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Abstract. In block-based coding schemes, the input image is segmented
into small blocks that are processed independently; therefore, blocking
effects occur along block boundaries. Various methods have been devel-
oped to reduce such blocking effects. In this paper, we propose a method
for blocking effect reduction based on optimal filtering, and we compare
its performance with those of others.

1 Introduction

The objective of image coding is to represent the image with as few bits as
possible while retaining sufficient picture quality. Various image compression al-
gorithms have been developed. Some of the more promising involve segmentation
of the image into small subimages before coding. In this approach, the original
image is divided into subimages, in most cases, square blocks of the equal size,
and then each subimage is coded independently of the others. To reproduce the
full image, the separated subimage blocks are reassembled by the decoder. The
purpose of segmenting the image is to exploit local characteristics of the im-
age and to simplify hardware implementation of the encoding algorithm. The
transform coding is a typical example of the coding technique having image
segmentation.

One of the fundamental problems of transform coding especially at the low
bit rates is so-called the blocking effect. Since each block is processed indepen-
dently, the reconstructed image at the decoder has discontinuities along block
boundaries. This blocking effect is mainly due to independent quantization of
transform coefficients in each block. Since the quantization takes place in the
transform domain, the effect of quantization error is spread all over the spa-
tial locations within the block. This phenomenon appears very annoying, as the
coding bit rate decreases.

In order to reduce the blocking effect, various methods have been developed,
such as the lapped orthogonal transform (LOT), the overlapping block method,
the interleaving block method and post-filtering. However, each of those ap-
proaches has some drawbacks. The overlap method reduces blocking effects well
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without degrading image edges, but a major disadvantage of this method is an
increase in the bit rate [1,2]. The post-filtering method is easy to implement and
it works well. The post-filtering method does not increase the bit rate, but the fil-
ter degrades the edge content in the image [2]. The LOT is a popular method for
reducing blocking effects. The optimal LOT has a major disadvantage of being
highly sensitive to numerical errors, even with double-precision computations [3,
4]. The optimal LOT may not be easily factorable so that a fast algorithm may
not exist [3]. The suboptimal LOT which has a fast algorithm, but the approxi-
mation for the suboptimal LOT is satisfactory only for the small block sizes. In
our simulation for the LOT, we have shown the spread of the discontinuities along
the block boundaries to adjacent blocks. The two-stage transform coding method
[5] uses the total information of the image to reduce the blocking effect. In this
algorithm, the error of each transform coefficient is spread to the entire image.
Thus, the quality of image decreases exponentially as the bit rate decrease.

2 Optimal Filtering

In the previous section, we discussed blocking effect reduction algorithms that
can be applied within local blocks or along local block boundaries. In this section,
we develop a globally optimum filter instead of a locally optimum one. The
globally optimum filter considers an entire image. Before we derive a globally
optimum filter, let’s consider a locally optimum filter to get a concept of the
optimal filter.

First, we consider a block processing system with pre- and post-filters, as
depicted in Fig. 1. One of the functions of the encoder is to shape the input
signal spectrum into some appropriate form that takes into account quantization
or noise degradations. At the decoder, an approximate inverse filter is employed
to recover the original signal as much as possible.

In Fig. 1, the input noise u the quantization error d are stationary, uncorre-
lated, zero-mean random processes with known spectrum information. Here, the
input and reconstructed signals x and x̃ are vectors in the N -dimensional real
space. We do not assume that F and G should be causal. We start by obtaining
the optimal G for a given pre-filter; that allows us to derive an error expression
that depends only on F. If we can find the pre-filter that minimizes the new
error function, we can effectively obtain the jointly optimal filter pair. D and
D−1 represent DCT and IDCT, respectively. We here assume that the input
noise u is zero.
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Fig. 1. Pre- and Post-Filter System
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The pre-filter generates the intermediate signal v from w, which is trans-
formed by the matrix F and quantized through the quantizer. The post-filter
builds an estimate w̃ of w, from which the final input estimate x̃ is generated.

