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Abstract. A spread pattern of a tumor in medical images is an important factor 
for classification of the tumor. The spread pattern is generally not considered 
when we use only one segment for classification. In order to include the spread 
pattern for tumor analysis, we propose an approach for classification of tumors 
in mammograms using two segments for a mass. The proposed approach is per-
formed in two stages. In the first stage, the system separates segments of the 
image that may correspond to tumors using a combination of morphological op-
erations and a region growing technique. In the second stage, segmented re-
gions are classified as normal, benign, or malignant tissues based on different 
measurements. The measurements pertain to shape, intensity variation around 
the mass, as well as the spread pattern. Experimental results with mammogram 
images of the MIAS database show reasonable improvements in correct detec-
tion of possible tumors, compared to other approaches. 
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1   Introduction 

Classification of objects in digital images is an important task in many applications; 
especially, in medicine where prevention and early diagnosis are very important. An 
example of such a task is the checkup done for detecting the breast cancer, which is 
one of the most common cancers among women and its incidence is rising in recent 
years. Although the primary prevention is not completely possible since the cause of 
this disease is not clearly understood, its treatment can be very effective if the breast 
cancer is detected in its early stages. Among different routine tests, mammography is 
one of the most common and effective methods for early detection of the breast cancer.  

Because mammogram reading is a difficult and ambiguous task, many researchers 
try to propose automated systems to do this task efficiently. In general, research ac-
tivities can be divided into two categories. In the first category, they focus on the 
enhancement and prompt of suspicious regions to draw the attention of physicians to 
those regions for detecting possible tumors. The objective of activities in the second 
category is to fully automate mammogram analysis.  

Despite of some outstanding works for automation of mammogram analysis, there 
is still a long way to have a completely reliable automated system for mammogram 
reading. One of the problems in automated detection of masses in mammograms is 



 Automated Detection of Tumors in Mammograms Using Two Segments 911 

the choice of the scale. Masses vary largely in size, ranging from a few millimeters to 
a few centimeters. Only a few researchers on this area address the issue of scale; how-
ever, they validated their proposed methods only on a very small dataset.  

Brzakovics proposed a fuzzy pyramid linking method for detection of possible tu-
mors in mammogram images and he classified detected regions to benign and malig-
nant for circular and stellar lesions in a hierarchical fashion [1]. Brzakovic and 
Neskovic then applied the fuzzy pyramid linking algorithm on a number of different 
scales to detect abnormal structures over a range of sizes [2]. Ng and Bischof detect 
the central mass of lesions using a basic template-matching scheme, which was also 
applied to a number of scales [3]. A circular Hough transform was used by Groshong 
and Kegelmeyer to detect circumscribed masses by searching for circular blobs. Their 
algorithm was tuned to provide similar signals for small and large tumors [4].  

Mudigonda et al. focused on the development of gradient-based features and tex-
ture measures based on gray-level co-occurrence matrices for the classification of 
mammographic masses [5]. Petroudi et al. proposed a scheme which uses texture 
models to capture the mammographic appearance within the breast area. They model 
parenchymal density patterns as a statistical distribution of clustered, rotationally 
invariant filter responses in a low dimensional space [6]. However, the performance 
of their approach is restricted by the training set and quality of mammogram images. 
A neural classification scheme using fractal analysis and spatial moment distributions 
was proposed by V. Öktem and I. Jouny for detecting malignant tumors [7]. Although 
they had a low false positive detection, correct detection rate is not reasonable yet. 

In this paper, we propose a new approach for automated detection of tumors (of 
different kinds and scales) in mammograms based on some prognostic factors: mass 
size, mass shape, intensity variation around mass boundaries, and spread of primary 
shape [8]. Different from previous works that use only one segment for classification, 
we extract two segments (inner and outer) for a mass, which helps us to define a 
spread pattern for a possible tumor if necessary. Classification is then performed us-
ing these two segments. Experimental results show that such consideration improves 
the correct detection of possible tumors and identification of their diagnostic stage. 

The paper is organized as follows. Section 2 explains the proposed approach in de-
tail: detection of possible tumors is described in Section 2.1, and feature extraction 
and tumor classification are detailed in Sections 2.2 and 2.3, respectively. In Section 
3, we discuss experimental results and compare them with results of other approaches. 
Finally in section 4, we conclude our work and address issues for future works.   

