
Texture Coordinate Compression for 3-D Mesh
Models Using Texture Image Rearrangement

Sung-Yeol Kim, Young-Suk Yoon, Seung-Man Kim,
Kwan-Heng Lee, and Yo-Sung Ho

Gwangju Institute of Science and Technology (GIST),
1 Oryong-dong, Buk-gu, Gwangju 500-712, Korea

{sykim75, ysyoon, sman, leee, hoyo}@gist.ac.kr

Abstract. Previous works related to texture coordinate coding of the
three-dimensional(3-D) mesh models employed the same predictor as the
geometry coder. However, discontinuities in the texture coordinates cause
unreasonable prediction. Especially, discontinuities become more serious
for the 3-D mesh model with a non-atlas texture image. In this paper,
we propose a new coding scheme to remove discontinuities in the tex-
ture coordinates by reallocating texture segments according to a coding
order. Experiment results show that the proposed coding scheme outper-
forms the MPEG-4 3DMC standard in terms of compression efficiency.
The proposed scheme not only overcome the discontinuity problem by
regenerating a texture image, but also improve coding efficiency of tex-
ture coordinate compression.

Keywords: 3-D mesh coding, texture coordinate compression, texture
image rearrangement.

1 Introduction

As high-speed networks and the Internet are widely used, various multimedia
services with three-dimensional(3-D) audio-visual data have been proposed, such
as a realistic broadcasting, immersive 3-D games, and 3-D education tools. These
multimedia applications require not only high quality visual services, but also
user-friendly interactions.

The 3-D mesh model, which represents 3-D objects by geometry, connectivity,
and photometry information, is popular as one of the standard representations
of 3-D objects. The geometry information describes 3-D coordinates of vertices,
and the connectivity information describes the topology with the incidence re-
lations among vertices, edges and faces. The photometry information includes
surface normal vectors, colors, and texture coordinates, which are the attributes
of vertices needed to render the 3-D mesh model.

Various processing techniques for the 3-D mesh model have been proposed.
The mesh deformation method[1] changes the 3-D mesh model into arbitrary
shapes, and the mesh refinement method[2] makes 3-D surfaces more smoothly
using subdivision algorithms. In addition, the mesh simplification method[3,4] is

Y.-S. Ho and H.J. Kim (Eds.): PCM 2005, Part I, LNCS 3767, pp. 687–697, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

688 S.-Y. Kim et al.

widely used to support the level-of-detail(LOD) in the 3-D scene and to transmit
the 3-D mesh model data progressively. The 3-D mesh compression method[5]
is one of the important techniques in the 3-D mesh processing. In general, the
representation of 3-D mesh models requires a tremendous amount of data. In
order to store the 3-D mesh data compactly and transmit them efficiently, we
need to develop efficient coding schemes for the 3-D mesh model. Figure 1 lists
the major approaches for 3-D mesh compression.

Geometry DataGeometry DataGeometry Data

Connectivity DataConnectivity DataConnectivity Data

Photometry DataPhotometry DataPhotometry Data

Predictive Coding

(Parallelogram)

Spectral Coding

(Kani Algorithm)

Face-based Method

(Edge breaker)

Edge-based Method

(Face Fixer)

Vertex-based Method

(Gotsman Algorithm)

Color, Normal Vector

Texture Coordinate

Fig. 1. Approaches for 3-D mesh compression

Previous 3-D mesh coding schemes have focused on compressing geometry
and connectivity information. However, we should note that photometry infor-
mation contribute around 60% to the entire 3-D model data. Especially, when
we acquire a 3-D model data from a 3-D data acquisition device, such as a
3-D scanner, we usually employ a texture mapping technique with texture co-
ordinates and texture images instead of colors. The texture mapping makes the
acquired models more realistic. Moreover, since the texture coordinate data are
corresponding to around 40% of the photometry data, it is necessary for us to
develop an efficient texture coordinate coding technique. In this paper, we focus
on compressing the texture coordinates.

This paper is organized as follows. Section 2 explains previous works, and
Section 3 describes the proposed texture coordinate coding method. After we
provide experimental results in Section 4, we conclude in Section 5.

2 Texture Coordinate Coding Algorithms

Texture mapping techniques are widely used to increase the realism of 3-D mesh
models. Texture images and texture coordinates are needed to render a 3-D mesh

Texture Coordinate Compression for 3-D Mesh Models 689

model using a texture mapping technique. The 2-D texture images are mapped
into every polygon of a 3-D mesh model according to its texture coordinates.

