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Abstract. In this paper, we propose a new scheme for the geometry
coding of three-dimensional (3-D) mesh models using a dual graph.
In order to compress the mesh geometry information, we generate
a fixed spectral basis using the dual graph derived from the mesh
topology. After we partition a 3-D mesh model into several independent
submeshes to reduce coding complexity, each submesh geometry is
projected onto the generated orthonormal basis for the spectral coding.
We encode two initial vertices and the dual graph information of the
mesh geometry and prove the reversibility between the dual graph
and the mesh geometry. The proposed scheme overcomes difficulty
of generating a fixed spectral basis, and it provides multi-resolution
representation of 3-D mesh models.
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1 Introduction

As the demand for high quality visual services has increased from consumers and
the interest of three-dimensional (3-D) meshes has grown rapidly, it is essential
to develop efficient 3-D mesh data coding methods. In general, a mesh model is
simply a set of planar polygons in the 3-D Euclidean space. In order to represent
a mesh surface, we can assume that the 3-D model consists of triangular faces.
Basically, there are three types of information to describe the mesh surfaces:
geometry, connectivity, and photometry information. In this paper, we focus on
coding of the mesh geometry information.

Mesh geometry coding methods can largely be divided into two categories:
spatial prediction methods and spectral methods. Deering [1] and Taubin et al.
[2] traversed all the vertices according to the connectivity information, and then
coded the vertices using a simple linear predictor in the spatial domain. Simi-
larly, the mesh coding scheme by Touma and Gotsman [3] encoded the topology
information as a traversal of the vertices in the spatial domain, and the ver-
tex coordinates were coded by predicting them along the traversal order using
a parallelogram scheme. Finally, the prediction errors were entropy-coded. On
the other hand, Karni and Gotsman [4] proposed the spectral method for the
3-D mesh geometry coding. Karni and Gotsman projected the mesh geometry
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onto the basis vectors that are the eigenvectors of the mesh Laplacian matrix.
Although Karni and Gotsman obtained good results with the spectral method,
there are some critical problems, such as difficulty of fixed spectral basis gener-
ation and tremendous coding complexity. In this paper, we are concerned about
the mesh geometry coding using the spectral method and try to solve the prob-
lem of fixed spectral basis generation.

This paper is organized as follows. Section 2 explains previous works, and
Section 3 describes the proposed spectral coding method of the mesh geometry.
After we provide experimental results in Section 4, we conclude in Section 5.

2 Spectral Coding of Mesh Geometry

Karni and Gotsman showed us how to extend the classical Fourier analysis to
3-D mesh data [4]. We consider a simple 3-D mesh model that is composed of n
vertices. The adjacency matrix of the model is represented by the circular n x
n matrix, and the diagonal matrix is represented by the n x n matrix. Finally,
we can obtain the so-called Laplacian matrix from the adjacency matrix and
the diagonal matrix. The Laplacian matrix describes the analog of the second
spatial derivative conceptually.

The Fourier basis functions for 2-D signals are obtained as the eigenvectors
of the Laplacian matrix of the graph with the topology of a 2-D grid. Karni and
Gotsman extended the 2-D spectral transformation to the 3-D mesh topologies,
and they performed the spectral coding by projecting the geometry data onto
the eigenvectors of the Laplacian matrix. We should note that the eigenvectors
are not fixed since valences of the vertices can be different. In other words, the
spectral bases are different according to the mesh topology. Karni and Gotsman
tried to solve the problem by mapping an arbitrary mesh topology into a regular
mesh topology [5]. However, serious deformation has occurred when the arbitrary
mesh is mapped into a regular mesh, as we can see in Fig. 1. In this paper, we
propose a new algorithm to generate the fixed spectral basis.

Fig. 1. Deformation problem
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3 Spectral Coding Using Dual Graph

3.1 Spectral Coding Method

In order to compress the geometry information of 3-D mesh models, we propose a
spectral coding using a fixed spectral basis. In the proposed scheme, we generate
a fixed spectral basis from the dual graph derived from the mesh topology. In
essence, we try to extend the popular 2-D transform coding approach based on
the fixed spectral basis into 3-D mesh coding.

