchronous control circuits
after introduced in [16]. Figure 8(b) shows an STG
corresponding to PC’s general behavior. STGs for PCs
may be different according to operations of the corre-
sponding process. For example, in the case of an assign-
ment operation, rising/falling transitions of ReqOP2 · · ·
ReqOPn, OPcode, ReqFU and AckFU are not neces-
sary. Note that the size of a PC is always similar to
the size of the STG in Fig. 8(b) because a PC is a sim-
ple controller to perform an operation node in a DFG-
unit. The circuit in Fig. 8(c) is one of PC example cir-
cuits derived from STGs by using asynchronous control
circuit synthesis tool, Petrify [4]. In general, an STG
should satisfy the following four properties to guarantee
a speed-independent operation of the generated circuit;
boundedness, output semi-modularity, consistency and



2020
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.8 AUGUST 2001

CSC [15], [17]. For the lack of space, a formal definition
of each property is omitted here. Please refer to [15]
and [17] for the definition. Detailed explanation about
CSC property is given in Appendix.

Proposition 1: An STG for a PC always satisfies
boundedness, consistency, output semi-modularity and
CSC properties.
[proof] All the proofs are almost trivial.
boundedness: An STG for a PC is a strongly connected
marked graph, in short MG, from the construction and
thus the corresponding STG is structurally bounded
[18].
consistency: The STG has exactly one rising transition
and one falling transition for each signal. Moreover,
rising and falling transitions for a signal always occur
alternatively. Therefore, consistency is satisfied.
output semi-modularity: An enabled transition in an
MG can not be disabled by firing of other transitions.
Therefore, the STG satisfies output semi-modularity in-
herently.
CSC: The STG has a working phase and an idling phase
explicitly. Namely, all the rising transitions occur in
a working phase and all the falling transitions occur
in an idling phase. Since a working phase ends in
AckStart+ and an idling phase ends in AckStart-, all
the states generated in a working phase have different
binary states from ones generated in an idling phase.
Moreover, all the states in the same phase have different
binary states from each other. Therefore, all the binary
states generated from the STG are distinct. Therefore
the STG satisfies CSC property.

According to Prop.1, an STG for a PC can be syn-
thesized into a speed-independent circuit without any
modifications.

4.2 Generating Process Sequencing Controllers

A process sequencing controller, in short PSC, is a cir-
cuit activating a series of PCs in a proper order based
on the data or resource dependencies among processes
or operation nodes in a DFG-unit. In the first step of
automatic PSC generation, we transform a DFG-unit
into a Petri net, in short PN. Since all the nodes in a
DFG-unit has been already scheduled, the correspond-
ing PN can be easily obtained.

Definition 5: For any two operation nodes, ni and nj,
in a DFG-unit, if there exists an edge ek or e′k from ni

to nj, ni precedes nj, denoted by (niPnj), where ek and
e′k are edges to denote data dependency relation and
resource dependency relation respectively. If (niPnj)
and there does not nk such that (niPnk) and (nkPnj),
then ni directly precedes nj, denoted by (niDPnj).

Definition 5 defines the precedence relation be-

Fig. 9 (a) Signal exchanges in a PSC, (b) An SAR-DFG-unit,
(c) A PN derived from an SAR-DFG-unit in (b), (d) An STG for
a PSC.

tween two operation nodes connected by edges ek or e′k
in the aspects of data or resource dependencies. Based
on Def. 5, the following is an algorithm to construct a
PN from a DFG-unit.

Algorithm 1: Derivation of a PN from a DFG-
unit
Note that any DFG-unit does not have choice inherently
and thus the derived net is an MG. Therefore, “make
an arc from t to t′” in this algorithm means that t and
t′ are connected via a place p, i.e., t → p → t′.
step 1 Generate two transitions labeled Start and End.
step 2 For each operation node opi, make a correspond-
ing transition and label it as PCi, i = 1, 2, . . ..
step 3 For each transition PCi corresponding to an op-
eration node opi which has no operation node opj such
that (opjPopi), make an arc from Start transition to
PCi.
step 4 For each transition PCi corresponding to an op-
eration node opi which has no operation node opj such
that (opiPopj), make an arc to End transition.
step 5 Make an arc from PCi to PCj corresponding to
operation nodes, opi and opj such that (opiDPopj).
step 6 Make an arc from End transition to Start tran-
sition and put a token at a place on the arc.

Moreover the PN derived from a DFG-unit can be
automatically transformed into an STG in a straight
forward way. The following algorithm shows derivation
of an STG for a PSC from a PN using 4-phase hand-
shaking protocol. Figures 9(b), (c) and (d) show how
to derive a PN and an STG from a DFG-unit through
Algo.1, 2 and Fig. 9(a) shows signal exchanges between
PSC and associated PCs.