There are two types of texture images: atlas and non-atlas texture images.
Atlas texture images, which assemble the segmented charts into a single texture
image, are sometimes convenient to match with 3-D mesh models. Non-atlas
texture images are the set of little squares, that are parameterized into a single
texture. Figure 2 compares the atlas and non-atlas texture images.

(a) Atlas texture image (b) Non-atlas texture image

Fig. 2. Atlas texture image vs. non-atlas texture image

In general, texture images are commonly coded by the JPEG standard, as
still-frame images. According to the quantization design, coding efficiency and
quality for texture images will be determined. In this paper, we will not consider
the coding for texture images, but the coding for the texture coordinate data.
In order to compress texture coordinates, previous works usually exploited the
same predictor that was used to code the geometry data. Although there were
some efforts to code the texture coordinates by different schemes, they did not
increase coding efficiency significantly.

Deering[6] and Taubin et al.[7] traversed all the vertices according to the
connectivity information, and coded texture coordinates using a linear predic-
tor. Similarly, Touma and Gotsman[8] encoded the topology information by tra-
versing the vertices, and texture coordinates were coded by predicting them
along the traversal order using a parallelogram predictor as shown in Fig. 3.
The predicted errors of the texture coordinates were entropy-coded. Isenburg[9]
introduced discontinuity problem between the texture images and the texture
coordinates during texture coordinate coding, and they proposed a texture co-
ordinate coding scheme with a selective linear predictor.

Although previous texture coordinate algorithms yielded good performance
on the 3-D mesh models with atlas texture images, they had problems

690 S.-Y. Kim et al.

(a) Vertex traversal (b) Parallelogram Predictor

Fig. 3. Vertex traversal and predictive coder

for 3-D models with non-atlas texture images because of discontinuity prob-
lem. For realistic multimedia applications, we need to obtain 3-D mesh models
from 3-D data acquisition devices to increase the realism. In general, when we
obtain 3-D mesh models from a 3-D data acquisition device, most 3-D mesh
models include non-atlas texture images. Therefore, we should develop a good
coding scheme for texture coordinates with non-atlas texture images.

2.1 Discontinuity in the Texture Coordinates

Texture mapping is a procedure that maps a 2-D texture image into each polygon
of the 3-D mesh model. Although each polygon can be mapped independently, it
is beneficial to map neighboring polygons into neighboring texture images. We
call the process for obtaining suitable texture coordinates as texture parame-
trization. The texture coordinates are generated through the texture parame-
trization between vertex coordinates and texture images. The 3-D mesh models
with non-atlas texture images cause the texture parametrization to be broken.

When we code the texture coordinates with non-atlas texture images along
a vertex traversal order, the coded texture coordinates will be sorted out in an
unreasonable order, called as discontinuity in texture coordinates. The predicted

Fig. 4. Discontinuity in texture coordinates

Texture Coordinate Compression for 3-D Mesh Models 691

errors of texture coordinates will be increased when we compress the texture
coordinates by a predictive coding scheme owing to the discontinuities. As a
result, discontinuities in the texture coordinates deteriorate coding efficiency
drastically. Figure 4 shows discontinuities in the texture coordinates.

3 Texture Coordinate Coding with Texture Image
Rearrangement

In this paper, we propose a new predictive coding scheme for texture coordinate
compression using a texture image rearrangement. The main contribution of our
proposed scheme is that we remove the discontinuity in the texture coordinates
before employing a predictive coder to compress texture coordinates. The pro-
posed scheme can be divided into four parts: analysis of the mesh model, analysis
of the texture coordinate, rearrangement of the texture image, and predictive
coding of the texture coordinate, as shown in Fig. 5.

��

	
����
�	
����
�	
����
�	
����
�

�������������

����������������

����������������

����������������

���

	
����
�	
����
�	
����
�	
����
�

��

������
����
�������
����
�������
����
�������
����
�
����
��
������

�����
��
������

�����
��
������

�����
��
������

� 010110

Fig. 5. Overall flow for texture coordinate compression

3.1 Analysis of the Mesh Model

Analysis of the mesh model is a process to extract a texture image and texture
coordinates from the 3-D mesh model. The input data format of 3-D mesh mod-
els are usually the virtual reality modelling language(VRML)[10]. In order to
analyze the 3-D mesh model, we need to obtain a texture image and texture co-
ordinates through a VRML analyzer. From a part of the VRML file to represent
the Nefertiti model, we can notice that the Nefertiti model includes a texture
image and texture coordinates.

