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Abstract

A registration method is proposed for 3D reconstruc-

tion of an indoor environment using a multi-view cam-

era. In general, previous methods have a high compu-

tational complexity and are not robust for 3D point 

cloud with low precision. Thus, a projection-based 

registration is presented. First, depth are refined 

based on temporal property by excluding 3D points 

with a large variation, and spatial property by filling 

holes referring neighboring 3D points. Second, 3D 

point clouds acquired at two views are projected onto 

the same image plane, and two-step integer mapping 

enables the modified KLT to find correspondences. 

Then, fine registration is carried out by minimizing 

distance errors. Finally, a final color is evaluated us-

ing colors of corresponding points and an indoor envi-

ronment is reconstructed by applying the above proce-

dure to consecutive scenes. The proposed method re-

duces computational complexity by searching for cor-

respondences within an image plane. It not only en-

ables an effective registration even for 3D point cloud 

with low precision, but also need only a few views. The 

generated model can be adopted for interaction with 

as well as navigation in a virtual environment. 

1. Introduction 

Image-based 3D reconstruction of a real environ-

ment plays a key role in providing visual realism for 

navigation in and interaction with a virtual environ-

ment (VE). Convectional modeling of a real environ-

ment with 3D modeling tools is time-consuming and 

the generated models are not realistic. Though the re-

construction method using active range sensors, com-

bined with a camera, generates an accurate and realis-

tic model, they require expensive sensing equipments 

and time-intensive reconstruction processing. Further-

more, alignment of 3D point cloud with a texture map 

is also required. On the other hand, image-based 3D 

reconstruction methods not only preserve realism but 

also provide a rather simple modeling procedure. Es-

pecially, off-the-shelf multi-view cameras, providing 

color as well as depth images in real-time, enables to 

generate image-based models more easily. Therefore, a 

delicate registration is required to register 3D point 

clouds, acquired from the multi-view camera in a few 

directions, for 3D reconstruction of a real environment. 

Various registration methods were proposed. Besl 

et al. proposed ICP (Iterative Closest Point) algorithm 

[1], and Johnson presented Color ICP to reconstruct an 

indoor environment [2][3]. Blais et al. exploited a 

simulated annealing to minimize a cost metric based on 

total distance between all matches [4]. On the other 

hand, Nishino presented an optimization method based 

on M-estimator to implement a robust registration for 

several range images [5]. Especially, Pulli developed a 

data acquisition device and adopted a projective regis-

tration employing planar perspective warping [6]. 

Sharp defined invariant features to improve ICP [7], 

and Fisher applied projective ICP to Augmented Real-

ity applications [8]. But, most methods depend on ex-

pensive equipments and require much time to generate 

3D models [4][5][7]. In addition, if 3D point clouds 

have large error bound it is hard to guarantee the accu-

racy of the registration results [1][2][3]. Furthermore, 

stereo cameras are usually used for object modeling, 

and not for an indoor scene reconstruction [6]. 

To address these problems, a novel projection-

based registration method is proposed. First, depth 

image is refined based on spatio-temporal property of 

3D point cloud using adaptive uncertainty region. Sec-

ond, 3D point clouds acquired at two adjacent views 

are projected onto the same image plane, and corre-
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spondences are searched for within an overlapping 

area through the modified KLT (Kanade-Lucas-

Tomasi) feature tracker. Then, two sets of 3D point 

cloud are registered by minimizing Euclidean distance 

errors with Levenberg-Marquardt algorithm. Finally, 

each triangulated point is evaluated referring corre-

sponding points, and a new color is assigned to each 

point in the overlapping area. Consequently, we recon-

struct an indoor environment by applying the above 

procedure to consecutive scenes. 

The proposed 3D reconstruction method for a real 

environment has the following characteristics. First of 

all, although a multi-view camera provides 3D point 

cloud which has low precision, its pervasiveness pro-

vides a chance to simplify 3D reconstruction of a real 

environment [9][10]. For this purpose, the proposed 

method estimates camera pose using projected 2D cor-

respondences instead of 3D coordinates. Thus, regis-

tration is carried out effectively even if the precision of 

acquired 3D point cloud is relatively low compared to 

that of precise optical sensor. Besides, computational 

complexity is reduced as it searches for the correspon-

dences in a 2D image plane. This also enables a more 

convenient and fast reconstruction, combined with the 

multi-view camera which provides 3D information in 

real-time. In addition, the proposed method simplifies 

3D reconstruction by placing a multi-view camera only 

at a few positions in an indoor environment. 