KIM et al.: AUTOMATIC PROCESS-ORIENTED ASYNCHRONOUS CONTROL UNIT GENERATION FROM CDFGS
2021

Algorithm 2: Derivation of an STG from a PN
Using 4-phase Handshaking protocol
step 1 Transform the Start transition and the End tran-
sition to Req+ and Ack+−→Req−, respectively.
step 2 Divide each transition corresponding to PCi into
two rising signals ReqPCi+ and AckPCi+ and add an
arc as ReqPCi+ −→AckPCi+.
step 3 For each signal generated in steps 1 and 2, make
an arc from AckPCi+ to ReqPCj+ if there is an arc
from PCi to PCj in the PN.
step 4 For each rising transition ReqPCi+ correspond-
ing to PCi which is a postnode of Start transition, make
an arc from Req+ to ReqPCi+. And then for each ris-
ing transition AckPCj+ corresponding to PCj which is
a prenode of End transition, make an arc from AckPCj

to Ack+.
step 5 Make falling signals ReqPCi−’s, AckPCi−’s and
Ack− and add arcs as ReqPCi− −→AckPCi−.
step 6 Make arcs from Req- to all the ReqPCi−’s and
from all the AckPCi−’s to Ack−.
step 7 Add an arc from Ack- to Req+ and put a token
on the arc.

It can be proved in a similar way to Prop.1 that
STGs obtained through Algo.2 always satisfy the four
properties for speed-independent circuit implementa-
tion. Therefore, an STG for a PSC can be also syn-
thesized into a speed-independent circuit without any
modifications. Moreover, a PSC, which is derived
through Algo. 1 and 2, guarantees maximal concur-
rency between processes in a DFG-unit.

There are two points that are worth noting in con-
struction of a PSC, the associated PCs and their interac-
tions: Consider a PSC, say PSCi, and all associated PCs,
say PC PSCi. PSCi activates every PC in PC PSCi in
the order of associated dependencies before entering the
idling phase. Then each PC in PC PSCi executes the as-
signed process. After completion of the process, the PC
sends out an acknowledge signal. Then the PC imme-
diately goes into its idling phase, i.e., pulling down re-
quest and acknowledgement signals, by its own control
rather than by PSCi’s idling phase. In consequence, we
can enjoy better performance by hiding idling phases of
all PCs. For example, in the STG shown in Fig. 9(d), the
PSC issues ReqPCi+, i=1, 2, to activate PC1 and PC2.
ReqPCi+ corresponds to ReqStart+ in the STG for a
PC as shown in Fig. 8(b). After the completion of the
assigned process PCi sends AckStart+ which is identical
to AckPCi+ in the PSC. Then PCi immediately starts
the idling phase without any interaction with the PSC
by issuing ReqOP1−, · · · ReqOPn−, ReqFU- and so on.
At the same time the PSC sends another ReqPC3+ and
ReqPC4+ without issuing ReqPCi−, i=1, 2.

In addition, if decomposition of a PSC is required
for such reasons as synthesis time and implementabil-
ity, for example if several small sized PSCs are prefer-

Fig. 10 A structure of a decomposed PSC.

able rather than one large PSC, a PSC can be decom-
posed easily into small sub-PSCs which communicate
with each other and control allocated PCs in the struc-
ture shown in Fig. 10. A decomposed PSC behaves in
the exactly same manner as an original PSC and this
decomposition guarantees further distribution of con-
trol circuits in small and uniform size.

4.3 Building Control Node Controllers

In a CDFG, control nodes coordinate executions of child
blocks. In this paper, we assume that there are two
kinds of control-nodes according to their function; IF-
node and WHILE-node. IF-node performs the child
block under its control if the given condition is true.
Similarly, WHILE-node executes the child block under
its control while the given condition is true.

A control node controller, in short a CNC, corre-
sponds to a control node in a CDFG-unit. A control
node operates according to the given condition and
thus a CNC should check whether the given condition is
true or not through executing a conditional node when
an input signal Req+ is activated. Then, as a result
of executing the conditional node, the CNC activates
the child block according to the value of Flag which
indicates an execution result of the conditional node.
Figure 11(a) shows a block diagram which shows sig-
nal exchanges among CNC, the associated conditional
node and the child block. We propose STGs for IF-CNC
and WHILE-CNC as shown in Figs. 11(b) and (c), re-
spectively. STGs for IF-CNC and WHILE-CNC satisfy
four properties for speed-independent circuit synthesis
by construction. Therefore, they can be synthesized
into speed-independent circuits without any modifica-
tions. Although we define only two CNC controllers,
IF-CNC and WHILE-CNC, for the simplicity, the set of
CNC controllers can be expanded easily at need.

4.4 Building Unit Sequencing Controllers

A unit sequencing controller, in short a USC, is to co-
ordinate the execution order among CNCs and PSCs in
order to perform a CDFG as a PSC does for a DFG-unit.
According to the definition of a CDFG, DFG-units and
CDFG-units constituting a CDFG are performed sequen-
tially. Therefore, executions of CNCs and PSCs that
are handled by a USC are linearly ordered. The follow-
ing algorithm shows the procedure which generates a



2022
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.8 AUGUST 2001

Fig. 11 (a) Signal exchanges in CNC, (b) An STG for IF-CNC, (c) An STG for
WHILE-CNC.

PN representing the execution order among CNCs and
PSCs from a CDFG. Note that “make an arc” in the al-
gorithm also means that two transitions are connected
via a place.

