
DESING OF REVERSIBLE VARIABLE-LENGTH CODES
USING PROPERTIES OF THE HUFFMAN CODE AND AVERAGE LENGTH FUNCTION

*Wook-Hyun Jeong, **Young-Suk Yoon, and ** Yo-Sung Ho

*Samsung Electronics Co., LTD

416 Maetan3-dong, Paldal-gu, Suwon-si, Gyeonggi-do, Korea

**Gwangju Institute of Science and Technology (GIST)
1 Oryong-dong, Buk-gu, Gwangju, 500-712, Korea

*wh75.jeong@samsung.com, **{ysyoon, hoyo}@gist.ac.kr

ABSTRACT

Variable-length codes (VLCs) are generally employed to
improve compression efficiency using data statistics. However,
VLCs are very sensitive to bit errors in noisy transmission
environments, such as mobile channels. Recently, several
reversible variable-length codes (RVLCs) have been introduced
due to recovering information from corrupted compressed
bitstreams and enhancing robustness of VLCs to bit errors.
However, existing RVLCs have some rooms for improvement in
coding efficiency. In this paper, we propose a new design
algorithm for efficient symmetrical and asymmetrical RVLCs by
employing essential information from the Huffman code and the
property of the average length function. The proposed algorithm
has demonstrated improved coding efficiency over existing
RVLC algorithms.

1. INTRODUCTION

Although most image and video coding standards include
variable-length codes (VLCs), such as the Huffman code [1] and
the arithmetic code [2], they are so sensitive to bit errors that
their decoders may lose synchronization, which may lead to loss
of several video frames.

In recent years, reversible variable-length codes (RVLCs)
have been introduced as one of the error resilience tools to
reduce this problem. In existing VLCs with a resynchronization
marker, we have to throw out all the received data until the next
resynchronization marker after even a single bit error. However,
in RVLC with a resynchronization marker, we can decode the
bitstream both in the forward and backward directions and
recover uncorrupted video data as much as possible from the
received erroneous bitstream.

RVLC algorithms can be categorized into two different
classes: symmetrical and asymmetrical RVLCs according to
their bit patterns. While MPEG-4 includes an asymmetrical
RVLC [3], H.263+ employs a symmetrical RVLC [4].

Takishima et al. [5] proposed the first work which specified
the method for constructing symmetrical and asymmetrical
RVLCs based on a given Huffman code to make their average

codeword lengths close to that of the optimal Huffman code.
Tsai et al. [6] improved this algorithm and reduced the average
codeword length. Recently, Tseng et al. [7] introduced a non-
Huffman-code-based scheme for symmetrical RVLC. This is an
exhaustive algorithm with a bounding function and backtracking
schemes. Lin et al. [8] extended Tseng's method to the
asymmetrical RVLC.

Analysis of these RVLC algorithms, however, shows some
rooms for improvement with respect to coding efficiency. In
both Takishima's and Tsai's algorithms, some restrictions are
imposed on the construction process. Consequently, they may
miss some efficient codewords. Although Tseng's and Lin's
algorithms provide better performance than conventional
Huffman-code-based algorithms, they are not clear in many
critical factors to design RVLCs, such as the starting bit length
and codeword selection mechanisms. Besides, since Tseng and
Lin assumed that the sum of local optimizations can lead to the
global optimization, which is not always true, naturally their
proposed backtracking algorithms are limited.

In this paper, we propose new code design algorithms for
symmetrical and asymmetrical RVLCs using properties of the
Huffman code and the average length function. In order to
obtain more efficient RVLCs, we adopt critical information from
the Huffman code. Moreover, we define and exploit the average
length function that is useful to search for efficient reversible
codewords at each level of the proposed algorithms.

2. PROPOSED RVLC ALGORITHM
2.1. Property of the Huffman Code
We should determine several elements that organize a target
RVLC, such as the shortest bit length in the RVLC, the number
of codewords at each level, and corresponding codewords. If we
apply the codeword assignment of the given Huffman code, we
can concrete the region, where the more efficient RVLC exists,
adapting the critical elements of RVLCs.