Fig. 2 shows the entire block diagram for the proposed scheme. After we
analyze the input mesh model into the three types of information, we partition
the mesh into several submeshes to reduce coding complexity. During the mesh
partitioning operation, we obtain a dual graph from the connectivity information
for each submesh. Then, we find a fixed spectral basis from the property of the
dual graph. Finally, the mesh geometry is projected onto the generated fixed
spectral basis, and the transformed coeflicients are coded by a quantizer and a
variable length coder.
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Fig. 2. Block diagram of mesh geometry spectral coding

3.2 Mesh Partitioning

Mesh partitioning is used to divide a 3-D mesh model into several independent
pieces, called as submeshes. When submeshes are transmitted separately, instead
of the whole 3-D mesh model, we can send the 3-D model more robustly to the
receiver side since transmission errors may affect only some submeshes, not the
entire model. However, the main reason that we perform the mesh partitioning
in this paper is to decrease coding complexity of the spectral coding.

We apply a multi-seed traversal algorithm that is a well-known partitioning
technique [6]. In the mesh partitioning, we should carefully select the initial ver-
tices that are the starting points of the partitioning process. In this paper, we
adopt the k-means clustering algorithm for initial vertex selection. When we par-
tition a given 3-D mesh model into n submeshes, we select n vertices arbitrarily
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as the initial center vertices of the submeshes. Then, the initial center vertices
are convergent to new center vertices by the k-means clustering algorithm. Fi-
nally, the convergent center vertices are selected as the initial vertices. Since the
selected vertices are optimal positions, the mesh partitioning from these initial
vertices can be performed in an optimal manner.

On the contrary, the k-means clustering algorithm needs more computation
time than other algorithms, such as the maximum-distance algorithm. However,
we do not require a real-time partitioning technique since the submeshes will
be stored in a data storage through an off-line process. Fig. 3(a) and Fig. 3(b)
show selections of the initial vertices by the maximum-distance algorithm and
the K-means clustering algorithm, respectively, when the number of submeshes is
three. As shown in Fig. 3, we can notice that the initial vertex positions, selected
by the k-means clustering algorithm, are more optimal than those selected by
the maximum-distance algorithm.
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Fig. 3. Initial vertex selection (a) maximum-distance algorithm, (b) k-means algorithm,
(c) the result of (a), (d) the result of (b)

3.3 Generation of the Fixed Basis Using the Dual Graph

Given a planar graph G, its geometric dual graph G* is constructed by placing
a vertex in each region of G. The dual graph G* of a polyhedral graph G has
dual graph vertices, each of which corresponds to a face of G and each of whose
faces corresponds to a graph vertex of G [7]. Fig. 4 shows an example of a dual
graph for the simple planar graph.

In this paper, we employ the dual graph to generate a fixed spectral basis. Af-
ter obtaining submeshes from mesh partitioning, we generate their dual graphes
by connecting the centers of gravity of triangle faces for each submesh such that
we should be able to regenerate the mesh geometry from its dual graph.

As shown in Fig. 5, we should know the two initial vertices of the original
mesh in order to regenerate the mesh geometry. We can construct a triangle
face from two vertices, v; and vy, of the original mesh and the one vertex d; of
the dual graph. The third vertex v3 of a triangle face is located on the defined
plane. When we calculate the midpoint ¢; from v; and vs, we can notice that
the third vertex vs is located on the line from d; and ¢;. Finally, we can find the
third vertex vs by advancing two times of the distance between d; and t; from
dy. With this procedure, we regenerate the mesh geometry properly. In other
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Fig. 4. Polyhedral graph and its dual graph

Fig. 5. Regeneration of mesh geometry with its dual graph

words, we can replace the mesh geometry with the first two initial vertices of the
original mesh geometry and its dual graph information. Therefore, we encode
the dual graph information, instead of the original mesh geometry.

The main problem of generating a fixed spectral basis is the irregularity of
the mesh. We solve the problem by using the duality between the mesh topology
and its dual graph. Since the 3-D mesh model is composed of triangular faces,
valences of most vertices in a dual graph vertices are 3. This property is the key
idea to generate a fixed spectral basis.

