
A New Construction Algorithm for Symmetrical
Reversible Variable-Length Codes from the

Huffman Code

Wook-Hyun Jeong and Yo-Sung Ho

Kwangju Institute of Science and Technology (K-JIST)
1 Oryong-dong, Puk-gu, Kwangju, 500-712, Korea

{whjeong, hoyo}@kjist.ac.kr
http://vclab.kjist.ac.kr

Abstract. Variable-length codes (VLCs) improve coding performance
using statistical characteristics of source symbols; however, VLCs have
disastrous effects from bit errors in noisy transmission environments. In
order to overcome problems with VLCs, reversible variable-length codes
(RVLCs) have been introduced as one of the error resilience tools due
to their error recovering capability for corrupted video streams. Still, ex-
isting RVLCs are complicated in the design and have some rooms for
improvement in coding efficiency. In this paper, we propose a new design
method for a symmetrical RVLC from the optimal Huffman code ta-
ble. The proposed algorithm has a simpler construction process and also
demonstrates an improved performance in terms of the average codeword
length than other symmetrical RVLC algorithms.

1 Introduction

Most image and video coding schemes have used VLCs, such as the Huffman code
[1] or the arithmetic code [2], to improve compression efficiency. However, VLCs
are so sensitive to bit errors and packet losses, along with predictive coding. If
there is a bit error in the VLC bitstream, we have to discard all the ensuing data
until the resynchronization marker.

In recent years, the reversible variable-length code (RVLC) has been intro-
duced in order to reduce the effect of channel errors in the compressed bitstream.
In RVLC with the resynchronization marker, we can decode the bitstream both
in the forward and backward directions and recover unaffected video data as
much as possible from the received bitstream. Thus, RVLC has received exten-
sive attention as one of the error resilience tools, during the development of new
video coding standards, such as MPEG-4 and H.263+, which require enhanced
error control capabilities for mobile applications.

RVLC can be categorized into two different classes, symmetrical and asym-
metrical codes, according to their bit patterns. The symmetrical RVLC employs
the same code table for decoding both in the forward and backward directions.
Although the asymmetrical RVLC offers better coding efficiency than the sym-
metrical RVLC owing to more flexible code assignment, the asymmetrical RVLC

A. Yazici and C. Şener (Eds.): ISCIS 2003, LNCS 2869, pp. 675–682, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 24000 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 10.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

676 W.-H. Jeong and Y.-S. Ho

requires two separate coding tables. While MPEG-4 includes an asymmetrical
RVLC, H.263+ employs a symmetrical RVLC [3], [4].

After Takishima et al. [5] proposed the first work for constructing a symmet-
rical RVLC from a given Huffman code, Tsai et al. [6] improved the symmet-
rical RVLC construction algorithm and reduced the average codeword length.
However, these algorithms should find symmetrical codewords on a full binary
Huffman tree and precalculate the number of available symmetrical codewords
at each level before constructing the symmetrical RVLC. Moreover, the over-
all design procedure for the symmetrical RVLC requires high complexity due to
adapting precalculated values at each level to the given Huffman table, and some
restrictions are imposed during this adaptation process. Consequently, symmet-
rical codewords can be missed at some levels.

In this paper, we propose a new algorithm to construct a symmetrical RVLC
based on the optimal Huffman code table. When we find symmetrical codewords
on one side of the binary Huffman tree, we simplify the adaptation process to
the given Huffman table. In addition, the proposed adaptation process can con-
tribute to reducing the average codeword length since any effective symmetrical
codewords cannot be missed.

2 The Proposed RVLC Algorithm

2.1 Search for Symmetrical Codewords

Fig. 1 (a) illustrates an example of the binary Huffman tree. Starting from the
root node, we assign ‘0’ and ‘1’ to the left and right branches of the tree. The
leaves of the tree are only allowed to be codewords so that the Huffman code
satisfies the prefix condition. However, the allocation of ‘0’ and ‘1’ to the left and
right branches from the root node is arbitrary. Therefore, we can obtain another
Huffman code, as shown in Fig. 1 (b), that has the same average codeword length
as that of Huffman code in Fig. 1 (a); this interchange of ‘0’ and ‘1’ is equivalent
to the bit inversion operation in the original Huffman codewords.