In the optimal Huffman code, we assign the shortest
codeword to the most probable symbol, whose bit length is
determined by the source distribution and the number of

0-7803-8554-3/04/$20.00 ©2004 IEEE. 817

symbols. However, the bit length Lmin of the shortest Huffman
codeword is critical to build the optimal code under the given
distribution.

Since asymmetrical RVLCs do not concern bit-patterns of
codewords, they are close to the Huffman code. Thus, we adopt
a critical description Lmin of a given Huffman code as the starting
bit level of an asymmetrical RVLC. However, for the source
with a nearly uniform distribution, results with Lmin–1 rather than
Lmin show better performance for the symmetrical RVLC. On the
other hand, for the input data with a highly skewed distribution,
Lmin+1 is a good empirical choice. Therefore, in symmetrical
RVLCs, we can take one of the three values, Lmin–1, Lmin , and
Lmin+1, as the starting bit level based on the given source
distribution.

Let the bit length vector n(i) denote the number of
codewords with the bit length i, and nHuff(i) and nRVLC(i) be bit
length vectors of the Huffman code and RVLC, respectively.
Since nRVLC(i) is usually smaller than nHuff(i) at lower levels due
to the suffix condition, nRVLC(Lmin) should be larger than or equal
to nHuff(Lmin) to increase the priority of the highest level. The
maximum number of codewords at level Lmin is minL2 and the
range of is given by:

minL
minRVLCminHuff LnLn 2)()(≤≤ (1)

In addition, the choice of ZL at the starting level is useful
[9]. ZL is composed of only L ‘0’ bits and it should be selected
at least once, along with the codeword consisting of all ‘1’ bits,
over the whole bit levels. From the choice of ZL, we can provide
at least one codeword at the highest level. In the asymmetrical
RVLC, the bit length of ZL is Lmin while we should employ one
value in ZLs for Lmin–1, Lmin, and Lmin+1.

The Huffman code for highly skewed sources does not assign
any codewords to a few bit levels and we define these levels as
the skipped level Lskip. Moreover, we separate whole bit levels
into two groups, upper levels and lower levels, where the upper
levels contain a half of the number of symbols. In order to obtain
more efficient RVLCs, we should assign more codewords to
shorter bit levels in the upper levels. Simultaneously, we have to
guarantee lower levels more available candidates. Obviously,
this strategy is contractive. We figure out this contraction using
the level-skipping adaptation. In the level-skipping adaptation,
we do not assign any reversible codewords to Lskip.

2.2. The Average Length Function

As a measure of coding performance, we use the average
codeword length)(XL of a VLC of the source X, which is a
convex function (U) [10].

We define a set R(L;M) whose components are all RVLCs
that have the same reversible codewords in all the upper levels
over level L and nRVLC(L) = M.

})(and |{);(1 MLnRVLCMLR RVLC
L
minL =Ψ= − (2)

where n
mΨ is a set whose components are already chosen from

all reversible codewords of bit length from m to n for m≤ n.
In addition, we define the average length function Lf ,

which is the function of nRVLC(L) and whose range is the
minimum value of the average lengths in the set R for the given
source distribution.

))(min()(: RLLnf RVLCL → (3)

where))(min(RL is the minimum value of average codeword
lengths of all components in the set R(L;M) for the given source
distribution.

From the average length function, we can select more
efficient reversible codewords at each level. The average length
function Lf is a convex function (U) that has the minimum
value in a certain interval. We assume that this function
gradually and monotonically decreases or increases near the
minimum value. For nRVLC(Lmin) ranging from nHuff(Lmin) to minL2 ,
the average length function has the minimum value in [nHuff(Lmin),

minL2], as shown in Fig. 1. Since Lf is convex, the local
minimum in this interval related to R(L;M) can represent the
global minimum value solely at level L. Thus, more efficient
RVLC is located on the minimum value of Lf . After selecting
nRVLC(L), we include corresponding codewords at level L in the
set 1−Ψ L

minL and update the set Ψ by L
minLΨ .

Fig. 1 Minimum value of the average length function

In symmetrical RVLCs, since we should consider three
starting levels, Lmin –1, Lmin, and Lmin +1, we extend the domain
of Lf . If Lskip is not observed in the given Huffman code, we
determine the starting bit level of the RVLC after comparing

Lf s for both Lmin –1 and Lmin. Otherwise, we should select the
starting bit level between Lmin and Lmin +1 in the same way.
Additionally, although Lmin +1 is skipped in the Huffman code,
we assign codewords to level Lmin +1.