����������������������������������	
����������	
����������	
����������	
�������� ����

��
��
��
��
 ��

����

�������������������������������� ��������������	����������������	����������������	����������������	�� ������������������������������������

������� ������ !"�������� �����#$�"����! #�������� !"�������� ������ !"�������� �����#$�"����! #�������� !"�������� ������ !"�������� �����#$�"����! #�������� !"�������� ������ !"�������� �����#$�"����! #�������� !"�

���%$� �����%!�!"����%$� ����$�%%#"����&#&� ����%!�!"����%$� �����%!�!"����%$� ����$�%%#"����&#&� ����%!�!"����%$� �����%!�!"����%$� ����$�%%#"����&#&� ����%!�!"����%$� �����%!�!"����%$� ����$�%%#"����&#&� ����%!�!"�

��&��%&&������$&"���&��%&&������$&"���&��%&&������$&"���&��%&&������$&"�

����������������������������������	
����������	
����������	
����������	
�������� ����

��
��
��
��
 ��

����

�������������������������������� ��������������	����������������	����������������	����������������	�� ������������������������������������

������� ������ !"�������� �����#$�"����! #�������� !"�������� ������ !"�������� �����#$�"����! #�������� !"�������� ������ !"�������� �����#$�"����! #�������� !"�������� ������ !"�������� �����#$�"����! #�������� !"�

���%$� �����%!�!"����%$� ����$�%%#"����&#&� ����%!�!"����%$� �����%!�!"����%$� ����$�%%#"����&#&� ����%!�!"����%$� �����%!�!"����%$� ����$�%%#"����&#&� ����%!�!"����%$� �����%!�!"����%$� ����$�%%#"����&#&� ����%!�!"�

��&��%&&������$&"���&��%&&������$&"���&��%&&������$&"���&��%&&������$&"�

692 S.-Y. Kim et al.

Fig. 6. Example of 3-D mesh model and its texture image

The texture image of the Nefertiti model is nefer5t5k1.bmp, which has 14993
texture coordinates. In general, texture coordinates have x coordinates and y
coordinates since they indicate texture positions in a 2-D texture image. With
the VRML analyzer, we also extract the geometry information, the connectivity
information and other photometry data, such as colors and normal vectors. In
order to compress the texture coordinate data, we traverse all vertices to get
a coding order using the extracted geometry and connectivity data. Figure 6
describes the Nefertiti model and its texture image.

3.2 Analysis of the Texture Coordinate

In general, texture coordinates are normalized with values between 0 and 1. In
order to analyze the texture coordinate, we need to obtain exact texture positions
in the texture image from normalized texture coordinates. Texture positions are
obtained by multiplying the width and the height of the texture image to texture
coordinates as described by Eq.1 and Eq.2.

xpos = TextureWidth × xnorm (1)

ypos = TextureHeight × ynorm (2)

After obtaining texture positions, we put the texture image and the correspond-
ing texture positions into a memory. We may have an unpredictable problem in
extraction of texture positions since the axis of the texture image can be inverse.
Therefore, we should make sure that the axis of the texture image should not
be inverse.

During the analysis of the texture coordinate, we search for the discontinu-
ous points between a texture image and texture coordinates. In order to obtain
the discontinuous points, we first define a searching order. In this paper, we
use a vertex traversal algorithm[11,12] supported by 3-D mesh coding(3DMC)

Texture Coordinate Compression for 3-D Mesh Models 693

in MPEG-4 standards[13] to obtain a searching order. Before searching for dis-
continuous points, we should define a threshold to determine whether a texture
coordinate is discontinuous or not. When distances between a texture coordi-
nate and neighboring texture coordinates are larger than the threshold value,
we regard the texture coordinate as a discontinuous point. Finally, discontinuous
points are stored in a memory using a data structure.

3.3 Rearrangement of the Texture Image

By the rearrangement of the texture image, we reallocate the texture segments
continuously with the discontinuity information. Texture segments are
rearranged by the zig-zag order along a coding order. Before rearranging texture
segments, we allocate a image buffer so as to store a regenerated texture image.