From Fig. 1, it is clear that

w = Dx, w̃ = Dx̃ (1)

Since we can assume the DCT and IDCT operations are lossless operations, the
absolute mean-square error between w and w̃ is the same as that between x and
x̃, that is given by

ξw = N−1E[‖w̃ − w‖2] (2)

Our problem, therefore, is reduced to find matrices F and G in Fig. 1 that
minimize ξw. This is a typical classical problem in information theory, usually
referred to as optimal block quantization or optimal block coding. We can make
use of the cross-correlation between v and d to derive an expression for the error
ξw as a function of the matrices F and G. However, this would lead to matrix
equations that are fairly difficult to manipulate. A much easier approach is to
use the ’gain plus additive noise’ model of scalar quantization. This model is
derived by Malvar [3]. The quantizer output y is given by

y = Ψx + d̃ (3)

where d̃ is a noise source with no correlations, and Ψ is a diagonal matrix.
The elements of Ψ depend on the autocorrelation Rvv [3]. With the relationship
between v and y, we can modify the block diagram of Fig. 1 to Fig. 2.

Fig. 2. Subsystem to be Optimized

We can rewrite (2) in the form

ξw = N−1tr
{
E

[
(GΨFw + Gd̃ − w)(GΨFw + Gd̃ − w)t

]}
(4)

= N−1tr
{
Λ + GΨFΛFtΨGt + GRd̃d̃G

t − 2GΨFΛ
}

For any given F, the optimal G can be obtained by setting ∂ξw/∂G = 0, which
lead to

Gopt = ΛFtΨ
(
ΨFΛFtΨ + Rd̃d̃

)−1 (5)

For general cases of images coding, F is the identity matrix. If we assume that
DCT and IDCT are lossless operations and DCT is suboptimal to KLT, we can
expand the relation of (5) between the coefficients of the decoder and the encoder
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Fig. 3. Globally Optimum Filter GT

Fig. 4. Reduced System to be Optimized

to that between the original image and the reconstructed one. However, because
of the independent block processing, we may have the blocking effect along the
block boundaries in the reconstructed image.

In order to reduce the blocking effect, we should design a post-filter that is
globally optimal for the entire image, instead of locally optimal for each block.
For this work, we consider the system depicted in Fig. 3, where wi is the input
vector in the N -dimensional real space, di is the quantization error vector being
uncorrelated with the wi, Fi is preprocessor, and Ψi is the diagonal matrix for
quantization.

In this scheme, the entire signal is divided into small vectors, and each vector
is independently processed in the encoder. At the decoder, we collect each coded
vector to find a globally optimum filter GT .

Without loss of generality, we can simplify the derivation by considering only
two blocks, as drawn in Fig. 4. The dimension of each block at the encoder is
different from that of the globally optimum filter GT .

In order to manipulate each block and the global filter, we employ Kronecker
product. We define the matrices, K1 and K2, for indicating each block, which
is given by

K1 =
[

1
0

]
, K2 =

[
0
1

]
(6)
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Also, we can write the entire original signal x and the entire reconstructed
signal x̃ in the form

x =
[
w1
w2

]
, x̃ =

[
x̃1
x̃2

]
(7)

With (6), we can find the dimension extension of w1 and w1, as following:
[
w1
0

]
= K1 ⊗ w1,

[
0
w2

]
= K2 ⊗ w2 (8)

Intermediate vectors, y1 and y2, and the quantization error vectors, d1 and d2,
are represented by

y =
[
y1
w2

]
, x̃ =

[
x̃1
x̃2

]
(9)

where
yi = ΨFiwi + di (10)

Similarly to the procedure for a locally optimum filter, we can define the
error criterion to be minimized, which is given by

ξw = (2N)−1
{

E
[
‖x̃ − (K1 ⊗ w1 + K2 ⊗ w2)‖2

]}
(11)

Using (8), (9), and (10), we can rewrite (11) as

ξw = (2N)−1tr
{
E

[
K1 ⊗ w1Kt

1 ⊗ wt
1 + K1 ⊗ w1Kt

2 ⊗ wt
2 (12)

+ K2 ⊗ w2Kt
2 ⊗ wt

2 + K2 ⊗ w2Kt
1 ⊗ wt

1
]