Fig. 2 The number of reversible codewords at current level

818

In upper levels, we select available efficient codewords at
each level as follows.

1) Find all available candidates at the current level currL .

2) Generate ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− lLn

Ln

currRVLC

currRVLC

)(
)(

 RVLCs and calculate the average

length function Lf where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
b
a

 is the number of combinations

of size b from a set of size a and l is increased by 1 from 0.
3) Due to the convex property, if the current value of Lf is

larger than that of the previous one, select the previous
codeword, as shown in Fig 2.

The proposed design procedure for efficient RVLCs is

1) Determine available codewords at Lmin for asymmetrical
RVLCs applying the level-skipping adaptation and the choice
of ZL. For symmetrical RVLCs, the starting bit level is one of
the three values based on the existence of skipped levels.

2) In upper levels, search for reversible codewords at each level
with the average length function.

3) In lower levels, select all available codewords satisfying both
the prefix condition and the suffix condition at each level.

4. EXPERIMENTAL RESULTS
Table I lists average codeword lengths of symmetrical and
asymmetrical RVLCs for file sets from Canterbury Corpus[11]
designed by Tsai's[6], Tseng's[7], Lin's[8], and the proposed
algorithms. Various file sets from Canterbury Corpus are used to
measure and compare the compression performance.

Coding performance of the proposed symmetrical RVLC
scheme is better than those of Huffman-code-based algorithms;
however, we cannot improve the coding efficiency of the
backtracking algorithm. On the other hand, as shown in Table I,
we reduce average codeword lengths for asymmetrical RVLCs
significantly over all existing methods. Overall, the average
lengths of proposed asymmetrical RVLCs are about 3% shorter
than those of Lin's asymmetrical RVLCs.

There are skipped bit levels in Huffman codes for F2, F4,
F8, F9, F10, and F11 and we have applied the level-skipping
adaptation to RVLCs for these files. In Table I, we note that the
proposed ZL adaptation, the level-skipping adaptation, and the
average length function can improve the coding efficiency
successfully. In addition, we observe that the proposed algorithm
is superior to existing algorithms for the source that has a lot of
symbols with highly skewed distributions.

In Table II, we list codeword assignments for the English
alphabet with symmetrical RVLCs and asymmetrical RVLCs
designed by the existing and proposed algorithms, and compare
their coding performances in terms of the average codeword
length. In the case of symmetrical RVLCs, Tseng's scheme and
the proposed scheme show the same average codeword length.
Coding performance has been improved significantly with the
asymmetrical RVLC. The average codeword length of our
RVLC is about 0.34% shorter than that of Lin’s RVLC. Since
any bit level is not skipped, we have not employed the level-
skipping adaptation to symmetrical and asymmetrical RVLCs
for English alphabets.

5. CONCLUSIONS

In this paper, we have proposed a new approach to design
symmetrical and asymmetrical RVLC algorithms effectively.
Since Huffman-code-based algorithms have limitations in their
code design process, they may miss some available codewords.
Non-Huffman-code-based algorithms assumed that the local
minimum of the codeword length be the global minimum, which
is not always true. In order to design more efficient RVLC
algorithms for different source statistics, we use essential
information from the Huffman code and the average length
function. The property of the Huffman code is used for
determining elementary components of RVLC algorithms. The
proposed average length function search for efficient codewords
at each level effectively. We have identified better coding
performance of the proposed schemes with various source files
and English alphabet. Experimental results demonstrate that the
proposed algorithm improve the coding performance over all
existing algorithms.

ACKNOWLEDGEMENT
This work was supported in part by Gwangju Institute of Science
and Technology (GIST), in part by the Ministry of Information
and Communication (MIC) through the Realistic Broadcasting
Research Center (RBRC) at GIST.

REFERENCES
[1] D. Huffman, “A method for the construction of minimum

redundancy code,” Proc. Inst. Radio Engr., vol. 40, pp.
1098-1101, Sept. 1952.

[2] J.J. Risannen and G.G. Langdon. Jr., “Arithmetic coding,”
IBM J. Res. Develop., 23, pp. 149-162, 1979.

