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Abstract. Automatic liver segmentation from abdominal computed to-
mography (CT) images is one of the most important steps for computer-
aided diagnosis (CAD) for liver CT. However, the liver must be separated
manually or semi-automatically since surface features of the liver and
partial-volume effects make automatic discrimination from other adja-
cent organs or tissues very difficult. In this paper, we present an unsuper-
vised liver segmentation algorithm with three steps. In the preprocessing,
we simplify the input CT image by estimating the liver position using a
prior knowledge about the location of the liver and by performing multi-
level threshold on the estimated liver position. The proposed scheme uti-
lizes the multiscale morphological filter recursively with region-labeling
and clustering to detect the search range for deformable contouring. Most
of the liver contours are positioned within the search range. In order to
perform an accurate segmentation, we produce the gradient-label map,
which represents the gradient magnitude in the search range. The pro-
posed algorithm performed deformable contouring on the gradient-label
map by using regular patterns of the liver boundary. Experimental re-
sults are comparable to those of manual tracing by radiological doctors
and shown to be efficient.

Keywords: Liver segmentation, Morphological filtering, Deformable
contouring, Computer-Aided Diagnosis(CAD).

1 Introduction

Liver cancer is one of the most common internal malignancies worldwide. The
hepatocelluar carcinoma is common in Asia and metastasis is common in the
West. Computed tomography (CT) has been identified as accurate noninvasive
imaging modalities in the diagnosis of the liver cancer. Designing and developing
computer-assisted image processing techniques to help doctors improve their di-
agnosis has received considerable interests over the past years [1]. CT images are
interpreted by radiologists. However, image interpretation by human beings is of-
ten limited due to the non-systematic search patterns of themselves, the presence
of structural noise in the image, and the presentation of complex disease states
requiring the integration of a vast amount of image data and clinical information.
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Recently, the computer-aided diagnosis (CAD), defined as a diagnosis intro-
duced by a radiologist who uses the output from a computerized analysis of
medical images as a “second opinion” in detecting lesions, assessing extent of
disease, and making diagnostic decisions, is being used to improve the interpreta-
tion components of medical imaging [2],[3]. Considerable and serious efforts have
been made toward the development of CAD systems in diagnostic radiology.

However, CAD research for liver against mammogram and chest radiographs
is to be insufficient because the liver segmentation that plays an important role
for CAD is difficult. This is mainly due to the following two facts. The first one
is the proximity of the liver and other organs or muscles having similar inten-
sity values. It makes resolution difficult by observation of intensity discontinuity
alone because of the partial-volume effects (PVE), i.e., the mixing of different
tissue types in a single voxel. PVE causes edge blurring between different tissue
types and reduces the accuracy and reliability of measurements taken on the
image. The second one is the shape variation across patients even on the same
patient [4].

For image segmentation, there are various approaches, such as feature thresh-
olding, contour-based methods, region-based methods, clustering, and template
matching [5]. Each of these approaches has its advantages and disadvantages in
terms of applicability, suitability, performance, and computational cost. Partic-
ularly, any approaches cannot guarantee desirable results on liver segmentation
without considering characteristics of the abdominal CT image.

In this paper, we propose an automatic liver segmentation algorithm in ab-
dominal CT images, which is a combination of region-based and contour-based
approaches. Our algorithm exploits multiscale morphological filtering and the
deformable contour method using labeling-based search algorithm to address
these problems. In order to increase the robustness of the method, we use an
estimated liver position (ELP), which is composed of control points and fitted
into the patient map. ELP enables us to find robust patient contour and is used
to perform proper liver segmentation [6].

2 Segmentation of the Liver

Mainly, the liver is approximated to muscle and gastrointestinal tract. Since
adjacent organs have similar intensity values as the liver, a direct liver-extraction
approach may extract undesirable boundaries resulting from its adjacent organs
as fault positive/negative errors [1]. In order to cope with the problem, we present
a new segmentation scheme, consisting of three stages: image simplification as
preprocessing, search range detection using multiscale morphological filtering,
and contour-based segmentation using the labeling-based search algorithm.

