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ABSTRACT 

Variable-length codes (VLCs) are generally employed to 
improve compression efficiency using data statistics. However, 
VLCs are very sensitive to bit errors in noisy transmission 
environments, such as mobile channels. Recently, several 
reversible variable-length codes (RVLCs) have been introduced 
due to recovering information from corrupted compressed 
bitstreams and enhancing robustness of VLCs to bit errors. 
However, existing RVLCs have some rooms for improvement in 
coding efficiency. In this paper, we propose a new design 
algorithm for efficient symmetrical and asymmetrical RVLCs by 
employing essential information from the Huffman code and the 
property of the average length function. The proposed algorithm 
has demonstrated improved coding efficiency over existing 
RVLC algorithms. 

1. INTRODUCTION 

Although most image and video coding standards include 
variable-length codes (VLCs), such as the Huffman code [1] and 
the arithmetic code [2], they are so sensitive to bit errors that 
their decoders may lose synchronization, which may lead to loss 
of several video frames.  

In recent years, reversible variable-length codes (RVLCs) 
have been introduced as one of the error resilience tools to 
reduce this problem. In existing VLCs with a resynchronization 
marker, we have to throw out all the received data until the next 
resynchronization marker after even a single bit error. However, 
in RVLC with a resynchronization marker, we can decode the 
bitstream both in the forward and backward directions and 
recover uncorrupted video data as much as possible from the 
received erroneous bitstream.  

RVLC algorithms can be categorized into two different 
classes: symmetrical and asymmetrical RVLCs according to 
their bit patterns. While MPEG-4 includes an asymmetrical 
RVLC [3], H.263+ employs a symmetrical RVLC [4].  

Takishima et al. [5] proposed the first work which specified 
the method for constructing symmetrical and asymmetrical 
RVLCs based on a given Huffman code to make their average 

codeword lengths close to that of the optimal Huffman code. 
Tsai et al. [6] improved this algorithm and reduced the average 
codeword length. Recently, Tseng et al. [7] introduced a non-
Huffman-code-based scheme for symmetrical RVLC. This is an 
exhaustive algorithm with a bounding function and backtracking 
schemes. Lin et al. [8] extended Tseng's method to the 
asymmetrical RVLC. 

Analysis of these RVLC algorithms, however, shows some 
rooms for improvement with respect to coding efficiency. In 
both Takishima's and Tsai's algorithms, some restrictions are 
imposed on the construction process. Consequently, they may 
miss some efficient codewords. Although Tseng's and Lin's 
algorithms provide better performance than conventional 
Huffman-code-based algorithms, they are not clear in many 
critical factors to design RVLCs, such as the starting bit length 
and codeword selection mechanisms. Besides, since Tseng and 
Lin assumed that the sum of local optimizations can lead to the 
global optimization, which is not always true, naturally their 
proposed backtracking algorithms are limited. 

In this paper, we propose new code design algorithms for 
symmetrical and asymmetrical RVLCs using properties of the 
Huffman code and the average length function. In order to 
obtain more efficient RVLCs, we adopt critical information from 
the Huffman code. Moreover, we define and exploit the average 
length function that is useful to search for efficient reversible 
codewords at each level of the proposed algorithms. 

2. PROPOSED RVLC ALGORITHM 
2.1. Property of the Huffman Code 
We should determine several elements that organize a target 
RVLC, such as the shortest bit length in the RVLC, the number 
of codewords at each level, and corresponding codewords. If we 
apply the codeword assignment of the given Huffman code, we 
can concrete the region, where the more efficient RVLC exists, 
adapting the critical elements of RVLCs.  

In the optimal Huffman code, we assign the shortest 
codeword to the most probable symbol, whose bit length is 
determined by the source distribution and the number of 
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symbols. However, the bit length Lmin of the shortest Huffman 
codeword is critical to build the optimal code under the given 
distribution.  

Since asymmetrical RVLCs do not concern bit-patterns of 
codewords, they are close to the Huffman code. Thus, we adopt 
a critical description Lmin of a given Huffman code as the starting 
bit level of an asymmetrical RVLC. However, for the source 
with a nearly uniform distribution, results with Lmin–1 rather than 
Lmin show better performance for the symmetrical RVLC. On the 
other hand, for the input data with a highly skewed distribution, 
Lmin+1 is a good empirical choice. Therefore, in symmetrical 
RVLCs, we can take one of the three values, Lmin–1, Lmin , and 
Lmin+1, as the starting bit level based on the given source 
distribution.  