[3] ISO/IEC 14496-2, “Information technology – coding of
audio/visual objects,” Final Draft International Standard,
Part 2 : Visual, Oct. 1998.

[4] ITU-T Recommendation H.263, “Video coding for low bit
rate communications,” Annex V, 2000.

[5] Y. Takishima, M. Wada, and H. Murakami, “Reversible
variable length codes,” IEEE Trans. Communications, vol.
43, pp. 158-162, Feb. 1995.

[6] C.W. Tsai and J.L. Wu, “A modified symmetrical reversible
variable length code and its theoretical bounds,” IEEE Trans.
Information Theory, vol. 47, pp. 2543-2548, Sept. 2001.

[7] H.W. Tseng and C.C. Chang, “Construction of symmetrical
reversible variable length codes using backtracking,”
Computer Journal, vol. 46, no. 1, Jan. 2003.

[8] C.W. Lin, Y.J. Chuang, and J.L. Wu, “Generic construction
algorithm for symmetric and asymmetric RVLCs,” Proc.
IEEE International Conference on Communication Systems,
vol. 2, pp. 968-972, Nov. 2002.

[9] W.H. Jeong and Y.S. Ho, “A new construction algorithm for
symmetrical reversible variable-length codes from the
Huffman code,” Lecture Notes in Computer Science 2869, pp.
675-682, Nov. 2003.

[10] T.M. Cover and J.A. Thomas, Elements of Information
Theory, Wiley, New York, 1991.

[11] http://corpus.canterbury.ac.nz

819

Table I. Coding performances of symmetrical and asymmetrical RVLCs for various source file sets

Symmetrical RVLC Asymmetrical RVLC Huffman
code Tsai’s

method
Tseng’s
method

Proposed
method

Tsai’s
method

Lin’s
method

Proposed
method Files

No.
of

symbols Average
length

Average
length

Average
length

Average
length

Average
length

Average
length

Average
length

F1 asyoulik.txt 68 4.84465 5.27886 5.21025 5.21025 5.01142 5.00954 4.85262
F2 Alice29.txt 74 4.61244 5.01398 4.93155 4.93155 4.80326 4.68871 4.68856
F3 Xargs.l 74 4.92382 5.39863 5.33996 5.33996 5.07334 5.16087 4.93577
F4 grammar.lsp 76 4.66434 5.04757 5.01774 5.01774 4.85461 4.78581 4.72571
F5 Plabn12.txt 81 4.57534 4.94473 4.89527 4.89527 4.80659 4.64910 4.63477
F6 lcet10.txt 84 4.69712 5.12232 5.01682 5.01682 4.87868 4.74177 4.72741
F7 cp.html 86 5.26716 5.85839 5.81173 5.81173 5.37113 5.77080 5.28112
F8 Fields.c 90 5.04090 5.47596 5.46332 5.46332 5.26987 5.20278 5.08843
F9 Ptt5 159 1.66091 1.77735 1.75992 1.75992 1.71814 1.70401 1.67630
F10 Sum 255 5.36504 6.10683 6.03917 6.03917 5.49767 6.01870 5.41683
F11 kennedy.xls 256 3.59337 4.25681 4.27209 4.27209 3.89401 3.85384 3.78413

Table II. Coding performances of symmetrical and asymmetrical RVLCs for the English alphabet
 Symmetrical RVLC Asymmetrical RVLC Huffman