Algorithm 3: Derivation of a Sequential PN
from a CDFG
step 1 Generate two transitions Start and End.
step 2 For every DFG-unit or CDFG-unit, make a corre-
sponding transition and label it as Blocki, i=1, 2, . . ..
step 3 Make an arc from Start transition to a transition
corresponding to a DFG-unit or a CDFG-unit having no
predecessor.
step 4 Make an arc to End transition from a transition
corresponding to a DFG-unit or a CDFG-unit having no
successor.
step 5 For two adjacent units in a CDFG, make an arc
between corresponding two transitions according to the
given dependency. Here a unit means a DFG-unit or a
CDFG-unit.
step 6 Make an arc from End transition to a Start tran-
sition and put a token at a place on the arc.

A sequential PN obtained through Algo.3 can be
transformed into an STG of the target USC in the same
way as Algo.2. It can be proved in a similar way to
Prop.1 that the resulting STG satisfy the four prop-
erties for speed-independent circuit implementation.
Therefore, the STG can be synthesized into a speed-
independent circuit without any modifications like PSC.
Figure 12 shows a series of steps to derive an STG for
a USC from a CDFG. If the size of system specifica-
tion becomes large, the size of a USC may be large. In
this case, the USC can be also decomposed into small
sub-USCs in the same manner as PSC’s decomposition.

5. Timing Constraints for Correct Operation
of Process-Oriented Asynchronous Control
Units

Timing constraints are necessary for correct control of

Fig. 12 Derivation of an STG for a USC from a CDFG.

whole system by a proposed control unit. Those con-
straints are as follows;

1. The size of delay associated to a functional unit (FU)
should be larger than the sum of maximum operand
fetch delay, the FU’s worst case delay and worst case
delay of destination register’s input muxes.
2. The size of delay associated to a register should be
larger than delay for register writing.
3. For two consecutive processes, pi and pj, using the
same hardware, if pi is executed prior to pj, the idling
phase of pi should not overlap with the working phase
of pj.

Since we assume that bundled data method is used
for small area, necessities of the first and the second
constraints are trivial and it is easy to satisfy 1 and
2. I/O ports of a FU are connected to interconnection
logics consisting of a series of muxes. Therefore, maxi-
mum operand fetch delay and worst case delay of des-
tination register’s input muxes should be considered in



KIM et al.: AUTOMATIC PROCESS-ORIENTED ASYNCHRONOUS CONTROL UNIT GENERATION FROM CDFGS
2023

Fig. 13 (a) Signal exchanges based on 4-phase bundled data
method between FU/Register and PC, (b) A delay element with
fast high-to-low propagation delay.

constraint 1. The last constraint is necessary for cor-
rect implementation of 4-phase handshaking protocol
based on bundled data method. Note that signal ex-
changes between FU/Register and PC are implemented
as shown in Fig. 13. We assume that PC1 and PC2

are controllers to access the same FU sequentially as
shown in Fig. 13(a). Consider the FU has completed for
ReqFU1+. Then delay element gives AckFU1+ to PC1.
Since G1 and G2 share output which comes from delay
element D, if PC2 sends ReqFU2+ before the output of
delay element D becomes low, PC2 receives AckFU2+
immediately. This problem originally stems from the
fact that a PSC activates all associated PCs before it
enters into the idling phase for better performance. To
avoid this situation, we should insert a delay element
with proper delay between PSC and PC2. This causes
some performance degradation. In order to avoid or
reduce this performance degradation due to the third
constraint, we make idling phases of PCs as short as
possible through concurrent signal fallings and a spe-
cialized delay element whose delay time is very small for
a falling signal as shown in Fig. 13(b). Consequently,
the third constraint can be satisfied easily with only
small performance loss.

6. Experimental Results and Discussions

In this paper, we suggest a process-oriented con-
trol unit generation method. The proposed method
has been implemented as a part of an asynchronous
high-level synthesis tool. This tool derives a set of
STGs for asynchronous controllers based on a process-
oriented method and then synthesizes them into speed-
independent circuits. In the logic synthesis procedure,
Petrify [4] is used. In order to check the effective-
ness and correctness of the suggested method, we per-
formed three experiments. In the first two experiments,
a hardware-oriented method and a process-oriented
method were compared with respect to area, perfor-

Table 1 General hardware-oriented controller benchmarks.

csc csc fanin synthesis
name pl+tr lits sigs lits 6,7 ≥8 time

CPfu1 47 28 3 15 1 0 17.7 sec.
CPfu2 70 60 6 23 2 0 204.6 sec.
CPfu3 89 75 9 43 3 0 664.07 sec.
CPfu4 112 185 12 80 4 2 2273.45 sec.
CPfu5 128 325 14 87 13 5 6262.5 sec.
CPreg1 52 25 4 15 1 0 28.3 sec.
CPreg2 81 70 5 28 0 2 213.87 sec.
CPreg3 105 201 8 59 2 5 1397.9 sec.
CPreg4 140 187 13 76 1 4 4502.0 sec.
CPreg5 175 354 15 88 6 7 9140.3 sec.