The paper is organized as follows. In Chapter 2, we 

explain the depth image refinement. Fine registration is 

mentioned in Chapter 3. Then, color selection for the 

overlapping area and extension to the consecutive 

scenes are described in Chapter 4. After experimental 

results are analyzed in chapter 5, conclusions and fu-

ture work are presented in chapter 6. 

2. Depth Image Refinement 

2.1. Erroneous 3D Points 

Unlike optical sensor-based methods which use ac-

tive range sensing technique, passive techniques use 

the images generated by light reflected by objects. 

However, disparity estimation results in inherent stereo 

mismatching errors, usually at depth discontinuity and 

on homogeneous areas. The errors cause poor registra-

tion results. Thus, unreliable regions should be elimi-

nated before registration. In this regard, a depth image 

is refined by employing its spatio-temporal property. 

In the first step, erroneous points are removed using 

the temporal property that erroneous depth values 

change dramatically in 3D space with time. In the sec-

ond step, holes are filled on the basis of the spatial 

property that there is a spatial correlation between 

neighboring pixels. Figure 1 is a flow diagram for 3D 

reconstruction of two scenes in a real environment. 

Two sets of color data & disparity maps

Registered 3D point clouds

Noise removal using Gaussian distribution

properties of disparity map value

Median Filtering

Hole Filling

Projection-based Registration

Color Selection

Figure 1. Flow diagram for 3D reconstruction 

To analyze the characteristics of 3D point cloud, 

mean and standard deviation are calculated for each 

pixel after acquiring Nf depth images for the same 

scene. However, depth values of some parts have large 

variations even in a static scene. The reason is that 

although the materials of objects are assumed to obey 

the properties of Lambertian surface, some parts do not 

satisfy the postulation. In general, depth values drift 

with time, camera position, illumination conditions of 

a scene, etc. These factors induce large variations in 

depth values, especially at depth discontinuity areas as 

well as on homogeneous areas, when disparity is esti-

mated. Thus, these unstable parts should be removed. 

In the depth image of a static scene, depth variation 

of each pixel is modeled as a Gaussian distribution. 

After investigating depth value of each pixel, we get 

rid of the pixels whose depth variation is larger than 

the threshold value for the ith pixel as follows. 

ii Th (1)

where i represents a standard deviation for depth 

variation of the ith pixel.  and Thi denote a scale factor 

and a threshold value for the ith pixel, respectively. 

However, note that the threshold values depend on 

3D coordinates of a scene with respect to the optical 

center of the multi-view camera. This is because the 

disparity estimation error increases as an object moves 

away from the camera. Therefore, Thi must be reex-

pressed as a function of 3D coordinates with respect to 

the optical center of the camera. 

2.2. Adaptive Uncertainty Region 

To decide Thi in terms of 3D coordinates for a scene, 

error bounds of each axis should be calculated for 
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every ray, which starts from the optical center and 

passes through corresponding pixel on the image plane. 

A 3D point within the estimated error bound cannot be 

distinguished from the error due to the inherent dispar-

ity estimation errors. The above description derives us 

to conclude that an adaptively changing shape appears 

to be ellipsoidal in 3D space, and we call it Adaptive 

Uncertainty Region.

The multi-view camera has correlation errors in dis-

parity estimation and calibration errors. For a multi-

view camera with a constant Field Of View (FOV), we 

assume that Gaussian noise distribution linearly in-

creases with the distance along x and y axes; and Gaus-

sian noise distribution increases monotonically with 

the distance along z axis as shown in Figure 2 [11]. 

Based on 3D coordinates for x, y and z axes, we deter-

mine tolerances for each axis. 

Object boundary

FOV

Image plane

Gaussian distribution

Adaptive uncertainty region

Figure 2. Adaptive uncertainty region

Each 3D point, calculated from corresponding 2D 

pixel, generates an ellipsoidal uncertainty region in 3D 

space. Thus, threshold, Thi, is determined referring the 

adaptive uncertainty region that changes according to 

3D coordinates of a scene, and is described as follows. 
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where (xc, yc, zc) denotes a translation vector from opti-

cal center of the camera to center of the uncertainty 

region. x, y and z represent uncertainty distances 

along each axis. However, the ellipsoid should be ro-

tated with respect to the optical center reflecting the 

direction of the ray. Therefore, after the ellipsoid of Eq. 

(3) is rotated with respect to the optical center using Eq. 

(4), it moves to (xc, yc, zc).
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where (x , y , z ) is a final uncertainty region in terms 

of 3D coordinates of a scene with respect to the optical 

center. Therefore, Eq. (1) is reexpressed reflecting 3D 

coordinates, (xc, yc, zc), with respect to optical center of 

the camera as well as direction of ray as follows. 