code Tsai’s
algorithm

Tseng’s
algorithm

Proposed
algorithm

Tsai’s
algorithm

Lin’s
algorithm

Proposed
algorithm

Occurrence
Probability

L codeword L codeword L codeword L codeword L codeword L codeword L codeword
E 0.14878570 3 001 3 010 3 000 3 000 (Z3) 3 000 3 000 3 000 (Z3)
T 0.09354149 3 110 3 101 3 111 3 111 3 111 3 100 3 101
A 0.08833733 4 0000 4 0110 3 010 3 010 4 0101 3 101 3 110
O 0.07245796 4 0100 4 1001 3 101 3 101 4 1010 4 0010 4 0010
R 0.06872164 4 0101 4 0000 4 0110 4 0110 4 0010 4 0011 4 0011
N 0.06498532 4 0110 4 1111 4 1001 4 1001 4 1101 4 0110 4 0100
H 0.05831331 4 1000 5 01110 5 00100 5 00100 4 0100 4 0111 4 0111
I 0.05644515 4 1001 5 10001 5 11011 5 11011 4 1011 4 1110 4 1001
S 0.05537763 4 1010 5 00100 5 01110 5 01110 4 0110 4 1111 4 1111
D 0.04376834 5 00010 5 11011 5 10001 5 10001 5 11001 5 01001 5 01010
L 0.04123298 5 00011 6 011110 6 001100 6 001100 5 10011 5 01010 5 01011
U 0.02762209 5 10110 6 100001 6 110011 6 110011 5 01110 5 01011 5 01100
P 0.02575393 5 10111 6 001100 6 011110 6 011110 5 10001 5 11001 5 10001
F 0.02455297 5 11100 6 110011 6 100001 6 100001 6 001100 5 11010 5 11100
M 0.02361889 5 11110 7 0111110 7 0010100 7 0010100 6 011110 5 11011 6 011010
C 0.02081665 5 11111 7 1000001 7 1101011 7 1101011 6 100001 6 010001 6 011011
W 0.01868161 6 011100 7 0010100 7 0011100 7 0011100 7 1001001 6 110001 6 100001
G 0.01521216 6 011101 7 1101011 7 1100011 7 1100011 7 0011100 7 0100001 6 111010
Y 0.01521216 6 011110 7 0011100 7 0111110 7 0111110 7 1100011 7 1100001 6 111011
B 0.01267680 6 011111 7 1100011 7 1000001 7 1000001 7 0111110 8 01000001 7 1000001
V 0.01160928 6 111011 7 0001000 8 00111100 8 00111100 7 1000001 8 11000001 8 10000001
K 0.00867360 7 1110100 7 1110111 8 11000011 8 11000011 8 00111100 9 010000001 9 100000001
X 0.00146784 8 11101011 8 01111110 8 01111110 8 01111110 8 11000011 9 110000001 1 1000000001
J 0.00080064 9 111010101 9 011111110 8 10000001 8 10000001 9 100101001 1 0100000001 1 10000000001
Q 0.00080064 1 111010100 1 011111111 9 011111110 9 011111110 1 001110100 1 1100000001 1 100000000001
Z 0.00053376 1 111010100 1 100000000 9 100000001 9 100000001 1 100101110 1 0100000000 1 100000000000
Average length 4.15572392 4.60728507 4.46463681 4.46463681 4.30677804 4.18734808 4.172804

820

	Index
	ICIP 2004 Home Page
	Conference Info
	Welcome Message
	Techincal Program Overview
	Technical Program Committee
	EDICS Categories
	ICIP2004 Paper Submission Statistics
	ICIP2004 Paper Statistics - Final Program
	ICIP2004 Organizing Committee
	Sponsors
	Exhibition
	Venue Access
	Social Activities
	Other Information
	Call for Papers for ICIP2005

	Sessions
	Monday, 25 October, 2004
	MA-S1-Computational Radar Imaging
	MA-L1-Watermarking I
	MA-L2-Face Recognition
	MA-L3-Video Compression Standards I
	MA-L4-Biomedical Image Processing: Segmentation and Qua ...
	MA-L5-Error Resilience / Concealment I
	MA-P1-Image Segmentation: By Color, Texture, and Edge
	MA-P2-Image Filtering and Morphological Processing
	MA-P3-Image Enhancement I
	MA-P4-Video Segmentation
	MA-P5-Low-level Image Indexing and Retrieval
	MA-P6-DCT-based Video Coding
	MA-P7-Image Compression and Applications
	MA-P8-Distributed Source Coding and Others
	MP-S1-Deformable Models and Applications
	MP-S2-Media Security Issues in Streaming and Mobile App ...
	MP-L1-Face Detection, Recognition, and Classification I
	MP-L2-Video Summarization and Browsing
	MP-L3-Image Filtering and Partial Differential Equation ...
	MP-L4-Image/Video Indexing and Retrieval
	MP-L5-Watermarking II
	MP-P1-Video Compression Standards II
	MP-P2-Error Resilience/Concealment II
	MP-P3-Biometrics I
	MP-P4-Image Segmentation: By Multiple Features and Othe ...
	MP-P5-Image Enhancement II
	MP-P6-Video Object Tracking
	MP-P7-Biomedical Image Processing: Compression and Regi ...
	MP-P8-Video Coding

