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ABSTRACT

In general, the source data to be quantized cannot be
defined by a single distribution because it has a prob-
lem caused by the exhaustive approximation of the ac-
tual source distribution. In order to avoid this problem,
we use the generalized Gaussian distribution (GGD)
for modeling the distribution of the source. GGD is
a parametric family of distributions, including the uni-
form, Laplacian, and Gaussian distributions as special
cases. In this paper, we propose a quantization algo-
rithm for H.264 video rate control based on the rate-
quantization model, which is derived from the rate-
distortion function of GGD. We implement our rate
control scheme for low-delay inter-frame coding, and
compare its performance with those of TM5 and TMN8
for various video sequences.

1. INTRODUCTION

The H.264 video coding standard is jointly devel-
oped by ISO/IEC and ITU-T [1]. By utilizing vari-
ous predictive and entropy coding schemes, H.264 has
substantially outperformed existing video coding stan-
dards. H.264 also adopts the rate-distortion optimiza-
tion (RDO) using the Lagrangian method. However,
H.264 does not include the rate control algorithm in
the normative part of the video coding standard [1].

The main objective of developing H.264 is to en-
hance coding efficiency. The goal of the rate control
scheme is to handle a trade-off between image quality
and channel capacity. In order to deal with the trade-
off, we need to select a proper quantization parame-
ter that does not cause buffer underflow or overflow
problems. We also consider the rate control scheme to
improve visual quality under given coding conditions,
such as frame rates and bit rates.

In this paper, we propose a new quantization al-
gorithm for the H.264 video rate control. The pro-
posed rate control algorithm, applied for inter-frames,
is based on the rate-quantization model. In order to
represent a proper source model, we need a shape fac-
tor that represents the difference between macroblocks
in adjacent frames. Experimental results demonstrate
that the proposed algorithm provides improved cod-
ing efficiency, compared to MPEG-2 TM5 and H.263
TMN8 rate control algorithms.
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2. GENERALIZED GAUSSIAN DISTRIBUTION

In order to model the distribution of the source data
in video coding, various ideas have been investigated.
Design of quantization and coding parts relies on sta-
tistical modeling of the source data. Several probabilis-
tic distributions have been used to model the source
data for the rate control [2-3].

In general, the distribution of differential data to
be quantized is modeled by the Laplacian distribution.
Although the Laplacian distribution provides the most
general statistical model for residuals, the source data
cannot be properly modeled by a single distribution.
In order to model the source distribution adaptively,
the generalized Gaussian distribution (GGD) has been
studied. It is a parametric family of distributions that
include the uniform, Laplacian, and Gaussian distribu-
tions as special cases [4].

The approximation of the best probability density
function for the source data can be adaptively achieved
by GGD, defined by

p(x) =
β · γ

2Γ(1/β)
e−(γ|x|)β

, γ =
1
σ

√
Γ(3/β)
Γ(1/β)

. (1)

whereβ is the shape parameter andσ is the standard
deviation of the source.

Whenβ = 2 andγ =
√

2, it becomes a standard
Gaussian distribution. Asβ → 0, p(x) becomes an
impulse function having tails and nonzero variance. As
β →∞, it approaches the uniform distribution having
varianceσ2. The Laplacian distribution is obtained by
settingβ = 1 and γ = 1/λ. The shape parameter
β takes charge of the exponential rate of decay: ifβ
increases, the distribution becomes flat; otherwise, the
distribution is more peaked.

3. ADAPTIVE RATE CONTROL ALGORITHM

3.1. Rate-Quantization Model

In this work, we begin with the R-D function of GGD.

R =
1
γ

log2

(
σβ

D

)
(2)

whereβ is the shape factor, which describes a decay
rate of the distribution, andγ is the coding parameter
that depends on the shape factor and the standard devi-
ation of the source.
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As the shape factor changes, the distribution form is
altered. Selection of the proper shape factor is impor-
tant since the quantization parameter is determined by
the source characteristics. The distortion is caused by
the quantization parameter used for coding each mac-
roblock. We define a distortion model that is definded
as a function of the quantization parameter.

D = c ·Q2 (3)

wherec is the distortion factor that represents the re-
lationship between distortion and quantization param-
eter. If we use a large distortion factor in the important
region, we can increase a quality of that region in the
image. However, we do not consider the perceptual
rate control for the special object in the image. We
have just focused on the design of the quantization al-
gorithm for the whole image.

By combining Eq. (2) and Eq. (3), we can derive a
rate-quantization model as follows:

Q =

√
σβ · 2−γR

c
(4)

where the shape factorβ and the coding parameterγ
play important roles in modeling the source distribu-
tion.