2.1 Image Simplification

For image simplification, we consider a prior knowledge of the liver on the ab-
dominal CT image, such as shape, location, and intensity value.
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Estimated Liver Position (ELP). For histogram considering only pixels
within the patient contour, we introduce the ELP. In order to find the ELP,
we use prior knowledge, such as a general location, shape and attenuation of
the liver. An abdominal CT image typically consists of six components: back-
ground/air, liver, soft tissue, bone/vessel, kidney, and gastrointestinal tract. The
liver is generally located in the left side of abdominal CT images and existed
within the ribs [2]. We use the fact that the liver is positioned within the ribs.
Since the attenuation of the ribs is almost white gray-level like the bone, we can
easily detect the ribs. Figure 1 shows the estimation result of the liver position.
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Fig. 1. Estimation of Liver Position
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In Fig. 1, the four patient extensions (X1, X2, Y 1, Y 2) in the x and y direc-
tion are calculated by finding control points. Those control points are determined
by the outmost point of each rib. Finally, the ELP becomes the spline curve con-
necting all of the control points, as shown Fig. 1. The liver is always located with
in the ELP. For more accurate and simple processing, we make the ELP blocks,
which are 16x16 blocks including the ELP, as shown in Fig. 2.

Histogram Analysis. We analyzed the intensity distribution of about 20 num-
ber of CT samples that are manually segmented liver and adjacent muscle, as
shown in Fig. 3. In addition, we interpret Hounsfield numbers correspond to the
liver and muscle into the gray level. Finally, we found that the intensity distri-
bution of the liver is similar to the Gaussian distribution. In Fig. 3, however,
attenuation of the liver and muscle is overlapped on some places. Hence, we esti-
mate a threshold δ from the overlapped location to divide two objects. Assuming
a Gaussian distribution with mean µ and standard deviation σ, the probability
P{x; |x − µ| ≤ 2σ} � 95%, we can propose to set δ equal to 2σ [7].

Since the distribution function is similar to the normal distributed Gaussian
function, as shown in Fig. 3, we estimate the mean µl for the liver and µm for
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the muscle by finding peaks in the intensity distribution of the ELP. We then
obtain the standard deviation σl for the liver and σm for the muscle by fitting
the gaussian density function on the intensity distribution function. Finally, we
decide the threshold value δl for the liver and δm for the muscle. Thus, the ELP
is classified into three classes by using the threshold value: liver class(µm + δm <
C ≤ µl + δl), chaos class(µl − δl < C ≤ µm + δm), and non-liver class(others),
where C is the class. Multilevel thresholding based on the analysis of the intensity
distribution makes many other organs or tissues disappear in ELP blocks and
identifies the liver and adjacent region as clear or blurred liver region.
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Fig. 3. Histogram of Several CT Samples

2.2 Search Range Detection

We find the first and second search region by performing multiscale morphologi-
cal operations on the threshold image of the image simplification for the precise
liver boundary.

Multiscale Morphological Filtering. Preprocessing classifies each pixel into
the clustered liver class and the scattered non-liver class. Accordingly, we per-
form mathematical morphology filtering to reduce the scattered class and detect
the liver object. This set theoretic, shape oriented approach treats the image as
a set and the kernel of operation as another set, commonly known as structuring
element. Different standard morphological operations, namely erosion, dilation,
opening, and closing, are basically set theoretic operations between these two
sets. The shape and the size of the structuring element play an important role in
detecting or extracting features of the given shape and size from the image [5].

In constructing a morphological filter, we use erosion and dilation with a flat
structuring element as follows [8], [9],

(f � Bn)(x, y) = min{f(x + l, y + m)|(l, m) ∈ Bn} (1)

(f ⊕ Bn)(x, y) = max{f(x − l, y − m)|(l, m) ∈ Bn}. (2)
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Though the structuring element B takes care of the shape of the features
during processing the image, it cannot equally treat the objects of the same
shape but of the different size. Thus, for processing objects based on their shape
as well as size, we incorporate a second attribute to the structuring element:
its scale or composition. The types of morphological operations are termed as
multiscale morphology [10]. Multiscale filtering are defined by

(f � kBn)(x, y) = {(((f � Bn) � Bn) · · · � Bn
︸ ︷︷ ︸

k times

)(x, y)} (3)

(f ⊕ kBn)(x, y) = {(((f ⊕ Bn) ⊕ Bn) · · · ⊕ Bn
︸ ︷︷ ︸

k times

)(x, y)} (4)

where k is an integer representing the scale factor of the structuring element B
and n is the size of B. Multiscale filtering is performed by using the composition
of the kth order morphological erosion and dilation operations with the multisize
structuring elements of the 5x5 and 3x3 flat size. The size of structuring elements
is decided by analyzing the number of remained regions or pixels of the threshold
image, and the k value is experimentally set to 4 or 5.

