
Three-Dimensional Mesh Simplification using Normal Variation 
Error Metric and Modified Subdivided Edge Classification 

 
Eun-Young Changa, Chung-Hyun Ahna, and Yo-Sung Hob 

 
aRadio and Broadcasting Research Lab., Electronics and Telecommunications Research Institute 

161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Korea 
bDept. of Information and Communications, Kwangju Institute of Science and Technology 

1 Oryong-dong, Puk-gu, Kwangju, 500-712, Korea 
 
 

ABSTRACT 
 

In order to transmit or store three-dimensional (3-D) mesh models efficiently, we need to simplify them. Although the 
quadric error metric (QEM) provides fast and accurate geometric simplification of 3-D mesh models, it cannot capture 
discontinuities faithfully. Recently, an enhanced QEM based on subdivided edge classification has been proposed to 
handle this problem. Although it can capture discontinuities well, it has slight degradation in the reconstruction quality. 
In this paper, we propose a novel mesh simplification algorithm where we employ a normal variation error metric, 
instead of QEM, to resolve the quality degradation issue. We also modify the subdivided edge classification algorithm 
to be cooperative with the normal variation error metric while preserving discontinuities. We have tested the proposed 
algorithm with various 3-D VRML models. Simulation results demonstrate that the proposed algorithm provides good 
approximations while maintaining discontinuities well. 
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1. INTRODUCTION 
 

Recently, 3-D mesh models are used in various multimedia applications. Since 3-D models are expensive to render, 
transmit, and store due to a large amount of information, various mesh simplification algorithms have been proposed to 
address this problem by reducing the size of 3-D models. 

As one of the conventional algorithms, the quadric error metric (QEM) provides fast and accurate geometric 
simplification of 3-D mesh models1,2. However, it cannot capture object discontinuities efficiently. In order to overcome 
this problem, we proposed an enhanced QEM based on subdivided edge classification3,4.  

Although the enhanced QEM can capture discontinuities well, it causes quality degradation in surfaces of the simplified 
3-D model. The main reason for this problem is that it places more weights on types of edges than the relationship with 
neighboring primitives. In other words, it examines the edge type more seriously than how much the edge contraction 
changes the overall appearance, such as the surface curvature. Therefore, we need to improve the enhanced QEM 
algorithm, focusing on good quality approximations while preserving discontinuities. 

In this paper, we propose a novel mesh simplification algorithm that is based on a normal variation error metric and a 
modified subdivided edge classification in order to improve surface quality while preserving discontinuities. We 
employ the normal variation error metric instead of QEM to measure the amount of geometric changes induced into the 
model as a result of an edge contraction. It assumes the amounts of appearance changes of the model as the amounts of 
face normal variations to reflect a correlation with neighboring primitives. Furthermore, we modified subdivided edge 
classification adopted in the enhanced QEM algorithm to be operable with normal variation error metric for preserving 
discontinuities. Former subdivided edge classification comes to have some problems by adopting normal variation error 
metric. To address these problems, we take into diverse circumstances of an edge contraction operation. Thus, we 
classify edges into more various types and we assign a proper weight according to their types and features in the 3-D 
model. Using these key methodologies, we can produce good approximations that remain faithful to the original 3-D 
model.  
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2. PROPOSED ALGORITHM 
 

The proposed algorithm consists of three main components: iterative edge contraction, normal variation error metric, 
and modified subdivided edge classification. 

2.1 Iterative edge contraction 

Proposed simplification algorithm is based on the iterative contraction operation of edges1,2. We start with the original 
mesh model and remove vertices and faces from the 3-D model iteratively until satisfying the given condition, namely, 
the number of faces. Each iteration involves a single atomic operation, namely, edge contraction. 

By edge contraction, denoted by vvv ji →),( , we modify the surface of the 3-D mesh model in the following three 
steps: 

STEP 1: move the vertices iv  and jv  to v . 

STEP 2: replace all occurrences of jv  with iv . 

STEP 3: remove jv  and all faces that become degenerated. 
 

contract
iv jv v

 

(a) Before contraction             (b) After contraction 

Figure 1: Edge contraction 

In the example illustrated in Figure 1, we delete one vertex and two faces from the mesh model. 