‘pl’ and ‘tr’ denote the number of places and transitions in STGs.
‘lits’ is the number of literals of a synthesized controller.
‘csc sigs’ is the number of internal signals which are inserted to
solve CSC violations.
‘csc lits’ is the number of literals constituting internal signals.
‘fanin’ is the number of inputs for a gate.

Table 2 General process-oriented controller benchmarks.

csc csc fanin synthesis
name pl+tr lits sigs lits 6,7 ≥8 time (sec.)

PCc 37 15 0 0 0 0 1.25 sec.
PCa 17 5 0 0 0 0 0.23 sec.
PSC2 26 4 0 0 0 0 0.51 sec.
PSC4 46 14 0 0 0 0 2.82 sec.
PSC8 86 30 0 0 0 1 58.59 sec.
PSC∗

8 92 28 0 0 0 0 5.64 sec.
IF− CNC 41 26 0 0 0 0 1.59 sec.
WHILE− CNC 34 27 0 0 0 0 1.21 sec.
USC2 25 6 0 0 0 0 0.45 sec.
USC4 43 12 0 0 0 0 2.14 sec.
USC8 79 24 0 0 0 1 54.84 sec.
USC∗

8 86 24 0 0 0 0 4.28 sec.

∗ denotes decomposed PSC or USC versions.

mance, implementability and synthesis time of their
resulting circuits. In the last experiment, we applied
a process-oriented method to the design of an asyn-
chronous control unit of a ‘differential equation solver.’

In the first experiment, we compared basic con-
trollers, which form hardware-oriented and process-
oriented control units, as shown in Tables 1 [10] and
2 respectively. Hardware-oriented and process-oriented
control units consist of different basic controllers. A
hardware-oriented control unit has CP’s for functional
units, registers and multiplexers as basic controllers.
On the other hand, PC’s, PSC’s, CNC’s and USC’s
are all basic controllers in a process-oriented control-
unit. Roughly speaking, for CPfu, which is a hardware-
oriented controller dedicated to a functional unit ‘fu,’
whatever the functional unit ‘fu’ may be, the size and
structure of the CPfu are almost same. Likewise, for ba-
sic process-oriented controllers, the size and structure
of each kind of basic controllers are almost the same.
However, in the case of a basic hardware-oriented con-
troller, the size relies on the number of executions of
a given functional unit. In the case of a basic process-
oriented controller such as a PSC or a USC, the size of
the PSC is decided upon by the number of PC’s coor-
dinated by the PSC, and the size of the USC is decided
upon by the number of CNC’s and PSC’s coordinated



2024
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.8 AUGUST 2001

by the USC. Table 1 shows that when the number of
executions increases, the corresponding controller gets
more complex and Table 2 shows that when the number
of PC’s, PSC’s and CNC’s increases, the coordinating
controller, a PSC or a USC, also gets more complex. In
Table 1, CPfuK, K=1, 2, · · · , 5, denotes a hardware-
oriented controller, which manages a functional unit
‘fu’ that performs an operation K times, and CPregK,
K=1, 2, · · · , 5, is a hardware-oriented controller for
a register ‘reg’ performing a write operation K times.
In Table 2, PSCK and USCK denote controllers, which
coordinate K PCs and K PSCs and CNCs respectively.
Hardware-oriented and process-oriented control units
mainly consist of basic controllers as shown in Tables 1
and 2. Since a control unit is composed of several basic
controllers, the advantages and disadvantages of con-
trollers shown in Tables 1 and 2 directly affect control
units. Therefore, the analysis data in Tables 1 and 2
obtained from the first experiment supports our claim
on the superiority of process-oriented control units, ob-
tained using our method, over hardware-oriented con-
trol units generally.

We explain the correspondence between controllers
in Tables 1 and 2. Consider a DFG-unit perform-
ing K same operations to which one functional unit
is allocated. In this case, a hardware-oriented con-
trol unit for the DFG-unit consists of CPfuK, CPregK1’s
and CPmuxK2’s, but we consider only CPfuK for the
sake of simplicity. On the other hand, the correspond-
ing process-oriented control unit consists of K PCc’s
and PSCK. Roughly, for a given DFG-unit, hardware-
oriented and process-oriented control units have cor-
respondence of CPfuK : K·PCc+PSCK. Here, PSCK is
always a decomposed version if K is large because de-
composition is always possible and easily performed,
as explained in Sect. 4.2. For the hardware-oriented
controllers in Table 1, the number of places, transi-
tions, and literals, and internal signals, high-fanin gates
and the synthesis time increase very rapidly, as shown
in Table 1, while those of the process-oriented con-
trollers increase slowly, and internal signals and high-
fanin gates are not required, as shown in Table 2.
Moreover, the sizes of STGs for process-oriented con-
trollers are maintained at a proper size without increas-
ing continuously. Therefore, we know that hardware-
oriented control units corresponding to CPfuK are worse
than process-oriented control units corresponding to
K·PCc+PSCK. Moreover, with increasing size of given
CDFGs, the difference in terms of numbers of liter-
als, area, high-fanin gates and synthesis time becomes
larger and larger. The analysis of controllers in Tables 1
and 2 illustrates this explicitly.