First Search Range Detection. For the detection of the first search region,
firstly, we find the initial liver region by performing multiscale opening. In mul-
tiscale opening, the erosion operation of k times, as its first step, eliminates
bright features that do not fit within the structuring element and unconnected
and scattered features in the threshold image. Then, it dilates iteratively same
times to the erosion operation to restore the contours of components that have
not been completely removed by the first step [2].

In the second stage, multiscale filtering using the fixed order of filtering com-
position causes dispersed pixels of tissues. It is due to the various shape or size
of the liver by patients. In order to solve this problem, we perform on the 4-
connected region-labeling algorithm based on the breadth-first search approach
[11]. After the performance of the region-labeling algorithm, the largest labeled
region is marked out for the coarse liver region.

The labeled liver region still has noise, such as adjoining muscles. Thus,
we classify the labeled image into three classes by using the modified K-means
algorithm. The adjacent tissues or muscles to the liver mainly have a higher or
lower intensity value than that of the liver. Therefore, we use three centroids for
the modified K-means algorithm that the middle centroid corresponding to the
mean value of the liver is just computed again and the others are fixed to the max
and min intensity value in the labeled liver region. This processing divides the
region into the adjacent noise which will be reduced and the initial liver region.

The first search region is constructed by performing the different order’s
composition between erosion and dilation operations of the mathematical mor-
phological opening on the clustered initial liver region by

(f ◦ iBn)(x, y) = ((f � iBn) ⊕ (i + j)Bn)(x, y) (5)
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where i is the scale factor of the structuring element and j is a parameter which
decides the size of search range. Generally, i is set to 2 and j is 4 or 5.

Second Search Range Detection. In the clustering, instead of reducing the
adjacent noise, any liver region can be reduced. In order to address this problem,
reverse filtering of the first morphological filtering is performed on the region
of the original image corresponding to the previous labeled region. Multiscale
morphological closing recovers some regions of the liver which are damaged or
reduced in the previous morphological opening. The second search region is
constructed based on the result of the morphological closing, region-labeling,
and modified K-means clustering similar to the previous processing.

Multiscale morphological closing is defined, respectively, by

(f • iBn)(x, y) = ((f ⊕ iBn) � (i + j)Bn)(x, y) (6)

The final search range is determined by excluding the second search region
from the first search region. Since most of the liver boundaries are located in
this search range, precise automatic liver segmentation is possible by using the
deformable contour algorithm within this range. Furthermore, the initial liver
boundary which will be a guidepost for the search algorithm constructed by
extension of the second search region to the original liver size.

2.3 Contour-Based Liver Segmentation

The initial liver boundary acquired by morphological filtering is a coarse liver
contour. Therefore, we present the labeling-based search algorithm that deforms
the initial liver boundary within the search range to find clear and final liver
contour. For the search algorithm, we make a gradient-label map.

Gradient-Label Map. Since the slice thickness of our CT data set is 5mm,
PVE is occurred at the boundary of the adjacent object. Because occurrences of
PVE yield a gradual intensity fall across the boundaries of objects, a labeling-
based search algorithm with an intensity partition that is sufficiently fine results
in labeled images whose isolabel contours form conspicuous patterns. Because
isolabel-contour patterns resemble isoelevation contours on topographical maps,
we refer to the labeled images as isolabel-contour maps. If we observe an area
within an isolabel-contour map that extends from one object’s center to its
boundary within the search range, we see a distinct pattern. Where the intensity
gradient is monotonic in the raw image, the pattern of labels in the isolabel-
contour map is monotonic as well. We observe dense contour patterns in the areas
of abrupt intensity gradients and widespread contour patterns in the areas of
gradual intensity gradients [4]. In order to make a gradient-label map, we enhance
the isolabel-contour map by using the gradient magnitude into the weighing
factor.