2   Automatic Detection of Tumors 

Although we mainly concentrate on the recognition of three general masses: (1) nor-
mal round masses, (2) benign round masses, and (3) malignant round masses, we can 
also determine the type of non-circular lesions, e.g. star shape and architectural, 
which are suspicious to be a tumor. In order to classify these types of masses, we use 
different features, such as size, shape, intensity, and the spread pattern of the primary 
shape, e.g. ring of dehydration for malignant tumors. 

To obtain the abovementioned features in the image, we first separate possible tu-
mors in mammograms by a new segmentation method into two different segments, 
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i.e. inner and outer. This process is done by a combination of morphological opera-
tions with a region growing method. Such separation makes the proposed framework 
distinct from the previous works that are based on one segment.  

In the second stage, the detected masses are classified in a hierarchical fashion. In 
the first level, their sizes are checked. If they are bigger than a maximum threshold 
value or less than a minimum threshold value, we consider them as non-tumor. Possi-
ble tumors then proceeds to the next level of hierarchy, where we use two different 
classifiers which discriminate a mass based on its shape and edge intensity variations. 
Such classifications are done for both inner and outer segments of the mass. For both 
classifiers in this level of hierarchy, we use Multi-Layer Perceptron (MLP) network 
[9]. Finally, in the last level of classification, the final decision for a mass is made by 
a rule-based classifier. 

2.1   Identification of Possible Tumors  

The objective of the first processing stage is to identify possible tumors in mammo-
grams. Generally, identification of possible tumors is a very difficult task due to the 
rich variations of gray level intensities in mammograms. Here, this process is based 
on the morphological techniques [10] [11] followed by an intensity growing algo-
rithm, which finally generates two segments for a mass.  

Precisely speaking, the segmentation task is accomplished by four steps: (i) 
cleanup the mammogram from non-informative regions, (ii) marking foreground 
objects using morphological operations, (iii) determining possible segmented regions 
by finding the locations of the regional maxima in the marked foreground objects, and 
(iv) extending segmented regions by connecting components of pixels based on the 
intensity differences during iterations. Figure 1 shows a typical mammogram and the 
output of each step. Now, let’s examine each step in detail. 

Usually, there are some areas in a mammogram image which are not under atten-
tion for classification and may increase the processing time. The first step, which is 
optional, considered for removing these regions. Such a cleanup is done by selecting 
the breast, or any part of it, as the region of interest.  

In the second step, we apply a number of morphological operations for marking the 
foreground in the image (Fig. 1(b)). These operations are erosion, reconstruction, and 
dilation, defined by 
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where I is the original image (after clean up) and Se is the morphological structural 
element, which is a disk with radius 20 pixels in this work. Operators ⊕ and Θ are 
Minkowski addition and subtraction, respectively, which are defined by 
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In the third step, we find the regional maximal of the reconstructed image from the 
previous step using a connectivity array of 8-connected neighborhoods (Fig. 1(c)). A 
regional maximal is a connected set of constant intensity from which it is impossible 
to reach a point with lower intensity without first ascending, that is, a connected com-
ponent of pixels with the same intensity value, t, surrounded by pixels whose values 
are greater than t. 

 

Fig. 1. Different segmentation steps. (a) Original Image. (b) Image after marking foreground. 
(c) Regional maximal. (d) Inner and outer segments. 

Finally, in the last step that is performed iteratively, we extend the regional maxi-
mal by allowing more intensity differences for pixels in the primary regional maximal 
to extract the inner and outer segments. The result of this step is shown in Fig. 1(d). 
The extension is controlled by the intensity histogram of the primary region, and we 
continue to extend the region with more intensity values if the weighted average of 
the intensity histogram changes only in a limited range without significant replace-
ment in the histogram spectrum. Here, we defined two threshold values to control the 
process; one for the inner segment (Ti) and the other one for the outer segment (To) 
and To>Ti. However, there are some situations, where inner and outer segments are 
exactly or almost the same, as in most normal tissues.  