As previously mentioned, the number of states for
an STG may increase exponentially with respect to
the size of the STG in most cases. Moreover, with
the increase of one signal in an STG, the size of state
space, which is required in asynchronous logic synthesis,

grows twice and hence the synthesis time increases very
rapidly. For example, consider an STG with 3n signals
and three STGs with n signals respectively. The size
of state space required in asynchronous logic synthesis
for the former STG with 3n signals is 23n . However,
the size of state space required in asynchronous logic
synthesis for the latter STGs is 3·2n . This fact implies
that the corresponding synthesis time increases expo-
nentially with a linear increase in its size of an STG, and
thus the synthesis time of several small STGs is much
smaller than the synthesis time of a large STG. Figure 6
shows that fact very well. In Sect. 3, we mentioned that
STGs for hardware-oriented controllers have a number
of CSC violations. Therefore, the number of inserted
internal signals for solving CSC violations and the syn-
thesis time increase rapidly with an increase of K for
CPfuK’s or CPregK’s in Table 1. The above two facts,
i.e., the exponential increase of the number of states
and CSC violations, have very serious consequences be-
cause K and a corresponding STG tend to increase for
a large system specification under the hardware re-
source constraints. For example, in the case of CPfu5,
it takes long time, 6262.5 seconds, for synthesis. More-
over, 14 internal signals are inserted for solving CSC
violations with additional area overhead. The number
of literals necessary for implementing inserted internal
signals in Table 1 shows how much area overhead is
required in the hardware-oriented method. These in-
ternal signals cause performance degradation by intro-
ducing additional transitions of internal signals. Al-
though Petrify [4], which is the state of the art in asyn-
chronous logic synthesis and solving CSC violations,
was used in this experiment, many internal signals were
inserted. Here, it is worth pointing out another prob-
lem, ‘implementability.’ Implementability means how
easily designers can implement correct asynchronous
control units. As is shown in Table 1, gates with 6,
7 or more fanins are needed for hardware-oriented con-
trollers. This feature is due to the fact that a traditional
logic synthesis methodology, as used by Petrify, assumes
2-level sum-of-product implementation for set or reset
inputs of a C-element for correct synthesis. Therefore,
synthesized circuits of large STGs may have a number of
high-fanin gates because of the restricted circuit struc-
ture. Contrary to synchronous controllers, it is difficult
or impossible to decompose a high-fanin gate into small-
fanin gates because of hazards under the current logic
synthesis technology. Therefore, if a cell library does
not support high-fanin gates, a designer should imple-
ment all the hardware-oriented controllers with high-
fanin gates in the full-custom style instead of using the
cell library. For the process-oriented approach, Table 2
shows analysis data for four kinds of controllers, PCs,
PSCs, CNCs and USCs in the process-oriented method.
In particular, PSCs and USCs are scalable according to
the size of the given DFG-unit or CDFG. Thus we experi-
mented with several PSCs and USCs at various sizes. As



KIM et al.: AUTOMATIC PROCESS-ORIENTED ASYNCHRONOUS CONTROL UNIT GENERATION FROM CDFGS
2025

shown in Table 2, the sizes of the STGs for the process-
oriented controllers, except PSCs and USCs, are small
compared to hardware-oriented controllers, and thus
the synthesis takes comparatively little synthesis time.
For PSCs and USCs, their sizes also tend to get larger
if a system specification is large. However, they can be
decomposed into small sub-controllers as explained in
Sects. 4.2 and 4.4. Note here that the size of an STG
for a decomposed PSC or USC does not refer to a single
STG but a summation of all the STGs’ sizes for sub-
PSCs and sub-USCs. Therefore, process-oriented con-
trollers can be synthesized within a short time because
of the small size of the corresponding STGs. In terms of
CSC property, all kinds of process-oriented controllers
satisfy CSC property inherently. Moreover, all process-
oriented controllers can be implemented with only 5 or
fewer fanin gates because of the small sizes of the corre-
sponding STGs. Therefore, the process-oriented control
unit generation method presents a way of generating
an efficient asynchronous control unit without expe-
riencing ‘big synthesis time,’ ‘area overhead,’ ‘perfor-
mance degradation’ and ‘bad implementability.’ Note
that those advantages of the process-oriented method
result from the fact that it can always guarantee the
derivation of small sized STGs satisfying the CSC prop-
erty inherently, as shown in Table 2.

In the second experiment, we applied a hardware-
oriented method and a process-oriented method to the
well-known high-level synthesis benchmarks, FIR-filters
and IIR-filters. The derived control units were imple-
mented at the gate level using a commercial VHDL tool,
SYNOPSYS, and 0.6µm cell library and then simulated
using CADENCE. In this experiment, we compared the
number of literals, area, average input/output response
time, as denoted by the average I/O RT in the ta-
ble, and the synthesis time; Table 3 shows the analysis
data. In terms of area, the hardware-oriented control
units were about 5 times larger than the corresponding
process-oriented control units. In our opinion, no CSC
violation and good decomposition between ‘execution
controllers’ and ‘execution order controllers’ without re-
dundancy lead to these good results. In particular, as
shown by the analysis data of hardware-oriented con-
trollers in Table 1, internal signals for solving CSC viola-
tions cause big area overheads in the hardware-oriented
method. In terms of performance, the average I/O RT
was considered as a performance measure, because each
hardware component communicates with the others as
soon as possible in an asynchronous system. In the
case of hardware-oriented controllers, much more sig-
nals are related to each output signal because of the
large size of the corresponding STGs, and thus the av-
erage I/O response time increases. Moreover, internal
signals for solving CSC violations introduce additional
delays. Figure A· 1(e) in the Appendix shows that an
inserted internal signal causes the delay of an output
signal transition. In contrast with hardware-oriented