2.2 Normal variation error metric 

How to measure the cost of a contraction is an important issue. Since we are concerned with producing simplified 
models that have similar appearance to the original model, the cost of the contraction should reflect how much that 
contraction changes the surface. In order to measure the amount of geometric change introduced into the model by the 
single edge contraction, we propose a new cost metric, the normal variation error metric6. It was designed to reflect a 
correlation with neighboring primitives. 
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Figure 2: Normal variation by an edge contraction 
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Figure 2 shows normal changes by edge contraction, vvve ji →= ),( . If vertex iv  and vertex jv  are contracted to 

v , faces having iv  or jv  as their primitive vertices come to be changed their face normal vectors. Therefore, we can 
assume the amounts of appearance changes of the model as the amounts of face normal variations. For reference, 
degenerated faces having ),( ji vve =  as their primitive edge are ignored when calculating amounts of normal 
variations because their normal changed pairs are removed from 3-D model by an edge contraction. 

For each vertex of the 3-D model, we can associate a set of triangular planes that meet at the vertex. With respect to this 
set, we define an error measure for edge contraction as the sum of the face normal variation to the plane set, which is 
multiplied by the estimated weight as follows: 
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where n  and n  represent surface normal vectors before contraction and after contraction, respectively. Operator •  
denotes the inner product. IsInterior, IsComplex, IsBoundary, and IsBoundaryIncident are binary Boolean variables. In 
other words, they can take TRUE(1) or FALSE(0). For example, if a given edge is a complex edge, IsComplex is set to 
TRUE. The values of Complex_Weight, Boundary_Weight, and Boundary_Incident_Weight are defined in Section 
2.3.2, and const_weight is set by the user.  

For the contraction operation of the edge ),( ji vv , we need to choose the target position v . In the proposed algorithm, 

we simply select either iv , jv , or 2/)( ji vv + , which produces the smallest error that is defined in Eq. (1). According 
to the target vertex position v , there are three types of computation:  

CASE 1: If ivv = , the highlighted triangular planes remain unchanged. However, the face normals of dotted 
triangular planes in Figure 2 will be changed. Therefore, we can compute normal variations of a plane set 
for the vertex jv  only. 

CASE 2: If jvv = , the dotted triangular planes remain unchanged. However, the face normals of the highlighted 
triangular planes will be changed. Therefore, we can compute the normal variations of a plane set for the 
vertex iv  only. 

CASE 3: If  2/)( ji vvv += , the face normals of both dotted and highlighted triangular planes will be changed. 

Therefore, we can compute normal variations of the union plane set for the vertex iv  and vertex jv . 

Using the above properties, we can reduce required computation complexity compared to the QEM algorithm for CASE 
1 and CASE 2. 

2.3 Modified subdivided edge classification 

Discontinuities in the 3-D model, such as creases, open boundaries, and borders between differently colored regions, are 
often among the most visually significant features. Therefore, preserving those features is critical for producing good 
approximations of the 3-D model.  

In order to preserve discontinuities of the 3-D model, we employ the modified subdivided edge classification algorithm. 
Subdivided edge classification adopted in the enhanced QEM algorithm comes to have some problems by adopting 
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normal variation error metric. To address these problems, we classify edges into more various types and we assign a 
proper weight according to their types and features in the 3-D model. Modified subdivided edge classification can be 
divided into two steps: edge classification and weight decision. 

2.3.1 Edge classification 

In this step, we classify each edge into one of four representative types: complex, boundary, boundary incident, and 
interior edge. Figure 3 shows the four different types of edges. As we can see in Figure 3, a boundary edge has exactly 
one incident triangle. A complex edge has three or more incident triangles. A boundary incident edge is not a boundary 
edge itself, but it has one or more incident boundary edges. An interior edge is neither a complex edge nor a boundary 
edge, and it has no incident boundary edge. 

                 

(a) Interior edge                        (b) Boundary edge 

              

(c) Boundary incident edge                 (d) Complex edge 

Figure 3: Edge types 

Furthermore, modified subdivided edge classification categorize the boundary edge into four different subtypes 
according to their topological and geometrical characteristics: B1 boundary, B2 boundary, B2 coplanar boundary, and 
BM boundary edge. Figure 4 shows the four different subtypes of the boundary edge.  