In order to clarify the situation, let’s examine the process of the regional maximal 
extension for the mass shown in Fig. 1. The primary intensity histogram for the re-
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gional maximal is illustrated in Fig. 2(a). In the first iteration, the extended region has 
a histogram shown in Fig. 2(b) and the variation is still less than Ti; however, in next 
iteration, the extended region has a histogram with a variation bigger than Ti, so the 
inner segment is the one extracted in the previous step. A similar process is done to 
find the outer segment, but this time with threshold To. In this example, the last ac-
ceptable extension is related to the histogram in Fig. 2(d). As we can observe in Fig. 
2(e), the extension in this step is completely changed the histogram of the primary 
regional maximal, which is not acceptable. 

 

Fig. 2. Extension of the regional maximal in iteration for extracting inner and outer segments. 
(a) Histogram of the primary regional maximal. (b) Histogram of the extended region after the 
first iteration (related to the inner segment). (c) Histogram of the extended region after the 
second iteration. (d) Histogram of the extended region after the third iteration (related to the 
outer segment). (e) Histogram of the extended region after the fourth iteration (not acceptable). 

2.2   Feature Extraction 

Having completed the segmentation, and before starting the classification process, we 
should extract the corresponding features. There are different features used in the 
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classification stage, where each of them is related to one characteristic of the tumor 
lesions. These features are as follows: 

Area. Area is the total number of pixels enclosed in the segmented region. Here, areas 
are measured for inner and outer segments, separately. 

Shape. Shape feature is the signature of the boundary of a mass, obtained by 
calculating the Euclidian distance between the center and boundary pixels of the 
extracted region. Later, we will explain how we extract boundaries and calculate the 
center for a segment. This feature is useful for discriminating circular masses from 
noncircular ones, which calculated by 

( )22 )()( cicii yyxxD −+−=  (7) 

where xi and yi are the coordinates of the ith edge point, and xc and yc are the coordi-
nates of the center of the segmented region. Again, we compute two signatures, one 
for the inner segment and the other for the outer segment, however, the center of the 
inner segment is considered as the center point for both segments.  

Edge Distance Variation. Edge distance variation is the local intensity changes 
around the boundary pixels of the extracted region, which is calculated by 

( )iiii myxIabsI −= ),(  (8) 

where I(xi , yi) is the intensity value of the ith edge point, and mi is its local mean. Simi-
larly to the previous features, we extract this feature for both segments. Usually, tu-
mors are classified by well-defined edges. 

Spread Pattern. Usually, the stage of a breast cancer is based on its size and degree 
of spread. A typical example of a spread pattern for infiltrating ductal carcinoma [12] 
is illustrated in Fig. 3. In the progressive stages of a cancer, it may even spread to 
other parts of the breast or even other parts of the body via lymphatic vessels; 
however, in this work, we just consider the spread pattern for the situation where the 
spread is in the original site of the primary mass.  

Considering the example of Fig. 3, we can easily observe that a spread pattern may 
be defined for this kind of tumor if two segments are extracted for the tumor based on 
the intensity variations around the boundary of its original site. Using this fact, we 
define a spread pattern as the difference between shapes (signatures) of inner and 
outer segments. However, this feature is not used for classification in the first and 
second steps of classification hierarchies. Instead, we compare the inner and outer 
segments in the rule-based classifier, where, for example, more similar segments can 
show less possibility for malignancy.  

Now, let’s examine how we extract edges of the segmented regions and calculate 
their center. For detecting edges, we apply both the Prewitt and Sobel filters to the 
segmented inner and outer regions, separately, and then take the union of the results. 

)()( SHSHEdge soprs ∩=  (9) 

where Edges is the final detected edge for the segment S, and Hpr and Hso are the results 
of edge detection for the segment S using the Prewitt and Sobel filters, respectively. 
Figure 4 shows the result of edge detection for the inner and outer segments of Fig. 1(d). 
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Fig. 3. A typical spread pattern for Infiltrating Ductal Carcinoma [13]. 

 

Fig. 4. Boundaries of extracted regions in Fig. 1(d). (a) Edges of inner segment (b) Edges of 
outer segment. 