Table 3 Hardware-Oriented control units† v.s.
Process-Oriented control units‡.

average H/W alloc. synthesis
name lits area I/O RT + × reg. time (sec.)
†3FIR 240 638.93 2.46 ns 1 2 3 278.3
‡3FIR 85 129.72 0.68 ns 1 2 3 5.38

†5FIR 500 1216.34 2.59 ns 2 2 5 1051.16
‡5FIR 155 228.53 0.68 ns 2 2 5 48.42

†2IIR 410 997.28 2.38 ns 2 2 4 289.2
‡2IIR 137 204.24 0.69 ns 2 2 4 28.8

†3IIR 636 1429.06 2.62 ns 2 2 6 711.2
‡3IIR 184 298.34 0.68 ns 2 2 6 69.92

Unit of area is 2-input NAND gate.

Table 4 A controller comparison between [19]† and the
Process-Oriented method‡ for the ‘di�erential equation solver.’

average synthesis
name lits area I/O RT time (sec.)
†AFSMALU1 43 65.86 1.37 ns 6.3
†AFSMALU2 139 200.0 2.49 ns 20.1
†AFSMMUL1 42 64.16 1.82 ns 3.4
†AFSMMUL2 15 23.94 1.32 ns 2.5

Total 239 353.96 - 32.3

‡USC 8 18.29 0.52 ns 0.99
‡CNCwhile 27 68.18 1.57 ns 1.25
‡PSC3 9 17.30 0.44 ns 1.27
‡PSC7 21 28.94 0.36 ns 29.7
‡PC 15×9 21.62×9 0.71 ns 1.2

Total 200 327.29 - 34.41

Unit of area is 2-input NAND gate.

controllers, process-oriented controllers are very com-
pact and do not experience CSC violations, as shown in
Table 2. Therefore, average I/O RTs of process-oriented
control units are much smaller than those of hardware-
oriented control units, as shown in Table 3. In the case
of synthesis time, the synthesis of process-oriented con-
trollers can be performed very quickly because of the
small size of the corresponding STGs and inherent sat-
isfaction of CSC property.

Note here that results of Table 3 are not limited to
several benchmarks only because the results in Table 3
are based on the results in Tables 1 and 2. As previously
mentioned, controllers in Tables 1 and 2 are basic and
general components constituting a hardware-oriented
and a process-oriented control units, and thus most
of the process-oriented and hardware-oriented control
units, including the control units in Table 3 consist of
controllers in Tables 1 and 2. Therefore, for the other
system benchmarks, as well as those in Table 3, we can
expect similar data to that shown in Table 3. Con-
sequently, although we did not verify the advantages
of our process-oriented method over previous meth-
ods theoretically, we believe that our claim is general
enough.

In the third experiment, we implement a ‘differen-
tial equation solver’ at the structural VHDL code level
based on the suggested method in order to check its
efficiency and correctness by comparing it with human
designed counterpart [19]. In [19], 4 distributed con-



2026
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.8 AUGUST 2001

Fig. 14 Simulation result I for a ‘di�erential equation solver.’

trollers are used and they are described in AFSM form.
These four AFSM specifications were described very ef-
ficiently by a skilled designer. We synthesized these
AFSM specifications using a burst mode synthesis tool,
3D [20]. Then we implemented another asynchronous
control unit based on the process-oriented method. Ta-
ble 4 shows the analytical data for those two imple-
mentations. It is worth noting that the results in
Table 4 were obtained under different delay assump-
tions, as 3D is based on a burst mode while ours is
based on a speed-independent assumption. In general,
asynchronous circuits based on the burst mode delay
assumption show better performance but less robust-
ness than SI circuits, if the same controller generation
method is adopted. More specifically, the most com-
mon SI circuit synthesis method uses C-elements but
the 3D burst mode synthesis method does not use any
latch. Consequently the experimental results in Ta-
ble 4 show that a process-oriented approach can gener-
ate asynchronous control units, which are better than
or comparable to human designed control units. Fig-
ures 14 and 15 present simulation results of the ‘differ-
ential equation solver’ we implemented at VHDL level
using SYNOPSYS and a 0.6µm cell library. As Figs. 14
and 15 show, the process-oriented method based con-
trollers work together using a 4-phase handshaking pro-
tocol. In order to satisfy the timing constraints given
in Sect. 5, we inserted proper delays. In particular, for
functional units and registers, 1.1–1.2 times bigger de-
lays than their worst case delays were inserted.

From these three experiments we concluded that
our approach presents a good and practical method of
automatic asynchronous control unit generation.