                             

(a) B1 boundary edge            (b) B2 boundary/B2 coplanar boundary edge         (3) BM boundary edge 

Figure 4: Subtypes of the boundary edge 

B1 boundary, B2 boundary, and BM boundary edge are distinguished by topological characteristics. B2 boundary and 
B2 coplanar boundary edge are classified by geometrical characteristics. B1 boundary edge has only one neighborhood 
face having their primitive vertex as given boundary edge’s primitive vertex. B2 boundary and B2 coplanar edge have 
two neighborhood faces. If edge’s two neighborhood faces are placed on same plane, we define it as B2 coplanar 
boundary. If not, we define it as B2 boundary edge. BM boundary edge has three or more neighborhood faces. 
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2.3.2 Weight decision 

All types of edges are candidates for deletion. However, we can assign an appropriate weight to each edge of the 3-D 
model according to its type and features. 

A. Complex edge 

Since the shape changes of the 3-D mesh model due to contraction of complex edges could be severe, we give a large 
penalty on contracting the complex edges so that the contraction operation of complex edges can be conducted later 
relative to other types of edges. Hence, we define Complex_Weight to be proportional to the number of incident 
triangles from the edge in the 3-D model. 

)2(#_ −= trianglesincidentofWeightComplex                                       (3) 

At the worst case, if we contract the given complex edge, all neighborhood triangles are degenerated from the 3-D mesh 
model. As we mentioned before, normal variation error metric does not take into degenerated faces when calculating the 
error. In this case, even though the severest changes are introduced by the complex edge contraction operation, 
estimated error is zero. To deal with this problem, if calculated error on the basis of normal changes is smaller than one, 
we set final error as weight defined in Eq. (2). If it is equal to or greater than one, we calculate final error as Eq. (1): 
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B. Boundary edge 

The shape variation of the 3-D model becomes severe after contracting the boundary edges as well. Therefore, we must 
place a large penalty on contracting the boundary edges. Thus, we define Boundary_Weight to be dependent on two 
dihedral angles, 1θ  and 2θ  by Eq. (4). 

})cos,max{cos1(_ 21 θθ+=WeightBoundary                                        (5) 

As we stated above, B1 boundary edge has only one neighborhood face. Thus, after contracting the B1 boundary edge 
its neighborhood face is removed from the 3-D model, we cannot estimate the exact error using normal variation error 
metric. Furthermore, there is only one face, we cannot use dihedral angle property as shown in Eq. (5). To overcome 
these problems, we utilize a face area as an error metric instead of the normal variation to reflect the contribution of its 
neighborhood face into the 3-D model, exceptionally. Therefore, we set the final estimated error as the value of its 
neighborhood face area divided by maximum face area within the given 3-D model: 

weightconst
areafacemmaximu

faceodneighborhoofareaError edgeboundaryB _1 ×=                            (6) 

B2 boundary edge and B2 coplanar boundary edge have two neighborhood faces. After contracting B2 coplanar 
boundary edge, one of its neighborhood faces is removed and normal of the remained face is unchanged. Hence, we just 
get useless zero value errors on the basis of normal variation error metric. To address this problem, we set the final 
estimated error as the area change between the summed area of original two neighborhood faces and the area of the 
remained face divided by maximum face area within the given 3-D model with applying the dihedral angle penalties 
defined in Eq. (5).  

After contracting B2 boundary edge, one of its neighborhood faces is degenerated as well. However, normal of the 
remained face comes to be changed. According to the target vertex position v , we can get three estimated errors 
concerning the given edge contraction. One of them has zero value error because of CASE 1 and CASE 2 property 
described in Section 2.2. We only take into two errors having non-zero value errors concerning the given edge 
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contraction, then we apply the dihedral angle penalties, Boundary Weight, defined in Eq. (5) to them. Namely, we 
ignore this zero value error because it cannot assure the global minimum error.  

There is no delicate situation after contracting the BM boundary edge. Therefore, we simply estimate errors using Eq. 
(1) with no exceptional condition. 

C. Boundary incident edge 

Contraction of boundary incident edges can yield substantial changes on the shape of the 3-D model. Since the shape 
change depends on the number of incident boundary edges, we define Boundary_Incident_Weight to be proportional to 
the number of incident boundary edges. 