),,( cccii zyxTh (5)

Through the above step, some parts of a scene, 

which do not meet the assumption of Lambertian sur-

face, are removed. The boundary of an object and ho-

mogeneous areas are also excluded. Then, Median 

filter is applied to remove spot noises. 

However, hole filling is required on the holes, gen-

erated during the above step, and homogeneous areas 

where disparity may not be estimated. Thus, spatial 

property for a current point, i.e. spatial correlation 

among 3D points of four neighborhood pixels, is ex-

ploited [11]. However, this step may generate errors if 

depth difference between adjacent pixels is large. 

Therefore, this step is applied only when the depth 

discontinuity is less than a threshold, Thdd. After inves-

tigating the 3D coordinates of each of four directions, 

we apply this step only to the holes whose size is so 

small that we can consider each of them as a plane. 

3. Registration using Correspondences 

The depth image refinement removes inherent ste-

reo mismatching errors, and reduces error bound of 3D 

point cloud. However, precision of 3D point cloud is 

still low for registration. The registration exploiting the 

conventional ICP, which employs the shortest distance, 

is inappropriate since error bound of 3D point cloud is 

relatively large. Thus, a projection-based registration 

method is proposed to carry out a pairing process that 

searches for correspondences between 3D point clouds 

of destination and source views. Figure 3 shows the 

projection-based registration of Figure 1 in detail. 
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MSE < threshold
NO

YES

STOP

3D data from source view

3D data from destination view

Projection of 3D data acquired from

destination view onto destination view

Projection of 3D data acquired from

source view onto destination view

Corresponding features searching

using KLT Feature Tracker

Cost function minimization using

Levenberg-Marquardt algorithm

Rotation and translation matrix update

Rigid transformation of source point set S

Figure 3. Flow diagram for projection-based regis-
tration

3.1. Initial Registration 

A multi-view camera is attached to a mobile robot 

and its pose is estimated by detecting and tracking fea-

tures of a scene. First, a coplanar calibration pattern 

and structural constraints of the multi-view camera are 

used for its calibration [12][13]. Then, intrinsic pa-

rameters and camera pose are estimated with respect to 

a reference position in a real environment. Finally, a 

rigid-body transformation is applied to 3D coordinates 

of feature points at each camera view to estimate the 

poses of the camera at each view. Therefore, partial 3D 

point clouds, acquired at each position, are initially 

registered. Even though the initial registration provides 

a combined 3D point cloud for a scene, it still requires 

fine registration that provides a correct camera pose. 

3.2. Fine Registration

Correct pairing plays an essential role in accurate 

registration. Figure 4(a) and Figure 4(b) are the projec-

tion results of 3D point clouds, which are acquired at 

the destination and source views, onto the destination 

view. Mid-luminance value is assigned to unprojected 

area to differentiate it from projected one. It should be 

noted that the projection of 3D point cloud of source 

view onto the destination view creates self-occlusion. 

This is eliminated based on the rays that originate at 

the camera center and pass though each pixel on the 

image plane. Theoretically, Figure 4(b) should exactly 

overlap with Figure 4(a). However, discrepancies oc-

cur due to the errors in disparity estimation, camera 

calibration, etc. Therefore, accurate geometric relation-

ship between two views is found by minimizing 

Euclidean distance errors between correspondences 

within the overlapping area in terms of projection ma-

trix of a source view. Accordingly, fine registration 

should be accomplished to compensate the errors in-

duced by disparity estimation, camera calibration, and 

so forth. 

(a) (b) 

Figure 4. Projection of 3D point cloud onto image 
plane (a) projection of 3D point cloud of destina-
tion view onto its own view (b) projection of 3D 
point cloud of source view onto the destination 
view 

In general, projection of 3D point cloud of the 

source view onto the destination view generates float-

ing-point numbers. Thus, some pixels do not have any 

value as shown in Figure 6(a). These unprojected pix-

els can generate false alarms when corresponding fea-

tures are searched for through a modified KLT feature 

tracker. Therefore, to preserve an original image as 

well as to remove unprojected pixels, a special care 

should be taken. 

A two-step integer mapping is presented to meet 

these requirements. In Figure 5, grid points are on the 

lines. White circles represent grid points, and black 

circles denote projected pixels of 3D point cloud of the 

source view onto the destination view.  

Grid pointProjected point

Search range for 1st step Search range for 2nd step

Figure 5. Two-step integer mapping 

At the first step, a search range is set to 0.5 ~ 0.5

along x and y axes, respectively, for each grid point. 