(a) (b)(a) (b)

Fig. 1. Binary Huffman trees

RVLCs have to satisfy not only the prefix condition but also the suffix condi-
tion to be decoded in both the forward and backward directions instantaneously.
For the symmetrical RVLC, however, the prefix condition leads to the suffix
condition due to the symmetrical bit-pattern property. This symmetry property

A New Construction Algorithm 677

provides another advantage. If all the bits of the chosen symmetrical codeword
are inversed, we can obtain another symmetrical codeword which has the same
length and satisfies both the prefix and suffix conditions. For example, in Fig. 1
(a) and (b), we can derive symmetrical codewords ‘11’ and ‘101’ from ‘00’ and
‘010’ through bit inversion, respectively.

In order to use this property, we search for symmetrical codewords in the left
half region of the binary Huffman tree, especially assigned to ‘0’. In this region,
we find �S/2�, not S, candidates of symmetrical codewords where S is the num-
ber of given symbols and �x� is the smallest integer larger than or equal to x. A
target symmetrical RVLC for S is composed of the already selected symmetrical
codewords on the left half tree and their bit-inversed versions existing on the
other side of the binary tree [7].

The number mH(l) of all symmetrical codewords at level l on the left half
tree is

mH(l) = 2�(l+1)/2�−1 (1)

Let C(l) denote the set containing all symmetrical codewords at level l in a half
region. Then,

C(1) = {0}, C(2) = {00} (2)

C(l) = { l-bit codewords for 2 · e and (2l−1 − 2) − 2 · e,

where e ∈ C(l − 2) } for l ≥ 3 (3)

Fig. 2 depicts the distribution of symmetrical candidates on a half binary
tree assigned to ‘0’ from (1)-(3) and also shows integer values corresponding to
the symmetrical codewords at each level.

■ : symmetrical codewords

Fig. 2. Distribution of symmetrical codewords on a half binary tree

678 W.-H. Jeong and Y.-S. Ho

Fig. 3. (a) Unique decodablity of symmetrical codewords already chosen in the left
region (b) Unique decodablity of bit inversed vergion in the right region (c) Unique
decodable symmetrical RVLC

The prefix condition is the necessary and the sufficient condition for the
uniquely docodable code. When we pick up symmetrical codewords on a half
binary tree that satisfy the prefix condition by removing codewords that violate
the prefix condition, the resulting RVLC is instantaneously decodable. If these
codewords are uniquely decoded solely in one side region in Fig. 3 (a), reciprocal
codewords generated by bit-inversion can also be uniquely decodable only in the
other side region associated with ‘1’ in Fig. 3 (b). When the originally chosen
codewords for �S/2� and bit-inversed codewords for �S/2� are combined into the
symmetrical RVLC at the last stage, the prefix is different from each other as ‘0’
and ‘1’; therefore, we can obtain a symmetrical RVLC for S to be instantaneously
decoded, as shown in Fig. 3 (c).

2.2 ZL Adaptation

In order to reduce average length of the generated symmetrical RVLC, we need
to find the most suitable RVLC to the probability distribution or the Huffman
code for the given symbols, and the available codewords should not be passed
from the upper level.

Since we choose symmetrical codewords in the left half region, the prefix and
suffix bits of these codewords have at least one ‘0’ bit. In addition, there are
symmetrical codewords that consist of all ‘0’ bits at each level, as shown in Fig
2. We define these codewords as ZLs at level L. For ZL, we should consider the
following two situations.

A New Construction Algorithm 679

1) If ZL is chosen, the number of ‘0’ bits in the prefix or the suffix of each
selected symmetrical codeword in the left half region, except ZL, is less than
L due to the elimination process. For instance, the selection of ’000’, Z3,
leads that the prefix or the suffix of the other symmetrical codewords are
determined to be only ‘0’ or ‘00’. In other words, the choice of ZL can control
the number of target symmetrical RVLCs at each level.

2) Since bit-inversed symmetrical codewords are included in the target RVLC,
we can obtain the codeword composed of L ‘1’ bits for ZL. Thus, these
two codewords are added to level L in the result. If ZL is selected carefully
at a proper upper level L to be suitable for the distribution of occurrence
probabilities of symbols, the average length can be reduced successfully.

In this paper, we propose ZL adaptation to construct a symmetrical RVLC
from the optimal Huffman code table [7]. In ZL adaptation, L is determined in
such a way that the bit length of ZL equals to Lmin, which is defined as the bit
length of the shortest codeword in the given Huffman code, opposed to Lmax, the
bit length of the largest one. ZL adaptation allocates ZL and L ‘1’bit codeword
from the most probable symbol successively so that we can obtain more efficient
symmetrical RVLC.

We summarize the proposed construction procedure for the symmetrical
RVLC below.

1) In the left half region of the binary Huffman tree, ZL is determined. The bit
length of ZL is selected to be the same as that of the shortest Huffman code,
Lmin. For instance, if a given Huffman code starts from a 2-bit codeword,
which means that Lmin is 2, simply ‘00’ is selected.