3.2. Decision of Shape Factor

The shape factor is an important parameter to model
the source distribution. However, the exact estimation
of the shape factor for the source is not easy. It also
requires a high computational complexity. In order to
avoid this problem, we need to find an optimal shape
factor with small complexity [5]. In this work, we sim-
ply decide the shape factor using similarity between
two adjacent images. The shape parameterβ is deter-
mined by

β =





1, ratio > a

2, ratio < b

2− ratio− a

|b− a| , a ≤ ratio ≤ b

(5)

and

ratio =
Number of pixels for|Pc − Pp| < 2

M
(6)

whereM denotes the number of pixels in the mac-
roblock. Pc is a pixel value in the current image, and
Pp is a pixel value in the previous image. In this work,
we assume that the source distribution is modeled by
one of forms existing between Laplacian and Gaussian
distributions. If many pixels of the macroblock in the
current image are similar with pixels of the macroblock
in the previous image, the distribution of the source
data is defined by the Laplacian distribution and the
shape factor is one.

3.3. Quantization Parameter Decision

We should select a proper quantization parameter for
each macroblock to obtain the best quality within the
given target bits.

First of all, we need to predict the standard de-
viation for the current macroblock to determine the
quantization parameter by the rate-quantization model.
In H.264, the use of RDO creates a chicken-and-egg
problem. In order to determine the quantization pa-
rameter, we need to compute the Lagrangian multi-
plier before starting the encoding process; however, the
standard deviation of the residual data is obtained af-
ter motion compensation. This problem occurs in all
the macroblock modes except the Inter16×16 mode.
In order to solve this problem, we predict the standard
deviationσ for the source data by

σ =





1.1× σP ,
σL

P + σT
P

2
> 1.1× σP

0.9× σP ,
σL

P + σT
P

2
< 0.9× σP

6× σP + 2× {σL
P + σT

P }
10

, otherwise

(7)

whereσ is the predicted standard deviation for the cur-
rent macroblock andσP is the actual standard devia-
tion of the macroblock in the previous frame.σT

P and
σB

P are standard deviations of the left and top mac-
roblocks forσP in the previous frame, respectively.

The number of average target bits per pixel in the
current macroblock is calculated byR = BR/(PT −
PC), wherePT is the number of pixels in the frame,
andPC is the number of coded pixels for the frame.R
is used to compute the quantization parameter by Eq.
(4). BR is the remaining bits to be used for encoding
the remaining macroblocks in the current frame.

In the second step, we compute the quantization pa-
rameter for the macroblock. The calculated quantiza-
tion parameter is rounded to the nearest integer value.
The quantization parameter is then adjusted within±2
to reduce side effects by the difference of quantization
parameters between the current and the previous mac-
roblocks.

QP ∗ =





QP − 2, if QP −QPprev < −2
QP + 2, if QP −QPprev > 2
QP, otherwise

(8)

whereQP ∗ is the adjusted quantization parameter. Af-
ter adjusting the quantization parameter, we set the
quantization parameter value in the range of 0 to 51,
as specified in the H.264 video coding standard [1].

In the third step, we update the counter and the
model parameter. We update the number of remain-
ing bits for coding macroblocks in the current frame
and the coded macroblock counter. After each mac-
roblock is coded, we increase the number of coded
macroblocks by one. We also update the model pa-
rameter for the next macroblock to be coded.
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3.4. Update Parameters at Macroblock Level

After encoding each macroblock, we update the cod-
ing information. The number of remaining bits in the
current frame is updated by

BR = BR −BMB (9)

whereBR is the number of remaining bits for mac-
roblocks in the frame, andBMB is the number of cod-
ing bits used to encode the macroblock.BR is de-
creased byBMB .

We update the model parameter after encoding each
macroblock. LetRT be the target bits andRA be
coding bits. RT can theoretically be determined by
the rate-quantization model that is based on the rate-
distortion function. Thus, we can defineRT andRA

as follows:

RT =
K

γ(j − 1)
log2

σβ

c ·Q2
(10)

RA =
K

γ(j)
log2

σβ

c ·Q2
(11)

whereK is the number of samples in the macroblock,
γ(j − 1) is the model parameter used for the current
macroblock, andγ(j) is the model parameter that will
be used for the next macroblock.

RT −RA =
(

1
γ(j − 1)

− 1
γ(j)

)
·K ·A (12)

⇔ 1
γ(j)

=
1

γ(j − 1)
− 1

A

(
RT −RA

K

)
= T (13)

γ(j) =
1
T

(14)

where

A = log2

(
σβ

c ·Q2

)
(15)

which is small.