(a) Type 1 (b) Type 2 (c) Type 3

Fig. 7. Types of texture segments

In rearrangement of the texture image, we extract the texture segments cor-
responding to a triangle face from the texture image. After checking the data
structure including the discontinuous information, we allocate texture segments
into the image buffer continuously. There are three types of texture segments
in non-atlas texture images as shown in Fig. 7. One has a triangle shape with
lower direction. Another is a triangle shape with upper direction. The other is
a point, which indicates that three texture coordinates are all the same. In or-
der to generate a rearranged texture image, we first classify the type of texture
segments. Then, we allocate texture segments into a image buffer by moving the
buffer position.

The texture coordinates of a texture segment are changed according to the
resolution of a regenerated texture image. In order to use the discontinuous
points in a predictive coder, we indicate a flag for each discontinuous points. The
flags are used for deceasing the residual errors in the predictive coder. Figure 8
shows an example of texture image rearrangement.

After rearrangement of texture image, we regenerate the texture coordinates
corresponding to the reallocated texture image. As soon as we reallocate the
texture segments, we calculate the texture coordinates. Finally, we normalize
the texture coordinate data by dividing them with the width and height of the
regenerated texture image using Eq. 3 and Eq. 4.

xnorm = xpos ÷ NewTexutureWidth (3)

ynorm = ypos ÷ NewTexutureHeight (4)

694 S.-Y. Kim et al.

Fig. 8. Texture image rearrangement

3.4 Predictive Coding of the Texture Coordinate

For the predictive coding of texture coordinates, we obtain residual errors using
MPEG-4 3DMC. The texture coordinates are coded through the parallelogram
predictor along a vertex traversal order. Figure 9 shows the parallelogram predic-
tor. In order to predict a vertex (tx4, ty4), we obtain a referred vertex (tx4, ty4)

′

from Eq. 5.

(tx4, ty4)
′
= (tx1, ty1) + (tx2, ty2) − (tx3, ty3) (5)

From Eq. 6, we can obtain the residual error (ex4, ey4). Finally, the residual
errors (ex4, ey4) are coded through a variable length coder.

(ex4, ey4) = (tx4, ty4) − (tx3, ty3) (6)

v

(tx1, ty1)

(tx2, ty2) (tx3, ty3)

(tx4, ty4)
(tx4, ty4)����

Fig. 9. Predictive coder

Texture Coordinate Compression for 3-D Mesh Models 695

4 Experimental Results and Analysis

We have evaluated the proposed algorithm with the Coin model and the Nefertiti
model. The Coin model consists of 1468 vertices, 2932 faces and a texture image
with 512 x 512 resolutions. The Nefertiti model has 2501 vertices, 4998 faces and
a texture image with 515 x 512 resolutions. The Coin model has 8796 texture
coordinates and The Nefertiti model has 14993 texture coordinates. Figure 10
shows the tested models and their texture images.

Fig. 10. Tested models and texture images

In order to compress the texture images, we used the JPEG with the quan-
tization table suggested in the standard. Whereas, we used the 3DMC reference
software implemented by the MPEG-4 standard for compressing the texture
coordinate data. We experimented our proposed scheme for the tested models
with a Pentium-4 personal computer including 512 MB memory and a Window
operation system.

Table 1. Texture coordinates comparison between 3DMC and the proposed scheme

3DMC proposed scheme
variance of residualspredictive codingvariance of residualspredictive coding

Coin 25.44 168.4 KB 13.22 106.3 KB
Nefertiti 27.64 287.5 KB 14.27 184.3 KB

Table 2. Texture image comparison between 3DMC and the proposed scheme

3DMC proposed scheme
texture sizeJPEG codingtexture sizeJPEG coding

Coin 512x512 79 KB 512x612 91 KB
Nefertiti 512x512 96 KB 512x680 112 KB

Table 1 and Table 2 show the comparison results between the MPEG-4 3DMC
standard and the proposed scheme. As we can see in Table 1, the proposed
scheme had better performance than 3DMC in the texture coordinate coding,
since the variances for residuals of texture coordinates along a coding order
reduced after rearrangement of texture images. As a result, we could increase

696 S.-Y. Kim et al.

Fig. 11. Rearranged texture images

coding efficiency for texture coordinate compression by a predictive coder, and
we could solve the discontinuity problem of texture coordinates for the 3-D mesh
models with a non-atlas texture image.