Let the bit length vector n(i) denote the number of 
codewords with the bit length i, and nHuff(i) and nRVLC(i) be bit 
length vectors of the Huffman code and RVLC, respectively. 
Since nRVLC(i) is usually smaller than nHuff(i) at lower levels due 
to the suffix condition, nRVLC(Lmin) should be larger than or equal 
to nHuff(Lmin) to increase the priority of the highest level. The 
maximum number of codewords at level Lmin is minL2 and the 
range of is given by: 

minL
minRVLCminHuff LnLn 2)()( ≤≤                  (1) 

In addition, the choice of ZL at the starting level is useful 
[9]. ZL is composed of only L ‘0’ bits and it should be selected 
at least once, along with the codeword consisting of all ‘1’ bits, 
over the whole bit levels. From the choice of ZL, we can provide 
at least one codeword at the highest level. In the asymmetrical 
RVLC, the bit length of ZL is Lmin while we should employ one 
value in ZLs for Lmin–1, Lmin, and Lmin+1. 

The Huffman code for highly skewed sources does not assign 
any codewords to a few bit levels and we define these levels as 
the skipped level Lskip. Moreover, we separate whole bit levels 
into two groups, upper levels and lower levels, where the upper 
levels contain a half of the number of symbols. In order to obtain 
more efficient RVLCs, we should assign more codewords to 
shorter bit levels in the upper levels. Simultaneously, we have to 
guarantee lower levels more available candidates. Obviously, 
this strategy is contractive. We figure out this contraction using 
the level-skipping adaptation. In the level-skipping adaptation, 
we do not assign any reversible codewords to Lskip.  

2.2. The Average Length Function 

As a measure of coding performance, we use the average 
codeword length )(XL  of a VLC of the source X, which is a 
convex function (U) [10]. 

We define a set R(L;M) whose components are all RVLCs 
that have the same reversible codewords in all the upper levels 
over level L and nRVLC(L) = M. 

})( and |{);( 1 MLnRVLCMLR RVLC
L
minL =Ψ= −         (2) 

where n
mΨ  is a set whose components are already chosen from 

all reversible codewords of bit length from m to n for m≤ n. 
In addition, we define the average length function Lf , 

which is the function of nRVLC(L) and whose range is the 
minimum value of the average lengths in the set R for the given 
source distribution. 

))(min()(: RLLnf RVLCL →                        (3) 

where ))(min( RL  is the minimum value of average codeword 
lengths of all components in the set R(L;M) for the given source 
distribution.  

From the average length function, we can select more 
efficient reversible codewords at each level. The average length 
function Lf  is a convex function (U) that has the minimum 
value in a certain interval. We assume that this function 
gradually and monotonically decreases or increases near the 
minimum value. For nRVLC(Lmin) ranging from nHuff(Lmin) to minL2 , 
the average length function has the minimum value in [nHuff(Lmin), 

minL2 ], as shown in Fig. 1. Since Lf  is convex, the local 
minimum in this interval related to R(L;M) can represent the 
global minimum value solely at level L. Thus, more efficient 
RVLC is located on the minimum value of Lf . After selecting 
nRVLC(L), we include corresponding codewords at level L in the 
set 1−Ψ L

minL  and update the set Ψ  by L
minLΨ . 

 
Fig. 1 Minimum value of the average length function 

In symmetrical RVLCs, since we should consider three 
starting levels, Lmin –1, Lmin, and Lmin +1, we extend the domain  
of Lf . If Lskip is not observed in the given Huffman code, we 
determine the starting bit level of the RVLC after comparing 

Lf s for both Lmin –1 and Lmin. Otherwise, we should select the 
starting bit level between Lmin and Lmin +1 in the same way. 
Additionally, although Lmin +1 is skipped in the Huffman code, 
we assign codewords to level Lmin +1. 

 
Fig. 2 The number of reversible codewords at current level 
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In upper levels, we select available efficient codewords at 
each level as follows. 

1) Find all available candidates at the current level currL . 

2) Generate ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− lLn

Ln

currRVLC

currRVLC

)(
)(

 RVLCs and calculate the average 

length function Lf  where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
b
a

 is the number of combinations 

of size b from a set of size a and l is increased by 1 from 0. 
3) Due to the convex property, if the current value of Lf  is 

larger than that of the previous one, select the previous 
codeword, as shown in Fig 2. 