The spatial gradient of the search range image is approximated by using of
a morphological gradient operator, expressed by

G(f) = {(f ⊕ Bn)(x, y) − (f � Bn)(x, y)} (7)
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The gradient image usually indicating borders between neighbor regions within
search range is weighted by being reversed and normalized.

Labeling-Based Search Algorithm. We can describe the entire patterns of
liver contours by classifying into three patterns in a gradient-label map as a
relationship of the intensity distribution.

– Pattern 1: The liver is adjacent to the air region which has low intensity
value.

– Pattern 2: The liver is touched to the ribs or the kidney which has high
intensity value.

– Pattern 3: The liver is adjoined to the stomach, the intensity value within
the liver boundary is distributed through the low gray-level.

The deformable contouring is started from the lowest located pixel of the
initial liver contour toward the clockwise direction on the gradient-label map.
Fig. 4 shows the eight directions which the current pixel can proceed. Liver
boundary is smooth since the liver is the human organ. Therefore, the directions
that the current pixel can proceed are three directions indicated by the small
arrows in Fig. 4. Among the three directions, the center direction is determined
by the initial liver contour obtained in the second stage. If the current pixel is
located on the initial liver contour, then the next direction is determined by the
initial liver contour. Otherwise, the next direction is the same as the previous
direction. The other two possible directions are on either side of the center
direction, as shown in Fig. 4. All of three directions are the candidate pixels.

Arrows indicate pixels considered for cost function within 9x9 window.

: Current pixel : Initial boundary or previous direction : Candidate pixel: Current pixel : Initial boundary or previous direction : Candidate pixel

Fig. 4. Search Map

For the optimal path from each pixel, we formulate the local cost function
at each candidate pixel. We can get a correct liver contour by finding optimal
path which is the minimal cost value. The local cost function combining three
features is defined as,

l(p, q) = wD · fD(p, q) + wB · fB(q) + wI · fI(q) (8)

where each w is the weight of the corresponding feature function. The p and q are
two neighboring pixels in the gradient-label map, and l(p, q) represents the local
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cost on the directed link from p to q and the two pixel value components, fB

and fI , are ”initial boundary” and ”intensity distribution” cost functions. [12].
The fD is a function of gradient direction which adds smoothness constraint

to the boundary by associating a relatively high cost for sharp changes in bound-
ary direction. The gradient direction feature cost is

fD(p, q) =
2
3π

{acos[dp(p, q)] + acos[dq(p, q)]} (9)

where D′(p) is the unit vector perpendicular to the gradient direction at a point
p. In addition, dp(p, q) = D′(p) · L(p, q) and dq(p, q) = L(p, q) · D′(q) are vector
dot products and L(p, q) is the normalized bidirectional link or the unit edge
vector between pixels p and q and simply computes the direction of the link
between p and q so that the difference between p and the direction of the link is
minimized [12].

One of the two pixel components, fB(q) is the function estimating the state
of the candidate pixel about the initial boundary. The state is inside or outside
position in the gradient-label map. For the pixel component of the intensity
distribution, we formulate the cost function, fI(q), by following the search map,
as shown in Fig. 4. Functions fB(q) and fI(q) are

fB(q) =
1

255
{I(q) · s} and fI(q) =

1
255

{I(q) · P (n)} (10)

where I(q) is the pixel value at q and s is the weight of the state. If pixel is
“inside” and “outside”, s is 0.4. Otherwise, s is 0.2. P (n) indicates a kind of the
pattern as mentioned above. Each pattern is decided by searching neighboring
pixels of each candidate pixel on bidirectional large arrows within the 9x9 win-
dow, as shown in Fig. 4. If the current pixel goes to the perpendicular direction,
then the neighboring eight pixels of the candidate pixel that correspond to the
initial boundary or previous direction are examined whether those are on the
above pattern. The neighboring pixels within 9x9 window of the other candidate
pixels are also examined. P (n) value is experimentally determined but if the
candidate pixel satisfies the pattern, P (n) can generally take a value from 0.2
to 0.4. Otherwise, P (n) is set to 1.

3 Experimental Results and Analysis

We experimented several samples with various shapes and irregular texture of
10 patients. All of the samples are contrast-enhanced abdominal CT images of
venous phase.