3.5. Update Parameters at Frame Level

Before starting an encoding process, we allocate the
number of bits for the GOP by considering frame rates
and target bits. If the encoding for the last macroblock
in the frame is finished, we update the number of re-
maining bits at GOP level.

BGOP = BGOP − Tframe (16)

whereBGOP denotes the number of remaining bits in
GOP andTframe denotes the number of bits used to
encode the frame.

We also update the model parameter for the frame
as follows:

γ =
1

MBcnt

MBcnt∑

j=1

γ(j) (17)

wherej is the macroblock number andMBcnt is the
number of macroblocks in the frame.γ is the model
parameter for the first macroblock in the next frame.

4. EXPERIMENTAL RESULTS

4.1. Simulation Conditions

In this work, we set simulation conditions based on the
baseline profile specified in the H.264 standard. Table
1 shows our simulation conditions.

Table 1. Simulation Conditions

RDO On
GOP Structure IPPP
Symbol Mode CAVLC

MV search range 32
Reference Frames 1

The proposed algorithm is applied only to P-frames
because B-frame coding is not included in the baseline
profile. Therefore, we use the GOP structure of IPPP.
For I-frames, we use the fixed quantization parameter
value. We test two video sequences: ”Foreman” and
”News.” The format of both sequences is QCIF with
4:2:0. We set two target bits, 48 and 64 kbps, and the
frame rate is 10 fps.

4.2. Performance Evaluation

In order to evaluate the performance of the proposed
algorithm, we implement MPEG-2 TM5 and H.263
TMN8 rate control algorithms in the H.264 video
codec. We also compare results of the proposed al-
gorithm with Siwei’s rate control algorithm [6].

In Section 3.3, we explain the reason why the stan-
dard deviation should be predicted. We propose the
standard deviation prediction method for the mac-
roblock to solve that problem. Fig. 1 shows the com-
parison of the standard deviation curve for actual and
predictive values. While the dashed-line indicates the
curve for predictive values, the solid-line is for the
original values.

One performance measure for the rate control algo-
rithm is to check whether the number of coding bit is
close to that of the target bits. As shown in Table 2,
the proposed algorithm generates the number of cod-
ing bits close to the number of the target bits within
1% difference.

Table 3 compares average PSNR values for the
proposed algorithm and other algorithms, including
MPEG-2 TM5, H.263 TMN8, and Siwei’s algorithms.
The proposed scheme improves coding efficiency over
other schemes. For ”Foreman” sequence, we im-
proved the average PSNR value by more than 1 dB.
”News” sequence also proves increased coding effi-
ciency. H.263 TMN8 provides the lowest results.

Fig. 2 and Fig. 3 compares PSNR variations during
encoding ”Foreman” and ”News” sequences, respec-
tively. In Fig. 3, the solid line indicates the result by
the proposed algorithm, and the dashed line is the re-
sult by the TM5 method. The proposed algorithm gen-
erally provides better coding efficiency than TM5.
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5. CONCLUSIONS

In this paper, we proposed an adaptive model-based
quantization scheme for effective coding of inter-
frames. The proposed rate-quantization model is
designed from the rate-distortion function of GGD,
which can adaptively represent various distributions by
changing the shape factor. The shape factor is sim-
ply obtained from the comparison of differences be-
tween macroblocks. The quantization parameter is cal-
culated by the proposed rate-quantization model. Sim-
ulation results demonstrate that the proposed rate con-
trol scheme generates the coding bits close to the target
bits and provides improved coding efficiency at low bit
rates.
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Table 2. Target Bits vs. Coding Bits

Test Target Bits Coding Bits Difference
Sequence (kbps) (kbps) (kbps)

FM 48 48.05 0.05
FM 64 63.83 -0.17

News 48 47.93 -0.07
News 64 64.10 0.10
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Fig. 1. Standard Deviations
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Fig. 2. PSNR Variations, ”Foreman”, 64 kbps
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Fig. 3. PSNR Variations, ”News”, 48 kbps

Table 3. Comparison of Average PSNRs

Test TM5 TMN8 Siwei’s Proposed
Sequence (dB) (dB) (dB) (dB)
FM(48) 34.13 33.28 34.15 35.19
FM(64) 35.67 34.52 35.60 36.73

NEWS(48) 36.20 35.02 36.23 37.63
NEWS(64) 38.09 37.37 38.22 39.78
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