2) Until symmetrical codewords are selected as many as �S/2�, all available
symmetrical codewords are chosen from the highest level. All the selection
processes are followed by the elimination of codewords that violate the prefix
condition.

3) Combining the already chosen symmetrical codewords and their bit-inversed
codewords, we can obtain a target symmetrical RVLC to be instantaneously
decoded.

Hence, the number m(l) of effective symmetrical codewords at level l for
�S/2� on a half binary tree is

m(l) = mH(l) −
∑

l

vz(l) −
L−1∑

i=1

vci(l) (4)

where vz(l) indicates the number of codewords causing the violation of the prefix
condition at level l from the choice of ZL, and vci(l) represents the number of
codewords to be deleted from the previous selection of symmetrical codewords.
In addition, L and i denote the bit length of ZL and the number of ‘0’ bits on
the prefix or the suffix of the previous chosen codeword, respectively.

680 W.-H. Jeong and Y.-S. Ho

In Eq. (4), vz(l) is given by

(i) vz = 1, when l < 2L + 1,
(ii) vz = mH(l − 2L), when 2L+1≤l,

and vci(l) is expressed by

(i) vci = 1, when 2L′ + 1 − i < l < 2L′ + 1,
(ii) vci(l) = mH(l − 2L′), when 2L′+1≤l,

where L′ is the bit length of the already selected symmetrical codeword at the
upper level.

3 Experimental Results and Analysis

In order to evaluate the proposed algorithm, we compare the performance of
the proposed algorithm with that of existing RVLC algorithms in terms of the
computational complexity of the construction process and coding efficiency.

3.1 Complexity of the Construction Process

Conventional RVLC schemes [5], [6] construct symmetrical RVLCs based on the
Huffman binary tree as many as S. After the precomputation of the number of
available symmetrical codewords at each level, from Lmin to Lmax, they repeat
the adaptation and search process, whose complexity is O(N2 · (

√
2)N) |N=S .

However, the proposed scheme constructs a symmetrical RVLC on a half
binary tree as many as �S/2�. After the decision of ZL, we search for RVLCs
until a half of S. Then, we finish the design of the code by bit inversion. The
complexity of the proposed RVLC scheme is O(N2 · (4

√
2)N) |N=S . The proposed

algorithm reduces the number of symbols and the search range by half. This
reduction makes a significant difference of complexity between the existing and
new design algorithms, which is about O((4

√
2)N) |N=S or (1.19)S .

3.2 Coding Performance

Table 1 lists codeword assignments for the English alphabet with symmetrical
RVLCs designed by Takishima’s [5], Tsai’s [6], and the proposed algorithms, and
compares their coding performances in terms of the average codeword length. In
Table 1, C1, C2, and C3 are generated by the Huffman, Takishima’s, and Tsai’s
algorithms, respectively.

Results of C2 and C3 indicate that their algorithms do not find all available
symmetrical codewords at Level 8 and Level 9 despite the existence of other
effective candidates at those levels, owing to meet the restriction condition at
Level 7. In addition, we observe that the unavoidable limitation occurs at Level
3, the most probable symbol location. There are four effective codewords at Level
3; nevertheless, two available codewords are omitted because the bit length of
RVLC should be bounded to that of the Huffman code.

A New Construction Algorithm 681

Table 1. Comparison of coding performance for the English alphabet

Occurrence
Huffman Takishima’s Tsai’s Proposed

Probability
C1 algorithm : C2 algorithm : C3 algorithm : C4

L codeword L codeword L codeword L codeword
E 0.14878570 3 001 3 000 3 010 3 000 (Z3)
T 0.09354149 3 110 3 111 3 101 3 111
A 0.08833733 4 0000 4 0110 4 0110 3 010
O 0.07245796 4 0100 4 1001 4 1001 3 101
R 0.06872164 4 0101 5 00100 4 0000 4 0110
N 0.06498532 4 0110 5 11011 4 1111 4 1001
H 0.05831331 4 1000 5 01010 5 01110 5 00100
I 0.05644515 4 1001 5 10101 5 10001 5 11011
S 0.05537763 4 1010 5 01110 5 00100 5 01110
D 0.04376834 5 00010 5 10001 5 11011 5 10001
L 0.04123298 5 00011 6 001100 6 011110 6 001100
U 0.02762209 5 10110 6 110011 6 100001 6 110011
P 0.02575393 5 10111 6 010010 6 001100 6 011110
F 0.02455297 5 11100 6 101101 6 110011 6 100001
M 0.02361889 5 11110 6 011110 7 0111110 7 0010100
C 0.02081665 5 11111 6 100001 7 1000001 7 1101011
W 0.01868161 6 011100 7 0010100 7 0010100 7 0011100
G 0.01521216 6 011101 7 1101011 7 1101011 7 1100011
Y 0.01521216 6 011110 7 0011100 7 0011100 7 0111110
B 0.01267680 6 011111 7 1100011 7 1100011 7 1000001
V 0.01160928 6 111011 7 0100010 7 0001000 8 00111100
K 0.00867360 7 1110100 7 1011101 7 1110111 8 11000011
X 0.00146784 8 11101011 8 00111100 8 01111110 8 01111110
J 0.00080064 9 111010101 9 001010100 9 011111110 8 10000001
Q 0.00080064 10 1110101000 10 0010110100 10 0111111110 9 011111110
Z 0.00053376 10 1110101001 10 1101001011 10 1000000001 9 100000001
Average length 4.15572392 4.69655649 4.60728507 4.46463681