The proposed design procedure for efficient RVLCs is  

1) Determine available codewords at Lmin for asymmetrical 
RVLCs applying the level-skipping adaptation and the choice 
of ZL. For symmetrical RVLCs, the starting bit level is one of 
the three values based on the existence of skipped levels.  

2) In upper levels, search for reversible codewords at each level 
with the average length function. 

3) In lower levels, select all available codewords satisfying both 
the prefix condition and the suffix condition at each level.  

4. EXPERIMENTAL RESULTS 
Table I lists average codeword lengths of symmetrical and 
asymmetrical RVLCs for file sets from Canterbury Corpus[11] 
designed by Tsai's[6], Tseng's[7], Lin's[8], and the proposed 
algorithms. Various file sets from Canterbury Corpus are used to 
measure and compare the compression performance.  

Coding performance of the proposed symmetrical RVLC 
scheme is better than those of Huffman-code-based algorithms; 
however, we cannot improve the coding efficiency of the 
backtracking algorithm. On the other hand, as shown in Table I, 
we reduce average codeword lengths for asymmetrical RVLCs 
significantly over all existing methods. Overall, the average 
lengths of proposed asymmetrical RVLCs are about 3% shorter 
than those of Lin's asymmetrical RVLCs. 

There are skipped bit levels in Huffman codes for F2, F4, 
F8, F9, F10, and F11 and we have applied the level-skipping 
adaptation to RVLCs for these files. In Table I, we note that the 
proposed ZL adaptation, the level-skipping adaptation, and the 
average length function can improve the coding efficiency 
successfully. In addition, we observe that the proposed algorithm 
is superior to existing algorithms for the source that has a lot of 
symbols with highly skewed distributions. 

In Table II, we list codeword assignments for the English 
alphabet with symmetrical RVLCs and asymmetrical RVLCs 
designed by the existing and proposed algorithms, and compare 
their coding performances in terms of the average codeword 
length. In the case of symmetrical RVLCs, Tseng's scheme and 
the proposed scheme show the same average codeword length. 
Coding performance has been improved significantly with the 
asymmetrical RVLC. The average codeword length of our 
RVLC is about 0.34% shorter than that of Lin’s RVLC. Since 
any bit level is not skipped, we have not employed the level-
skipping adaptation to symmetrical and asymmetrical RVLCs 
for English alphabets.  

5. CONCLUSIONS 

In this paper, we have proposed a new approach to design 
symmetrical and asymmetrical RVLC algorithms effectively. 
Since Huffman-code-based algorithms have limitations in their 
code design process, they may miss some available codewords. 
Non-Huffman-code-based algorithms assumed that the local 
minimum of the codeword length be the global minimum, which 
is not always true. In order to design more efficient RVLC 
algorithms for different source statistics, we use essential 
information from the Huffman code and the average length 
function. The property of the Huffman code is used for 
determining elementary components of RVLC algorithms. The 
proposed average length function search for efficient codewords 
at each level effectively. We have identified better coding 
performance of the proposed schemes with various source files 
and English alphabet. Experimental results demonstrate that the 
proposed algorithm improve the coding performance over all 
existing algorithms. 
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Table I. Coding performances of symmetrical and asymmetrical RVLCs for various source file sets 