The color of each grid point is evaluated by consider-

ing weights, which are decided by relative distances 

with all pixels within the search range. In most cases, 

only one projected point is included in the fist range.  

However, there exist grid points which do not in-

clude any projected point at the first step. At the sec-

ond step, the search range is expanded to 1.0 ~ 1.0
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and a similar procedure is accomplished. Figure 6 

shows the results. Figure 6(a) is an enlarged part of 

Figure 4(b), and Figure 6(b) is the result after the two-

step integer mapping is applied. The presented method 

improves the modified KLT feature tracking perform-

ance by removing unmapped grid points and preserv-

ing an original image as it is, at the same time. 

(a) (b) 

Figure 6. Two-step integer mapping (a) before (b) 
after

We search for corresponding feature points, and use 

Euclidean distance between them to define a total cost 

function within the overlapping area. To guarantee the 

correct paring, RANSAC is also applied. By minimiz-

ing the following cost function, a final pose of the 

source view is estimated. That is, we can estimate the 

pose of source view {RSrc, TSrc}, with respect to the 

pose of destination view {RDst, TDst} through minimiz-

ing the distance errors on Nfeat feature points as follows. 
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where (xDst,i, yDst,i) and (xSrt,i, ySrc,i) represent points on 

projected 2D image planes of 3D point cloud of the 

destination and source views, respectively. E denotes 

Euclidean distance between them. The total distance 

error is minimized by Levenberg-Marquardt algorithm. 

4. Surface reconstruction of 3D point cloud 

After the estimation of the camera parameters of 

source view with respect to destination view, trimming 

and color selection, for duplicate 3D point clouds 

within the overlapping area, are carried out. After reg-

istration of two views, each grid point of the overlap-

ping area in the destination view has its own corre-

spondence in the source view. This means that we can 

obtain the corresponding features in 3D point cloud of 

the original source view. Thus, final 3D coordinates 

are calculated by a linear triangulation method for the 

overlapping area [14].  

Then, color adjustment is required to consider 

changes in lighting conditions depending on camera 

position. We suppose that all materials within a cap-

tured scene satisfy the properties of Lambertian surface.  
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where u and v are distances from left and right borders 

of the overlapping area to the current pixel, respec-

tively. RDst (or GDst, BDst) and RSrc (or GSrc, BSrc) are red 

(or green, blue) component of a current pixel for both 

images. On the other hand, R (or G , B ) means final 

colors for the overlapping area. 

To reconstruct a final surface, after placing a multi-

view camera at several positions successively and ac-

quiring images and 3D point clouds, we apply the 

above procedure to them. Figure 7 shows a conceptual 

diagram describing an indoor scene reconstruction. 

[RT]
0

Calibration

Pattern

Indoor Environment Captured Areas by a Multi-view Camera

[RT]
1

[RT]
2

[RT]
3

[RT]
01

[RT]
12

[RT]
23

...

...

Figure 7. Indoor scene reconstruction 

As shown in Figure 7, we first place a calibration 

pattern whose relative position from an indoor envi-

ronment is already known. Then, based on the pattern, 

we estimate intrinsic and extrinsic parameters of a 

multi-view camera with respect to the origin of the 

world coordinate system. We calculate [R T]0 by ex-

ploiting Intra-/Inter-calibration which employs Tsai’s 

algorithm and structural information of the camera [11]. 

Through the above-mentioned procedure, we estimate 

the pose of the second view with respect to the first 

view, [R T]01. That is, we can calculate the pose of the 

second view from the reference point, [R T]1. Thus, we 

can get the camera pose of the ith view from the refer-

ence point, [R T]i-1, and carry out 3D surface recon-

struction. By using the proposed method, we do not 

need a dense depth estimation process employing the 

multi-baseline stereo technique. Thus, we can reduce 

computational complexity. 
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5. Experimental Results and Analysis 

The experiments were carried out under a normal il-

lumination condition of a general indoor environment. 

We used Digiclops, an IEEE 1394 multi-view camera 

for color image and 3D point cloud acquisition, and a 

Xeon 2.8 GHz CPU computer [9]. We employed a 

coplanar pattern with 7 5 grid points to get an initial 

camera pose from the origin of the world coordinate 

system. Distance between two consecutive points of 

the pattern is 10.6 cm. 

Figure 8 shows the results of depth image refine-

ment. Figure 8(a) and Figure 8(b) depict original and 

corresponding disparity images. 3D point cloud ac-

quired from a camera and the results of depth refine-

ment and hole filling are demonstrated in Figure 8(c) 

and Figure 8(d), respectively. In this regard, we set Nf

as 30 and Thdd as 0.15. Initial value of Nfeat is set as 

200. We can observe from the results that invalid areas, 

such as object boundary, homogeneous areas and non-

Lambertian surface, are effectively removed. Holes, 

whose depth difference is very small, are also filled. 