7. Conclusion and Future Work

We have presented an automatic process-oriented con-
trol unit generation method. The proposed method has
the following noticeable features;
- to present a systematic and hierarchical way to gen-
erate an asynchronous control unit which is separated
into ‘execution controllers’ and ‘execution order con-

Fig. 15 Simulation result II for a ‘di�erential equation solver.’

trollers’ completely,
- to produce STGs satisfying four properties for speed-
independent circuit implementation without any mod-
ification,
- to produce a hierarchically distributed asynchronous
control unit standing at advantage in the points of area,
performance, implementability and synthesis time due
to the above two features.

Moreover, since all the procedures to derive asyn-
chronous control units from a CDFG are suggested in
an algorithmic and systematic way, they can be au-
tomated. Consequently our method is expected to
present a good and practical way to generate asyn-
chronous control units automatically as a part of asyn-
chronous high-level synthesis.

This work has been performed as a part of building
an asynchronous high-level synthesis CAD tool. In or-
der to construct a complete CAD tool, researches about
scheduling, resource allocation, resource binding and
asynchronous architecture for an asynchronous system
should be performed.

Acknowledgment

This work has been supported in part by the Korea Sci-
ence and Engineering Foundation under grant 20006-
302-01-2 and by the KAIST/K-JIST IT-21 Initiative in
BK21 of Ministry of Education.

References

[1] S. Hauck, “Asynchronous design methodologies: An
overview,” Proc. IEEE, vol.83, no.1, pp.69–93, 1995.

[2] E. Pastor, J. Cortadella, A. Kondratyev, and O. Roig,
“Structural methods for the synthesis of speed-independent
circuits,” IEEE Trans. Comput.-Aided Des. Integrated Cir-
cuits & Syst., vol.17, no.11, pp.1108–1129, 1998.

[3] S.M. Nowick, “Automatic synthesis of burst-mode asyn-
chronous controllers,” Ph.D. Thesis, Stanford University,
1995.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev, “Petrify: A tool for manipulating con-



KIM et al.: AUTOMATIC PROCESS-ORIENTED ASYNCHRONOUS CONTROL UNIT GENERATION FROM CDFGS
2027

current specifications and synthesis of asynchronous con-
trollers,” IEICE Trans. Inf. & Syst., vol.E80-D, no.3,
pp.315–325, March 1997.

[5] T. Miyamoto and S. Kumagai, “On deriving logic functions
of asynchronous circuits by STG unfoldings,” IEICE Trans.
Inf. & Syst., vol.E80-D, no.3, pp.336–343, March 1997.

[6] S.B. Park and T. Nanya, “Synthesis of asynchronous cir-
cuits from signal transition graph specifications,” IEICE
Trans. Inf. & Syst., vol.E80-D, no.3, pp.326–335, March
1997.

[7] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R.
Murgai, A. Saldanha, H. Savoj, P.R. Stephan, R.K. Bray-
ton, and A. Sangiovanni-Vincentelli, “SIS: A system for
sequential circuit synthesis,” Technical Report UCB/ERL
M92/41, U.C. Berkeley, May 1992.

[8] D.D. Gajski, N.D. Dutt, A.C.-H. Wu, and S.Y.-L. Lin,
High-Level Synthesis: Introduction to Chip and System De-
sign, Kluwer Academic Publishers, 1991.

[9] G. DeMicheli, Synthesis and Optimization of Digital Cir-
cuits, McGraw-Hill, 1994.

[10] J. Cortadella and R.M. Badia, “An asynchronous architec-
ture model for behavioral synthesis,” Proc. European Con-
ference on Design Automation, pp.307–311, March 1992.

[11] R.M. Badia, J. Cortadella, E. Pastor, and A. Pardo,
“A high-level synthesis system for asynchronous circuits,”
Sixth International Workshop on High-Level Synthesis,
pp.87–94, Nov. 1992.

[12] I. Blunno and L. Lavagno, “Automated synthesis of micro-
pipelines from behavioral verilog HDL,” Proc. Sixth In-
ternational Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pp.84–92, April 2000.

[13] K.V. Berkel, “Handshake circuits. An asynchronous archi-
tecture for VLSI programming,” International Series on
Parallel Computation 5, Cambridge University Press, 1993.

[14] T. Kolks, S. Vercauteren, and B. Lin, “Control resynthesis
for control-dominated asynchronous designs,” Proc. Second
International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pp.233–243, March 1996.

[15] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev, “A region-based theory for state as-
signment in speed-independent circuits,” IEEE Trans.
Comput.-Aided Des. Integrated Circuits & Syst., vol.16,
no.8, pp.793–812, 1997.

[16] T.A. Chu, “Synthesis of self-timed VLSI circuits from
graph-theoretic specifications,” Ph.D. Thesis, MIT, June
1987.

[17] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen,
and A. Yakovlev, “Basic gate implementation of speed-
independent circuits,” Proc. ACM/IEEE Design Automa-
tion Conference, pp.56–62, June 1994.

[18] T. Murata, “Petri nets: Properties, analysis and applica-
tions,” Proc. IEEE, vol.77, no.4, pp.541–580, 1989.