The second point is related to finding the center of a segment. As mentioned be-
fore, we only find the center point for the inner segment, and all measurements for 
inner as well as outer segments are performed based on this center.  

Although there are some useful algorithms which locate the center of a round ob-
ject, most of them are so complicated [14] [15]. Instead, we use a simple and efficient 
way for calculating the center that is not necessarily round.  

In this method, the mean values of x and y coordinates of edge points are initially 
considered as coordinates of the center point. We then adjust the coordinates in itera-
tion to find the best position for the center. This adjustment is based on the distribu-
tion of edge points around the center. Experiments show that this method is quite 
successful in locating the center. 

2.3   Classification of Extracted Regions 

As mentioned before, we perform classification in a hierarchical fashion. Figure 5 
shows different levels of classification hierarchy, developed in this work.  
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Fig. 5. Levels of hierarchy in the classification stage. 

Area Classifier. The area classifier separates the masses to non-tumor and possible 
tumor based on their sizes, i.e. the area feature. Through experimentation, the 
minimum and maximum levels are set to be 0.001 and 0.1 of the image resolution, 
respectively. The segmented area is not a tumor then, if: 

minAreaAreaout <  (10) 

maxAreaAreain >  (11) 

where Areain and Areaout are the size of inner and outer segments, respectively. 

Shape Classifier. For this classifier, we use an MLP network with one hidden layer 
with 50 neurons, 100 neurons in the input layer, and one output neuron which 
discriminates between circular and noncircular segments. The input is the shape 
(signature) feature vector. The classifier has been trained using the backpropagation 
algorithm for a noise free circle, a number of elliptical shapes with different minor 
and major access and orientation, as well as some of the real circular and noncircular 
masses from 80 different mammograms, which are totally around 100 training feature 
vectors.  

Edge Intensity Variation Classifier. For this classifier, similar to the shape 
classifier, we use another MLP network with one hidden layer with 50 neurons, 100 
neurons in the input layer, and one output neuron which discriminates the masses with 
clearly defined edges (possible tumor cases) from those ones with not clearly defined 
edges. The input vector is the edge intensity variation feature vector. The classifier 
has been trained using the backpropagation algorithm for 80 different mammograms.  
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Rule-Based Classifier. This classifier is somehow the most important one in the 
classification hierarchy, because the final decision is made in this level. The rules 
used in this classifier are based on the characteristics of tumors, such as clearly 
defined edges for the tumor case, determined by experts in this field [8], as well as 
through experimentation. Table 1 summarizes a list of the major rules. In Table 1, the 
rules related to the spread pattern are excluded. Based on the rules, the system decides 
which category the mass belongs to. For example, if both segments are circular with 
clearly defined edge intensity variations, the possibility of malignancy is increased, 
especially for the case that there is less similarity between inner and outer segments 
with respect to their spread pattern.   

Table 1. Major rules used in rule-based classifier 

Shape Edge Intensity Variation Final Decision 

Both       
segments   
circular 

Both segments clearly defined 
Only one segment clearly defined 
Neither segments clearly defined 

Malignant 
Benign 

Non-Tumor 

Only one 
segment 
circular 

Both segments clearly defined 
Only inner segment clearly defined 
Only outer segment clearly defined 

Neither clearly defined 

Malignant 
Possible Benign 

Possible Malignant 
Non-Tumor 

Neither  
segments 
circular 

Inner segment clearly defined 
Only outer segment clearly defined 

Neither clearly defined 

Possible Tumor 
Undecided 

Possible Non-Tumor 

3   Experimental Results 

The processed images, with sizes of 1024 x 1024, have been selected from the Mam-
mographic Image Analysis Society (MIAS) database, which is very well-known in 
this area, and usually used by researchers to evaluate their algorithms. The dataset 
consists of a variety of normal mammograms as well as mammograms with different 
types of abnormalities, such as circumscribed masses, calcification, speculated 
masses, and so on, with different characteristics and severity of abnormalities [16].  

For training, we used 80 mammograms from various categories with different 
complexity, from highly textured to those that appear hazy. With these data, we 
trained shape and intensity variation classifiers, and also obtained threshold values for 
area measurement and some of the rules for the rules-based classifier. 