	Tuesday, 26 October, 2004
	TA-S1-Content-based Analysis of Multi-modal High Dimens ...
	TA-S2-Image Forensics
	TA-L1-Feature-based Image Segmentation
	TA-L2-Denoising and Deblurring
	TA-L3-Biometrics II
	TA-L4-Lossy Image Coding
	TA-L5-Wavelet Video Coding and Scalability I
	TA-P1-Stereoscopic and 3-D Processing I
	TA-P2-Face Detection, Recognition and Classification II
	TA-P3-Motion Detection and Estimation: Block Matching
	TA-P4-Feature Extraction and Analysis: Color and Textur ...
	TA-P5-Watermarking III
	TA-P6-Video Indexing, Retrieval and Editing
	TA-P7-Interpolation
	TA-P8-Geosciences and Remote Sensing and Environment
	TP-S1-What is the Latest in Networked Video?
	TP-L1-Super-resolution and Interpolation
	TP-L2-Deblocking, Restoration, and Enhancement
	TP-L3-Motion Estimation and Detection
	TP-L4-Image Segmentation
	TP-L5-Biomedical Image Processing: Compression, Registr ...
	TP-P1-Stereoscopic and 3-D Processing II
	TP-P2-Face Detection, Recognition and Classification II ...
	TP-P3-Video Streaming and Networking
	TP-P4-Shape Extraction and Analysis
	TP-P5-Watermarking IV
	TP-P6-Image/video Storage and Retrieval
	TP-P7-Wavelet Video Coding and Scalability II
	TP-P8-Image Modeling

	Wednesday, 27 October, 2004
	WA-S1-Content Understanding for Home Photograph and Vid ...
	WA-S2-Pattern Discovery in Real-world Broadcast Video
	WA-L1-Image Scanning, Display, and Printing I
	WA-L2-Image Formation I
	WA-L3-Stereoscopic and 3-D Coding & Processing
	WA-L4-Image Coding I
	WA-L5-Source-Channel Coding I
	WA-P1-Motion Detection and Estimation: Optical Flow and ...
	WA-P2-Watermarking V
	WA-P3-Feature Extraction and Analysis I
	WA-P4-Image Segmentation: Level Set and Active Contour
	WA-P5-Transcoding
	WA-P6-Implementations and Systems
	WA-P7-Document Image Processing and Other Applications
	WA-P8-Biomedical Image Processing: Segmentation and Com ...
	WP-L1-Image Representation, Rendering, and Quality Asse ...
	WP-L2-Stereoscopic Image Processing and 3D Modeling
	WP-L3-Feature Extraction and Analysis II
	WP-L4-Image/Video Segmentation and Tracking
	WP-L5-Distributed Source Coding and Scalability
	WP-L6-Video Streaming
	WP-P1-Image Coding II
	WP-P2-Source-channel Coding II
	WP-P3-Stereoscopic and 3-D Coding
	WP-P4-Super-resolution and Mosaic
	WP-P5-Image Formation II
	WP-P6-Motion Detection and Estimation: Other Methods
	WP-P7-Watermarking and Cryptography
	WP-P8-Image Segmentation: Clustering and Statistical Me ...
	WP-P9-Image Scanning, Display, and Printing II

	Tutorials
	Plenary Sessions
	Special Sessions
	Table of Contents of Printed Proceedings

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	All Papers
	Papers by Session
	Papers by Topics