40/)(#
__

edgesboundaryincidentof
WeightIncidentBoundary

=
                                              (7) 

D. Interior edge 

Since the shape changes of the 3-D model after contracting the interior edges is milder relative to any other types of 
edges, we assign no penalty on contracting the interior edges. 
 

3. EXPERIMENTAL RESULTS 
 
3.1 MODEL SIMPLIFICATION 

As shown in Figure 5(a), the “SHARK” model is a non -manifold surface that has 468 vertices and 734 faces. It has 186 
open discontinuity edges and 6 complex edges. In Figure 5(b), Figure 5(c), and Figure 5(d), we show three 
approximations of 250 faces, i.e., only 34% of the faces of the original model. 

            

(a) Original model 

            

(b) QEM algorithm 
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(c) Enhanced QEM algorithm 

             

(d) Proposed algorithm 

Figure 5: SHARK model 

Figure 5(b) and Figure 5(c) show simplified models generated by the QEM1 and the enhanced QEM4 schemes, 
respectively. From Figure 5(c), we notice that the enhanced QEM using subdivided edge classification preserves 
discontinuities well especially in the tail fin of the SHARK model. However, the surface quality is degraded compared 
to Figure 5(b). Figure 5(d) shows an approximation generated by our proposed algorithm.  

In the right side of Figure 5, another view of the same model is presented to show improvement of surface quality. 
Especially, the belly and the ventral fins assure that the proposed algorithm generates more accurate approximation 
compared to other methods. Moreover, modified subdivided edge classification maintains discontinuities faithfully 
compared to the subdivided edge classification.  

                   

(a) Original model             (b) QEM algorithm         (c) Enhanced QEM algorithm      (d) Proposed algorithm 

[Distortion Error: 0.85]         [Distortion Error: 0.85]        [Distortion Error: 1.11] 

Figure 6: COW model 
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In order to evaluate performance with 3-D models of no discontinuities, we have applied the proposed algorithm to the 
COW model. Figure 6(a) shows the original COW model that has 2904 vertices and 5804 faces. It does not have any 
boundary, complex and boundary incident edges. There are only interior edges. 

In Figure 6(b), Figure 6(c), and Figure 6(d), we show approximations with 994 faces, i.e., only 17% of the faces of the 
original model. Figure 6(b) is generated by QEM, and Figure 6(c) is generated by the enhanced QEM scheme using 
subdivided edge classification. For 3-D models that have only interior edges, the same quadric error metric is used both 
in QEM and enhanced QEM using subdivided edge classification. In other words, the QEM and the enhanced QEM 
algorithms using subdivided edge classification generate the same approximations, as shown in Figure 6(b) and Figure 
6(c).  

However, the proposed algorithm employs the normal variation error metric instead of quadric error metric. Therefore, 
even for the 3-D model with only interior edges, the proposed algorithm produces different approximations from the 
QEM method. Figure 6(d) demonstrates a simplified model generated by the proposed algorithm with the normal 
variation error metric. The result in Figure 6(d) is quite different from the approximation in Figure 5(b). By comparing 
these approximations, we notice that the surface quality of the approximation by the proposed algorithm is slightly 
degraded compared to the one by the QEM algorithm in Figure 6(b) in terms of the Hausdorff distortion error measure4. 
This result indicates that the normal variation error metric cannot be a general solution by itself, since it is designed to 
reduce quality degradation in the subdivided edge classification algorithm. 

4. CONCLUSIONS 
 

In this paper, we have proposed a new simplification algorithm for 3-D mesh models based on the normal variation 
error metric and modified subdivided edge classification. We have defined a modified subdivided edge classification 
method to maintain discontinuities, and the normal variation error metric to resolve surface quality degradation in the 
enhanced QEM using the subdivided edge classification method. The proposed normal variation error metric defines an 
error for edge contraction as the sum of the face normal changes so as to reflect the correlation with neighboring 
primitives. In addition, the modified subdivided edge classification method is slightly improved to be cooperative with 
the normal variation error metric. Simulation results demonstrate that the proposed algorithm can be applied to 3-D 
mesh models having discontinuities to achieve good approximation quality and maintain discontinuities.  
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