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Abstract:

In this paper, we propose a new scheme for geometry coding of three-dimensional (3-D) mesh models using a fixed
spectral basis. In order to code the mesh geometry information, we generate a fixed spectral basis using the dual
graph derived from the 3-D mesh topology. After we partition a 3-D mesh model into several independent sub-
meshes to reduce coding complexity, the mesh geometry information is projected onto the generated orthonormal
bases which are the eigenvectors of the Laplacian matrix of the 3-D mesh. Finally, spectral coefficients are coded by
a quantizer and a variable length coder. The proposed scheme can not only overcome difficulty of generating a fixed
spectral basis, but also reduce coding complexity. Moreover, we can provide an efficient multi-resolution represen-
tation of 3-D meshes.
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1. INTRODUCTION On the other hand, Karni and Gotsman [4] proposed

As demands for high quality visual services have in-
creased from consumers and the interest of three-
dimensional (3-D) meshes has grown rapidly, it is es-
sential to develop efficient 3-D mesh data coding
methods. As one of 3-D representation methods, the
mesh model is simply a set of planar polygons in the
3-D Euclidean space. In order to represent a mesh sur-
face, we assume that a 3-D model consists of triangu-
lar faces.

Fundamentally, there are three types of information
to describe the mesh surfaces; geometry, connectivity,
and photometry information. The geometry informa-
tion describes 3-D coordinates of mesh vertices, and
the connectivity information describes the topology
with the incidence relations among vertices, edges and
faces. The photometry information includes surface
normal vectors, colors, texture coordinates that are the
attributes of geometry information. These three data
sets can be the targets for 3-D mesh coding. In this
paper, we focus on the mesh geometry information.

Mesh geometry coding methods can be divided into
two categories: spatial prediction methods and spectral
methods. Deering [1] and Taubin et al. [2] ordered the
vertices according to the connectivity information, and
then coded the vertices using a simple linear predictor
in the spatial domain. Similarly, the mesh coding
scheme of Touma and Gotsman [3] developed an algo-
rithm to code the topology as a traversal of the vertices
in the spatial domain, and the vertex coordinates are
coded by predicting them along the traversal order
using a parallelogram scheme. Finally, the prediction
errors are entropy-coded.

the spectral methods for the 3-D mesh geometry coding.
Kami and Gotsman projected the mesh geometry onto
basis vectors which are the eigenvectors of the mesh
Laplacian matrix. Although Karni and Gotsman obtain
good results from the spectral method, there are some
critical problems such as the difficulty of fixed spectral
basis 'generation and the tremendous coding complexity.

In this paper, we are concerned about the mesh ge-
ometry coding using the spectral method and try to
solve the fixed spectral basis generation problem. We
propose a new scheme for the orthonormal spectral
basis generation. Moreover, we partition 3-D mesh
models into several independent pieces to reduce cod-
ing complexity.

This paper is organized as follows. After we review
the previous works in Section 2, Section 3 describes
the proposed spectral coding method of the mesh ge-
ometry. Section 4 provides experimental results, and
we make conclusions in Section 5.

2. MESH GEOMTRY CODING

2.1 Spatial Prediction Methods

The parallelogram prediction is the most famous cod-
ing scheme for mesh geometry. Touma and Gotman [3]
proposed the parallelogram prediction method in 1998.
Basically, the parallelogram prediction can be one of
spatial prediction methods since it is performed in the
3-D spatial domain. .

We can get the prediction vertex v=(x,,y.,z;) of each
vertex v=(x,y,z) based on the parallelogram prediction
in the triangle spanning tree as we can see in Fig.l.



Before we apply the parallelogram prediction, we first
traverse all vertices to obtain the coding order that is
called by triangle tree traversal. Then, we coded the
vertex coordinates along the triangle traversal.

Fig. 1. Parallelogram prediction

For example, when we pass the triangle 1 to triangle
2, the vertex v,,, v}, and v, are already coded. The op-
posite vertex v from the common edge (v, v)) is pre-
dicted as v+ v,-v,,,. As a result, the predicted vertex v,
forms a parallelogram and belong the same plane with
the three ancestors. Finally, we calculate and code the
prediction errors by v — v,. For some vertices, all three
ancestors may not be available. When we use two an-
cestors, the prediction coefficients are set to 2 and —1.
If there is only one ancestor, we use the ancestor di-
rectly as the prediction value. In case of no ancestor, a
null prediction is used.

2.2 Spectral Methods

Karni and Gotsman show us how to extend the classi-
cal Fourier analysis to 3-D mesh data [4]. We can as-
sume a simple 3-D mesh model which is composed of
n vertices. The adjacency matrix A of the model can
be represented with the circular n x n matrix. The di-
agonal matrix D also can be represented with the n x n
matrix. Finally, we can obtain the so-called Laplacian
matrix from the adjacent matrix A and the diagonal
matrix D. The Laplacian matrix

describes the analog of the second spatial derivative
conceptually.

The Fourier basis functions for 2-D signals are ob-
tained as the eigenvectors of the Laplacian matrix of
the graph with the topology of a 2-D grid. Karni and
Gotsman try to adopt the 2-D spectral transformation
to the 3-D mesh topologies. First, we can define the
adjacency matrix A and diagonal matrix D.
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The diagonal components of D describe the valence
of each vertex. The Laplacian matrix L can be ob-
tained using the -equation such that L =1 - DA, where I
is the identity matrix :

-
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Kami and Gotsman perform the spectral coding by
projecting the geometry data onto the eigenvectors of
Laplacian matrix L and then the spectral coefficients
are quantized. We should note that the eigenvectors
may not be fixed since the valences of vertices are not
fixed. In other words, the spectral bases are different
according to the mesh topology. Karni and Gotsman
try to solve the problem by mapping the arbitrary mesh
topology into a regular mesh topology [5]. However,
serious deformation has occurred when the arbitrary
meshes are mapped into a regular mesh as we can see
in Fig. 2. In this paper, we propose a new algorithm to
generate the fixed spectral basis.

Fig. 2. Deformation problem

3. SPECTRAL GEOMTRY CODING

3.1. Spectral Coding Method Using Dual Graph

In order to code the 3-D mesh geometry, we propose a
spectral coding using a fixed spectral basis. The pro-
posed method calculates a fixed spectral basis from the
dual graph derived from the mesh topology. As we
mentioned in the spectral mesh geometry coding, it is
difficult to generate a fixed basis since the topology is
different according to the mesh model. We try to ex-
tend previous 2-D transform coding based on a fixed
spectral basis into 3-D mesh coding.
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Fig. 3. Block diagram of spectral geometry coding

Fig. 3 shows the entire block diagram for the pro-
posed system. First, we analyze the input mesh models
into the three types information. In other words, we
extract the geometry, connectivity and photometry
information from the input model. Then, we partition
the mesh into several independent pieces to reduce