	Topics
	1.1.1: Lossy coding
	1.1.2: Lossless coding
	1.1.3: Image compression standards
	1.2.1: DCT-based video coding
	1.2.2: Wavelet-based video coding
	1.2.3: Model-based video coding
	1.2.4: Scalability
	1.2.5: Transcoding
	1.2.6: Video compression standards
	1.2.7: Other
	1.3: Stereoscopic and 3-D Coding
	1.4: Distributed Source Coding
	1.5.1: Source/channel coding
	1.5.2: Networking
	1.5.3: Error resilience / concealment
	1.5.4: Video streaming
	1.5.5: Other
	2.1.1: Linear filtering
	2.1.2: Nonlinear filtering
	2.1.3: Level set and fast marching
	2.1.4: Partial differential equations
	2.1.5: Other filtering techniques
	2.2.1: Multiframe image restoration
	2.2.2: Contrast enhancement
	2.2.3: Deblocking / artifacts removal
	2.2.4: Deblurring
	2.2.5: Denoising
	2.2.6: Other restoration techniques
	2.2.7: Other enhancement techniques
	2.3.1: By edge
	2.3.2: By color
	2.3.3: By texture
	2.3.4: By multiple features
	2.3.5: By other features
	2.3.6: Active-contour / snake-based methods
	2.3.7: Clustering-based methods
	2.3.8: Model-fitting-based methods
	2.3.9: Statistical-classification-based methods
	2.3.10: Morphological-based methods
	2.3.11: Level-set-based methods
	2.3.12: Other segmentation methods
	2.4.1: Video object segmentation
	2.4.2: Temporal segmentation
	2.4.3: Video shot segmentation
	2.4.4: Tracking
	2.4.5: Other video segmentation techniques
	2.4.6: Other tracking techniques
	2.5: Morphological Processing
	2.6.1: Stereo image processing
	2.6.2: 3D modeling & synthesis
	2.6.3: Other techniques
	2.7.1: Color
	2.7.2: Texture
	2.7.3: Shape
	2.7.4: Shading
	2.7.5: Other features
	2.8.1: Perceptual / human visual system
	2.8.2: Source modeling
	2.8.3: Noise modeling
	2.8.4: Other
	2.9.1: Face detection, recognition and classification
	2.9.2: Fingerprint analysis and coding
	2.9.3: Iris analysis
	2.9.4: Human activity, gait analysis, and gaze analysis
	2.9.5: Goal-oriented analysis tasks
	2.9.6: Other
	2.10.1: Interpolation
	2.10.2: Super-resolution
	2.10.3: Mosaic
	2.10.4: Registration / alignment
	2.10.5: Other techniques
	2.11.1: Block matching
	2.11.2: Optical flow
	2.11.3: Parametric model for motion estimation
	2.11.4: Change detection
	2.11.5: Camera calibration
	2.11.6: Other motion detection techniques
	2.11.7: Other motion estimation techniques
	2.12.1: Hardware and software co-design
	2.12.2: Embedded and real-time systems
	2.12.3: Paralleled and distributed systems
	2.12.4: Other system platforms
	3.1.1: Super-acoustic imaging
	3.1.2: Tomographic imaging
	3.1.3: Nuclear and x-ray imaging
	3.1.4: Magnetic resonance imaging
	3.1.5: Other
	3.2.1: Radar imaging
	3.2.5: Multispectral / hyperspectral imaging
	3.2.6: Other
	3.4: Optical Imaging
	3.5: Synthetic-Natural Hybrid Image Systems
	4.1: Scanning and Sampling
	4.2: Quantization and Halftoning
	4.3: Color Reproduction
	4.4: Image Representation and Rendering
	4.5: Display and Printing Systems
	4.6: Image Quality Assessment
	5.1: Image and Video Databases
	5.2.1: Low-level image indexing and retrieval
	5.2.2: Relevance feedback and interactive retrieval
	5.2.3: Content addressable browsing
	5.3.1: Video partition/shot detection
	5.3.2: Video features for retrieval
	5.3.3: Low-level video indexing and retrieval
	5.3.4: Semantic video retrieval
	5.3.5: Content summarization and editing
	5.4: Multimodality Image/Video Indexing and Retrieval
	5.5.1: Watermarking
	5.5.2: Cryptography
	6.1.1: Image segmentation and quantitative analysis
	6.1.2: Computer assisted screening and diagnosis
	6.1.3: Visualization
	6.1.4: Image compression
	6.1.5: Image registration and fusion
	6.2.1: Astronomy
	6.2.2: Geosciences
	6.2.3: Remote sensing
	6.2.4: Environment
	6.3: Document Image Processing and Analysis
	6.4: Other Applications

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Copyright
	Current paper
	Presentation session
	Abstract
	Authors
	Yo-Sung Ho
	Young-Suk Yoon
	Wook-Hyun Jeong