[19] K.Y. Yun, P.A. Beerel, V. Vakilotojar, A.E. Dooply,
and J. Arceo, “The design and verification of a high-
performance low-control-overhead asynchronous differential
equation solver,” IEEE Trans. VLSI Systems, vol.6, no.4,
pp.643–655, 1998.

[20] K.Y. Yun and D.L. Dill, “Automatic synthesis of extended
burst-mode circuits: Part II (Automatic synthesis),” IEEE
Trans. Comput.-Aided Des. Integrated Circuits & Syst.,
vol.18, no.2, pp.118–132, 1999.

Appendix

Complete State Coding (CSC) property is a neces-

Fig.A· 1 (a) An STG with a CSC violation, (b) An SG for the
STG in (a), (c) An STG satisfying CSC property, (d) An SG for
the STG in (c), (e) An asynchronous control circuit for the STG
in (c).

sary condition for hazard-free speed-independent asyn-
chronous control circuit implementation. Its formal
definition is as follows;

Definition 6: An STG is said to satisfy Complete
State Coding (CSC) property iff, when the same binary
code is assigned to different markings, the transitions
of the non-input signals enabled at both markings are
identical, i.e.

∀Mi, Mj ∈ [M0〉 : i 	= j ∧ λ(Mi) = λ(Mj)
⇒ (∀s ∈ Sni, ∃si∗, sj∗ : Mi[si∗〉 ⇔ Mj[sj∗〉)

[M0〉 represents the set of markings reachable from an
initial marking M0, λ(M) denotes a binary code which
corresponds to current values of signals in a marking
M, Sni is the set of non-input signals, and si∗ is the i-
th si+ or si− of a signal s. M[si∗〉 means that a signal
transition si∗ is enabled in the marking M.

In general, CSC violations can be solved by insert-
ing internal signals. Figure A· 1 is an example to show
how to transform and implement an STG with CSC vi-
olations into an asynchronous control circuit. Let ‘A’
be input and ‘B’ be output signals for the STG and the
corresponding SG in Figs.A· 1(a) and (b). As shown
in Fig.A· 1(b), there exist two different markings with
the same binary code ‘01’ but with the different set
of non-input enabled signals. Therefore, the STG in
Fig.A· 1(a) does not satisfy CSC property. Since CSC
property is a necessary condition for hazard-free speed-
independent asynchronous control circuit implementa-
tion, we should make the STG to satisfy CSC property.
Figures A· 1(c) and (d) show the STG and the corre-
sponding SG satisfying CSC property and it is derived



2028
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.8 AUGUST 2001

from the STG in Fig. A· 1(a) through inserting an inter-
nal signal ‘C.’ Since the STG in Fig.A· 1(c) satisfies CSC
property, it can be synthesized into an asynchronous
control circuit shown in Fig.A· 1(e).

Although CSC violations can be solved by insert-
ing internal signals, CSC violations are still very critical
in an asynchronous control circuit synthesis procedure
because of following reasons;

• It is very time-consuming to solve CSC violations.
• Internal signal insertions make an original STG
more complex and larger and thus increases its syn-
thesis time rapidly.

• Since synthesis is performed for output and inter-
nal signals, area of a resulting circuit increases. For
example, Fig. A· 1(e) shows that half of the circuit
is used for implementing internal signal ‘C.’

• Internal signals increase delay of a resulting control
circuit. As shown in Fig. A· 1(e), internal signals
are located between input and output ports of a
controller and thus they cause increase of the con-
troller’s delay.

Therefore, it is one of the best ways to area and
speed efficient asynchronous control circuit synthesis to
describe an STG satisfying CSC property initially.

Euiseok Kim received the B.E. in the
Department of Computer Science from
Yonsei University, Korea and M.S. in the
Department of Information and Commu-
nications of Kwangju Institute of Science
and Technology (K-JIST), Korea in 1995
and 1997, respectively. Currently he is
working toward Ph.D. degree in the de-
partment of information and communica-
tions, K-JIST. His research interests in-
clude Petri Net theory and its applica-

tions to concurrent systems, asynchronous circuit and system
design, and computer-aided design. He is a student member of
ACM, IEEE and KISS.

Jeong-Gun Lee received the B.E.
in the Department of Computer Sci-
ence from Hallym University, Korea and
M.S. in the department of information
and communications of Kwangju Insti-
tute of Science and Technology, Korea in
1996 and 1998, respectively. Currently
he is working toward Ph.D. degree in
the department of information and com-
munications, K-JIST. His research inter-
ests include computer architecture, asyn-

chronous circuit, concurrent systems, and parallel/distributed
computing. He is a student member of IEEE and KISS.

Dong-Ik Lee received the B.E. from
Yeungnam University, Korea, M.E. and
Dr.Eng. from Osaka University, Japan, in
1985, 1989 and 1993, respectively. He was
a research associate in the department of
electronic engineering of Osaka University
from 1990 to 1995. From 1993 through
1994, he was a visiting assistant professor
in coordinated science Lab. of University
of Illinois. He is currently an associate
professor in the department of informa-

tion and communications in Kwangju Institute of Science and
Technology from 1995. His research interests include Petri Net
theory and its applications to concurrent systems, asynchronous
circuits design, computer-aided design and agent systems.