As shown in Fig. 4, the valence of each vertex in the dual graph is 3 when
the triangle face is the inner face in the 3-D mesh model. When the triangle face
is located on the boundary of the model and is not an ear, the valence of each
vertex in the dual graph is 2. In case the triangle face is an ear, we can assume
that the valence of each vertex in the dual graph is 1. With the assumption, we
can generate the fixed spectral basis by analyzing each submesh topology.

In general, we can extract the boundary information at the decoder side since
the topology information is transmitted prior to the mesh geometry information.
As a result, we can generate the spectral basis with the extracted boundary
information and the number of inner triangles.
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3.4 Spectral Coding of Mesh Geometry

After the dual graph vertices are projected onto the generated basis, the spectral
coefficients are coded by a quantizer and a variable length coder. In general, the
spectral coefficients are uniformly quantized using between 10 bits and 16 bits.
Finally, the quantized coefficients are entropy coded using a Huffman or arith-
metic coder. We can provide the progressive transmission and multi-resolution
representation of 3-D meshes by selecting the spectral coefficients to be sent.

4 Experimental Results and Analysis

We have evaluated the proposed algorithm with the COW model. It consists
of 2903 vertices and 5804 faces. We partitioned the COW model into 20 sub-
meshes. We used the Hausdroff distance [8], which is the common measure of
3-D model deformation, to compare performances of the proposed algorithm and
other algorithms.
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Fig. 7. Result of the 19"" submesh (a) basis generation using a regular mesh, (b) basis
generation using a dual graph

Fig. 6 shows the 19" submesh of the COW model, and Fig. 7 shows the result
of spectral coding. We generated 196 fixed spectral bases for the 19* submesh. In
our experiment, we coded 150 spectral coefficients of 196 spectral coefficients.As
shown in Fig. 7, we had some deformations in both algorithms. However, our
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Fig. 9. Result of the 4" submesh (a) basis generation using a regular mesh,
(b) basis generation using a dual graph

Table 1. Comparison of Hausdroff distances

Submesh|Vertices| Coded Coefficients|Regular mesh|Proposed Scheme
1% 182 130 0.0055 0.0059
ond 156 130 0.0079 0.0062
374 158 130 0.0069 0.0059
4% 186 150 0.0104 0.0118
5t 187 150 0.0072 0.0068
6th 182 150 0.0058 0.0051
7t 152 130 0.0046 0.0049
]th 177 130 0.0102 0.0093
9t 174 150 0.0046 0.0039
10%7 159 130 0.0064 0.0048
1% 185 150 0.0088 0.0075
12%R 159 130 0.0041 0.0036
13% 172 150 0.0047 0.0039
14%F 198 150 0.0072 0.0071
155 188 150 0.0042 0.0049
16t° 164 130 0.0051 0.0045
17%" 161 130 0.0027 0.0031
18%° 174 130 0.0045 0.0041
19%" 170 150 0.0058 0.0035
207" 173 150 0.0069 0.0052

proposed algorithm had less deformation than the previous algorithm in the
left eye region of the COW model, because there was mismatching between the
original mesh and a regular mesh in the previous algorithm.
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Fig. 8 shows the 4" submesh of the COW model, and Fig. 9 shows the
results of the 4" submesh. As we can see in Fig. 8, valances of the 4th submesh
vertices are all 6. As a result, the previous algorithm worked better than ours.
Our algorithm had an error propagation problem when we regenerated the mesh
geometry from the dual graph. We can overcome the problem by inserting a
original mesh geometry information at the encoder side randomly to refresh the
propagated errors. Table 1 shows the Hausdroff distance for other submeshes.

5 Conclusions

In this paper, we proposed a new algorithm for 3- D mesh geometry coding.
We generated the fixed spectral basis from the dual graph derived from the
mesh topology. After we generated the fixed spectral basis, we projected the
mesh geometry onto the basis. Then, we coded the spectral coefficients using a
quantizer and a variable length coder. The proposed algorithm can reduce the
deformation after spectral coding and minimize coding complexity using mesh
partitioning. The proposed algorithm can be used for progressive transmission
and multi-representation of 3-D mesh models.
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