The evaluation was carried out on 60 mammograms including 12 training mam-
mograms and 48 other mammograms (different from the training data). These data 
contain specific types of tumors including 15 round-shape non-tumors, 15 round-
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shape benign tumors, and 5 round-shape malignant tumors. The remaining 25 con-
tains noncircular masses (15 tumor and 10 non-tumor cases). 

In the segmentation stage, the system was successful in isolating possible tumors. 
In this stage, while tumors identified in about 88.5% (31/35) of the cases for the com-
plete sample set that consists of circular and noncircular masses, identification was 
almost precise for the circular tumors (95% (19/20)).  

In the classification stage, and in the second level of hierarchy, the mean square er-
ror (MSE) for the shape classifier was almost zero. However, there was 3% misclassi-
fication for the edge intensity variation classifier, which is caused by imperfect seg-
mentation of noncircular masses.  

The overall accuracy of the proposed system for different categories are summa-
rized in Table 2, where the  accuracy is defined by the percentage of correct detec-
tions and different categories are non-tumor, benign tumor, and malignant tumor for 
round-shape masses, individually, and all other noncircular cases, together.  

Table 2. Percentage of correct detection for different categories 

 
Using Two 
Segments 

Using Inner 
Segment Only

Using Outer 
Segment Only 

Normal 
(circular mass) 

86.7% 
(13/15) 

73.3% 
(11/15) 

73.3% 
(11/15) 

Benign 
(circular lesion) 

93.3% 
(14/15) 

80% 
(12/15) 

60% 
(9/15) 

Malignant         
(circular lesion) 

80% 
(4/5) 

60% 
(3/5) 

20% 
(1/5) 

Noncircular         
(correct detection) 

68.0% 
(17/25) 

56% 
(14/25) 

40% 
(10/25) 

From Table 2, we note that the best result is for round-shape benign lesions that 
have well-defined edges and are segmented almost precisely in the first stage. For non 
circular cases, the most false detections occurred for calcifications which are usually 
very small spots in mammograms, and speculated masses which are not identified 
quite well in the segmentation stage. 

In order to show the improvement of the tumor classification in the proposed 
method, we have included the results of the experiment for the cases where only one 
segment is used for classification in Table 2. As indicated, the results of classification 
using two segments show a considerable improvement in the accuracy, compared to 
the results of classification when we use only of the inner or outer segment for classi-
fication. 

Besides, a comparison between the proposed approach and some of the previous 
works shows that the detection accuracy for different types of tumors with different 
shapes is increased in our proposed system. The results of this comparison have been 
summarized in Table 3. Although the accuracy of the proposed system is quite rea-
sonable, it is expected to improve even more if we do a more precise segmentation of  
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Table 3. Comparison of total accuracy in some different approaches 

Proposed   
Approach 

AMA [1] (*) 
GCM-Based 
Mass ROI [5] 

GCM-Based 
Mass Margins [5] 

Fractal Analysis/  
Spatial Moments [7] (**) 

82.9%  
(29/35) 

85%  
(17/20) 

74.4%  
(29/39) 

82.1%  
(32/39) 

70%  
(21/30) 

(*) evaluated only for round and star-like tumors 
(**) evaluated only for malignant tumors 

noncircular masses as well as enough considerations for calcifications and speculated 
masses. 

In Table 3, while the Automated Mammogram Analysis (AMA) approach has been 
evaluated only for round and star shape tumors, and fractal analysis/spatial moments 
method consider just  malignant tumors, the other approaches have be evaluated for 
all kinds of masses with different sizes, shapes, and complexities. 

4   Conclusion 

In this paper, we have presented a novel approach for detection and classification of 
masses in mammograms. In this work, we extract two segments, inner and outer, for a 
mass in a mammogram in order to define a spread pattern for tumor lesions. A spread 
pattern of the tumor in the medical images, in addition to other parameters of the 
mass, such as size and shape, is an important factor for the classification. Using these 
two segments, we try to detect tumors in the classification stage which is done in a 
hierarchical fashion. Experimental results show that tumor detection in this approach 
outperforms other methods using only one segment for classification. The correct 
detection rate of the system is expected to be improved further if we perform more 
precise segmentation for noncircular masses. 
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