Symmetrical RVLC Asymmetrical RVLC Huffman 
code Tsai’s 

method
Tseng’s
method

Proposed
method

Tsai’s 
method

Lin’s 
method 

Proposed 
method Files 

No. 
of 

symbols Average 
length 

Average
length 

Average
length 

Average
length

Average
length 

Average 
length 

Average 
length 

F1 asyoulik.txt 68 4.84465 5.27886 5.21025 5.21025 5.01142 5.00954 4.85262 
F2 Alice29.txt 74 4.61244 5.01398 4.93155 4.93155 4.80326 4.68871 4.68856 
F3 Xargs.l 74 4.92382 5.39863 5.33996 5.33996 5.07334 5.16087 4.93577 
F4 grammar.lsp 76 4.66434 5.04757 5.01774 5.01774 4.85461 4.78581 4.72571 
F5 Plabn12.txt 81 4.57534 4.94473 4.89527 4.89527 4.80659 4.64910 4.63477 
F6 lcet10.txt 84 4.69712 5.12232 5.01682 5.01682 4.87868 4.74177 4.72741 
F7 cp.html 86 5.26716 5.85839 5.81173 5.81173 5.37113 5.77080 5.28112 
F8 Fields.c 90 5.04090 5.47596 5.46332 5.46332 5.26987 5.20278 5.08843 
F9 Ptt5 159 1.66091 1.77735 1.75992 1.75992 1.71814 1.70401 1.67630 
F10 Sum 255 5.36504 6.10683 6.03917 6.03917 5.49767 6.01870 5.41683 
F11 kennedy.xls 256 3.59337 4.25681 4.27209 4.27209 3.89401 3.85384 3.78413 

 
 

Table II. Coding performances of symmetrical and asymmetrical RVLCs for the English alphabet 
 Symmetrical RVLC Asymmetrical RVLC Huffman 

code Tsai’s  
algorithm 

Tseng’s 
algorithm 

Proposed 
algorithm 

Tsai’s  
algorithm 

Lin’s 
algorithm 

Proposed 
algorithm 

Occurrence 
Probability  

L codeword L codeword L codeword L codeword L codeword L codeword L codeword 
E 0.14878570 3 001 3 010 3 000 3 000 (Z3) 3 000 3 000 3 000 (Z3)
T 0.09354149 3 110 3 101 3 111 3 111 3 111 3 100 3 101 
A 0.08833733 4 0000 4 0110 3 010 3 010 4 0101 3 101 3 110 
O 0.07245796 4 0100 4 1001 3 101 3 101 4 1010 4 0010 4 0010 
R 0.06872164 4 0101 4 0000 4 0110 4 0110 4 0010 4 0011 4 0011 
N 0.06498532 4 0110 4 1111 4 1001 4 1001 4 1101 4 0110 4 0100 
H 0.05831331 4 1000 5 01110 5 00100 5 00100 4 0100 4 0111 4 0111 
I 0.05644515 4 1001 5 10001 5 11011 5 11011 4 1011 4 1110 4 1001 
S 0.05537763 4 1010 5 00100 5 01110 5 01110 4 0110 4 1111 4 1111 
D 0.04376834 5 00010 5 11011 5 10001 5 10001 5 11001 5 01001 5 01010 
L 0.04123298 5 00011 6 011110 6 001100 6 001100 5 10011 5 01010 5 01011 
U 0.02762209 5 10110 6 100001 6 110011 6 110011 5 01110 5 01011 5 01100 
P 0.02575393 5 10111 6 001100 6 011110 6 011110 5 10001 5 11001 5 10001 
F 0.02455297 5 11100 6 110011 6 100001 6 100001 6 001100 5 11010 5 11100 
M 0.02361889 5 11110 7 0111110 7 0010100 7 0010100 6 011110 5 11011 6 011010 
C 0.02081665 5 11111 7 1000001 7 1101011 7 1101011 6 100001 6 010001 6 011011 
W 0.01868161 6 011100 7 0010100 7 0011100 7 0011100 7 1001001 6 110001 6 100001 
G 0.01521216 6 011101 7 1101011 7 1100011 7 1100011 7 0011100 7 0100001 6 111010 
Y 0.01521216 6 011110 7 0011100 7 0111110 7 0111110 7 1100011 7 1100001 6 111011 
B 0.01267680 6 011111 7 1100011 7 1000001 7 1000001 7 0111110 8 01000001 7 1000001 
V 0.01160928 6 111011 7 0001000 8 00111100 8 00111100 7 1000001 8 11000001 8 10000001 
K 0.00867360 7 1110100 7 1110111 8 11000011 8 11000011 8 00111100 9 010000001 9 100000001 
X 0.00146784 8 11101011 8 01111110 8 01111110 8 01111110 8 11000011 9 110000001 1 1000000001 
J 0.00080064 9 111010101 9 011111110 8 10000001 8 10000001 9 100101001 1 0100000001 1 10000000001 
Q 0.00080064 1 111010100 1 011111111 9 011111110 9 011111110 1 001110100 1 1100000001 1 100000000001
Z 0.00053376 1 111010100 1 100000000 9 100000001 9 100000001 1 100101110 1 0100000000 1 100000000000
Average length 4.15572392 4.60728507 4.46463681 4.46463681 4.30677804 4.18734808 4.172804 
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