− 2GT E
[
K1 ⊗ w1Kt

1 ⊗ yt
1 + K1 ⊗ w1Kt

2 ⊗ yt
2

+ K2 ⊗ w2Kt
1 ⊗ yt

1 + K2 ⊗ w2Kt
2 ⊗ yt

2
]

+ GT E
[
K1 ⊗ y1Kt

1 ⊗ yt
1 + K1 ⊗ y1Kt

2 ⊗ yt
2

+ K2 ⊗ y2Kt
1 ⊗ yt

1 + K2 ⊗ y2Kt
2 ⊗ wt

2
]
Gt

T

= (2N)−1tr
{
GT RyyGt

T − 2GT Rxy + Rxx

}

where R represents a correlation function. For any given Fi, assumed F1 = F2,
the optimal GT can be get by setting ∂ξw/∂GT = 0, which leads to

GTopy = Rxy(Ryy)−1 (13)

Here, we have assumed that F is the identity matrix as in the local optimum
filter, and we have assumed that DCT and IDCT are lossless operations. We
can extend this relation to the original input signal at the encoder and the
reconstructed signal at the decoder. By such an extension, we can see that (13)
is in the form of the optimal Wiener filter. It is not strange because the Wiener
filter is known as the optimal solution for many restoration problems.

Fig. 5(a) shows the reconstructed image before the blocking effect is reduced.
Fig. 5(b) is the output image with the globally optimum filter. This technique
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(a)Reconstructed Image (SNR 25.38 dB) (b)Processed Image (SNR = 26.44 dB)

Fig. 5. Results for LENA

has the best performance among all the methods discussed in this paper. This
technique shows higher SNR about 1 dB than the other algorithms at 0.98 bpp.

We assumed the pre-filter is identity matrix. However, if we employ a pre-
filter, we can get better performance than the scheme without the pre-filter. A
disadvantage of this scheme is that we should know the information about the
spectrum of the input signal.

3 Simulation Results

In this section, we compare various algorithms designed to reduce the blocking
effect. For a fair comparison, each method should generate the same number
of coding bits. It is important because some methods, such as overlap method,
can generate more bits than other methods. Thus, the quantizer, with the bit
allocation according to the variances of transform coefficients, can generate the
same number of bits for various algorithms. Here, the optimized bit allocation
table depends on the encoding algorithm, but the total number of bits in the bit
allocation table should be independent of the employed algorithms. Since we do
not use entropy coding, which is lossless coding, to make a fair comparison, our
results have higher bit rate than those of standards.

Fig. 6 shows the SNR plot resulting from applying various algorithms to
LENA. In Fig. 6, there are two reasons of the small difference in SNR. One is
that SNR is not a good measure for the blocking effect, and the other is that we
assign bits by the amount of energy. The globally optimum filter has the highest
SNR value.

We define the discontinuity as the sum of absolute values of the differences
taken along the block boundaries. The discontinuity along the block boundaries
can represent the degree of the blocking effect. However, if we consider only the
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method to minimize the discontinuity, some methods such as low-pass filtering
can degrade the sharpness of the original image. While the HVS indicates the
image from the overlap method is better than that from the modified overlap
method, the discontinuity of the overlap method is larger than that of the mod-
ified overlap methods. Fig. 7 shows the discontinuities of various algorithms for
LENA. The discontinuity of the reconstructed image depends on that of the orig-
inal image. In this respect, we can say that the image has good quality as the
discontinuity converges to that of the original image. In Fig. 7, the discontinuity
of the original image is 85007 (flat line). In this respect, the globally optimum
filter shows the best quality and the LOT shows the second.

4 Conclusions

In this paper, we have tested several algorithms for reducing the blocking effect.
We have also have derived an optimal filter for reducing the blocking effect,
assuming that we have an information of the input spectrum. The resulting
post-filter is similar to the Wiener filter. If we use an estimation technique for
the input spectrum, the performance of the Wiener filter may be degraded. In
this paper, we have proposed a new criterion for comparing the degree of blocking
effect reduction. In comparisons with this new criterion, our optimal filter shows
the best result.
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