On the other hand, the size of the rearranged texture image was larger than
the size of the original texture image, because the texture image was obtained by
the zig-zag allocation scheme and included holes sometimes. Rearrangement of
the texture image caused the coded data for the texture images to be increased,
as shown in Table 2. However, the overall coding efficiency increased by about
30% on average, since the texture coordinates had more information than a
texture image. Figure 11 shows the rearranged texture images for tested models.
The left image is a rearranged texture image of the Coin model and the right
image is for the Nefertiti model.

5 Conclusions

In this paper, we proposed a new algorithm for 3-D mesh texture coordinate
coding using a texture image rearrangement. Previous 3-D mesh compression
schemes focused on the geometry and connectivity data. However, we can note
that photometry information contribute substantial amount in the 3-D model
data. Especially, we should have an interest to the texture coordinate coding.

Previous works related to the texture coordinate coding did not consider
discontinuities in the texture coordinates. In case of the 3-D mesh model with

Texture Coordinate Compression for 3-D Mesh Models 697

a non-atlas texture image, discontinuities are more serious. In this paper, we
regenerated the texture image according to the texture coordinate coding order
so as to remove the discontinuities in a non-atlas texture image. In order to
compress the texture coordinate data, we extract the texture images and texture
coordinate data from the 3-D mesh models. Then, we reallocate the texture
images by the zig-zag order. Finally, we employ a predictive coder so as to
compress the residual data along a vertex traversal order.

The proposed prediction coding scheme outperformed the MPEG-4 3DMC
since we reduced the residual errors and eliminated the discontinuous points in
texture coordinates. The proposed scheme not only overcame the discontinuity
problem by regenerating a texture image, but also improved coding efficiency
of texture coordinate compression. The proposed scheme can be used for the
various multimedia applications needed 3-D mesh model transmission such as
3-D games and 3-D broadcasting systems.

Acknowledgements. This work was supported in part by Gwangju Institute of
Science and Technology (GIST), in part by the Ministry of Information and Com-
munication (MIC) through the Realistic Broadcasting Research Center (RBRC),
and in part by the Ministry of Education (MOE) through the Brain Korea 21
(BK21) project.

References

1. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic Parameterizations of Surface Meshes.
Proceedings of EUROGRAPHICS (2002) 209-218

2. Derose, T., Kass, M., Truong, T.: Subdivision Surfaces in Character Animation.
Proceedings of SIGGRAPH (1998) 85-94

3. Hoppe, H.: Progressive Meshes. Proceedings of SIGGRAPH (1996) 99-108
4. Garland, M., Heckbert, P.S.: Surface Simplification Using Quadric Error Metrics.

Proceedings of SIGGRAPH (1997) 209-216
5. Rossignac, J.: Geometric Simplification and Compression. Course Notes 25 of SIG-

GRAPH (1997)
6. Deering, M.: Geometry Compression. Proceedings of SIGGRAPH (1995) 13-20
7. Taubin, G., Rossignac, J.: Geometric Compression through Topological Surgery.

ACM Transactions on Graphics (1998) Vol. 17 84-115
8. Touma, C., Gotsman, C.: Triangle Mesh Compression. Proceedings of Graphics

Interface (1998) 26-34
9. Isenburg, M., Sneoink, J.: Compressing Texture Coordinates with Selective Linear

Prediction. Proceedings of Graphics Interface (2003) 126-131
10. Hartman, J., Wernecke, J.: The VRML 2.0 Handbook. Addison-Welsey Publishing

Company (1996)
11. Yan, Z., Kumar, S., Li, J., Kuo, C-C.J.: Robust Coding of 3D Graphics Models us-

ing Mesh Segmentation and Data Partitioning. Proceedings of IEEE International
Conference on Image Processing (1999) 25-28

12. Kim, S.Y., Ahn J.H., Ho, Y.S.: View-dependent Transmission of Three-dimensional
Mesh Models Using Hierarchical Partitioning. Proceeding on Visual Commnica-
tions and Image Processing (2003) 1928-1938

13. Taubin, G., Horn, W., Lazarus, F.: The VRML Compressed Binary Format.
ISO/IEC JTC1/SC29WG11 M3062(1998)

	Introduction
	Texture Coordinate Coding Algorithms
	Discontinuity in the Texture Coordinates

	Texture Coordinate Coding with Texture Image Rearrangement
	Analysis of the Mesh Model
	Analysis of the Texture Coordinate
	Rearrangement of the Texture Image
	Predictive Coding of the Texture Coordinate

	Experimental Results and Analysis
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