Fig. 5 shows the results of each process of the proposed algorithm. Fig. 5(a)
shows the original CT image. Fig. 5(b) depicts the multilevel threshold image on
ELP blocks. We simplified the CT image using multilevel thresholding, which is
decided by considering the feature of the gaussian distribution. It is due to the
intensity distribution of the liver which is similar to the gaussian distribution.
We can see that many other organs and tissues are eliminated in the threshold
image.
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However, unconnected or small tissues are remained. In order to reduce these
objects and preserve the liver region, we perform recursively multiscale morpho-
logical filtering with region-labeling and clustering, as shown in Fig. 5(c) and
Fig. 5(d). The appropriate composition of the order of morphological operations
with region-labeling and clustering makes the suitable search range for the liver
contour as depicted in Fig. 5(c) and Fig. 5(d). Final search range is formed by
subtracting the second search region from the first search region, as shown in
Fig. 5(e). In addition, for deformable contouring, we construct the initial liver
boundary by extension of the second search region to original liver size, as shown
in Fig. 5(f).

Lastly, deformable contouring based on the labeling-based search algorithm
finds the final liver contour in the search range. For deformable contouring we
make the gradient-label map weighted by gradient magnitude on search range, as
shown in Fig. 5(g). Final liver contour is determined by computing the minimum
cost function considering the gradient direction, the intensity distribution and
the pattern features of the liver, as shown in Fig. 5(h) and Fig. 6.

The results of the proposed algorithm were evaluated by comparing to re-
sults of manual tracing by radiologist. The exclusive-or method is used for the
comparable measure. Table 1 shows the comparison of automatic and manual
segmentation of the liver. The correctness average is about 96.8% and the error
is about 3.2%. Fig. 5(h) and Fig. 6 show results of segmentation on the five
patients. In addition to this, Table 1 presents results of the comparison of the
area and error rate on the various locations in the abdominal CT of a patient.

Table 1. Comparison of automatic vs. manual segmentation of the liver (mm2)

Sample Auto. Manual Error(%) Sample Auto. Manual Error(%)
1 4493.17 4600.03 0.02320 9 9721.03 10085.35 0.03612
2 9492.12 9302.13 -0.02042 10 8225.13 7961.23 -0.03315
3 14498.81 14254.97 -0.01711 11 7510.97 6074.00 -0.02366
4 12832.21 12576.27 -0.02035 12 6321.27 6699.13 0.05640
5 12341.24 12688.73 0.02739 13 5006.03 5133.93 0.02491
6 13381.12 13017.53 -0.02793 14 4524.13 4675.53 0.03238
7 11194.59 11584.49 0.03366 15 3407.97 3536.56 0.03636
8 10320.27 10655.81 0.03149 16 3007.97 3056.56 0.01590

4 Conclusions

In this paper, we have proposed a new algorithm for automatic liver segmentation
using a prior knowledge and the deformable contour method based on morpho-
logical filtering. We used the prior knowledge about the location of the liver in
CT image and introduced the estimated liver position (ELP). Histogram analy-
sis within the ELP is used to decide the adequate threshold value for multilevel
thresholding that reduced computational complexity. In addition, multiscale
morphological filtering using region-labeling and clustering detects the search
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(a) Original Image (b) Threshold Image in ELP (c) First Search Region

(d) Second Search Region (e) Search Range (f) Initial Liver Boundary

(g) Gradient-label Map (h) Result Image

Fig. 5. Experimental Results of Patient 1

range and the initial liver boundary for the deformable contouring. The final con-
tour is found by using the labeling-based search algorithm on the gradient-label
map. The search algorithm considering partial-volume effect (PVE) computes
the minimum cost function composed of the gradient magnitude, the gradient
direction and the pattern of the intensity distribution. The final results are com-
pared to manually segmented image by the radiologist, and we could know that
the false positive/negative results were effectively suppressed. This algorithm is
the effective automatic segmentation algorithm of the liver in CT images for the
first step of the computer-aided diagnosis (CAD) and computer-aided surgery
(CAS) systems. It will assist radiologists by improving their diagnosis.
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(a) Patient 2 (b) Patient 3

(c) Patient 4 (c) Patient 5

Fig. 6. Experimental Results
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