In Table 1, C4 is designed by the proposed method. Experimental results
show that the average codeword length of C4 is about 5.2% and 3.2% shorter
than those of C2 and C3, respectively. Moreover, C4 is composed of pairs of
bit inversion, Z3 and ’111’, which are the shortest in target symmetrical RVLC,
are assigned to the most probable symbols by ZL adaptation, and attainable
symmetrical candidates are not missed at any levels.

Table 2 shows a comparison of characteristics of the proposed symmetrical
RVLC with existing symmetrical RVLCs. In Table 2, the proposed algorithm
is superior to the conventional algorithm in relation to three factors: maximum
codeword length, minimum codeword length, and the number of symmetrical
codewords at the highest level nHuff (Lmin), where nHuff (i) is the number
of Huffman codewords having a length i. These factors can affect the average
codeword length and the coding performance significantly.

682 W.-H. Jeong and Y.-S. Ho

Table 2. Comparison of code characteristics

Type of Code Max. Length Min. Length Number of Codewords at Lmin

Huffman Code Lmax Lmin nHuff (Lmin)
Conventional ≥ Lmax Lmin ≤ nHuff (Lmin)
Symm. RVLC

Proposed ≤ Lmax ≤ Lmin ≥ nHuff (Lmin)
Symm. RVLC

4 Conclusions

In this paper, we have proposed a new algorithm to design a symmetrical re-
versible variable-length code (RVLC) from the optimal Huffman code table. After
we find symmetrical codewords in the left region of the given binary Huffman
tree with ZL adaptation more efficiently, we use bit inversion to generate a sym-
metrical RVLC. Bit inversion and ZL adaptation resolve the variation problem
and simplify the construction process, efficiently reducing the average codeword
length. Experimental results demonstrate that the proposed RVLC algorithm
improves the performance over existing RVLC algorithms.

Acknowledgments. This work was supported in part by Kwangju Institute of
Science and Technology, in part by the Korea Science and Engineering Founda-
tion (KOSEF) through the Ultra-Fast Fiber-Optic Networks (UFON) Research
Center at K-JIST, and in part by the Ministry of Education (MOE) through the
Brain Korea 21 (BK21) project.

References

1. Huffman, D. : A method for the construction of minimum redundancy codes, Proc.
Inst. Radio Engr., Vol. 40, Sept. (1952) 1098–1101

2. Rissanen, J. J. and Langdon. Jr., G. G. : Arithmetic Coding, IBM J. Res. Develop.,
23, (1979) 149–162

3. ISO/IEC 14496–2 : Information Technology – Coding of audio/video objects, Final
Draft Int. Std., Part 2 : Visual, Oct. (1998)

4. ITU-T Rec. H.263 : Video coding for low bit rate communications, Annex V, (2000)
5. Takishima, Y., Wada, M., and Murakami, H. : Reversible variable length codes,

IEEE Transactions on Communications, Vol. 43, Feb. (1995) 158–162
6. Tsai, C. W. and Wu, J. L. : A modified symmetrical reversible variable length code

and its theoretical bounds, IEEE Transactions on Information Theory, Vol. 47, Sept.
(2001) 2543–2548

7. Jeong, W. H. and Ho, Y. S. : Design of symmetrical reversible variable-length codes
from the Huffman code, Picture Coding Symposium (2003) 135–138

	Introduction
	The Proposed RVLC Algorithm
	Search for Symmetrical Codewords
	$textbf {Z}_{textbf {L}}$ Adaptation

	Experimental Results and Analysis
	Complexity of the Construction Process
	Coding Performance

	Conclusions