(a) (b) 

(c) (d) 

Figure 8. Depth refinement (a) original image (b) 
depth image (c) 3D point cloud before depth re-
finement (d) 3D point cloud after depth refinement 

Figure 9 demonstrates the results of minimizing the 

Euclidean distances between corresponding features. 

That is, we applied the modified KLT feature tracker 

to Figure 4(a) and Figure 4(b), and minimized the dis-

tances between them. Figure 9(a) and Figure 9(b) are 

projected images of 3D point clouds, which are ac-

quired at the destination and source views, onto the 

destination view. Corresponding features are also 

marked. Enlarged areas are also shown in Figure 9(c) 

and Figure 9(d) at the initial and final steps. Red and 

white markers represent corresponding features of 

source and destination views, respectively. We can see 

that the distances between correspondences are effec-

tively minimized. 

(a) (b) 

(c) (d) 

Figure 9. Corresponding features (a) projection of 
3D point cloud of destination view onto its own 
view (b) projection of 3D point cloud of source 
view onto the destination view (c) enlarged area of 
(b) before error minimization (d) enlarged area of 
(b) after error minimization 

Figure 10 illustrates the registration results. Figure 

10(a) and Figure 10(b) show a combined 3D point 

cloud of both views and a registered 3D point cloud 

after applying the proposed method, respectively. On 

the other hand, Figure 10(c) and Figure 10(d) are 

enlarged areas for the corresponding scenes. By ob-

serving the boundary of a circle, Chinese and English 

characters, we can see that the registration works well.

(a) (b) 

(c) (d) 

Figure 10. Registration results (a) combined 3D 
point cloud (b) registered 3D point cloud (c) 
enlarged area of (a) (d) enlarged area of (b) 
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The registration results for one wall of an indoor 

environment are shown in Figure 11. We let the multi-

view camera located around a wall, and acquired color 

images and 3D point clouds. As shown in Figure 11(a), 

we moved the camera four times around the wall and 

registered partial 3D point clouds to generate a depth-

preserved 3D wall. Figure 11(b) and Figure 11(c) are 

scenes seen from left and front sides. The right part of 

Figure 11(c) is enlarged in Figure 11(d). On the other 

hand, the front view of the registration results for the 

views acquired at six positions is illustrated in Figure 

11(e) and a zoomed-in scene is shown in Figure 11(f). 

As demonstrated, by applying the proposed registra-

tion method to a few sets of 3D point cloud, we can 

achieve dense 3D reconstruction for an indoor envi-

ronment. 

(a)

(b)

(c)

(d)

(e)

(f)

Figure 11. Indoor scene reconstruction (a) top 
view of 4 registered views (b) left view (c) front 
view (d) enlarged area of (c) (e) front view of 6 
registered views (f) zoomed-in scene 

We compared the proposed method with conven-

tional ICP and color ICP on the basis of PSNR (Peak 

Signal to Noise Ratio), which represents the visual 

quality of registered results, in Figure 12. From the 

results, we can observe that ICP and color ICP are dif-

ficulty in being applied to the 3D point cloud, which 

has large disparity estimation errors. The reason is that 

those methods are just based on the closest distance 

and do not consider neighborhood pixels. Projection-

based ICP just projects 3D point cloud of source view 

onto destination view and searches for paired 3D point. 

However, it is difficult to guarantee correct corre-

sponding features in case of the large error bound. 

On the other hand, the proposed method tracks the 

corresponding features by exploiting surrounding in-

formation for each block in a 2D image plane. Then, it 

minimizes the distance between the corresponding 

features. Thus, we can see that the proposed method 

provides results that are more reliable. We took advan-

tage of the following measure for comparing perform-

ance in the overlapping area. 
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where N is the number of pixels, which are valid for 

both images; and YSrc,i and YDst,i denote the luminance 

value of the ith point on each projected 3D point cloud 

of source and destination views, respectively. 

The visual quality of the proposed method is supe-

rior to those of conventional ICP and color ICP. Fur-

thermore, the convergence of the proposed method is 

faster than that of [11] (  = 7.0, NB = 192) since the 

proposed method employs the corresponding features. 

Besides, visual quality is also better than that of [11]. 

Although it seems that the conventional ICP and color 

ICP converge faster, they takes longer to search for 

correspondences than does the proposed method. The 

reason is that our method is based on a 2D image plane 

while the conventional ICP and color ICP search for 

correspondences in 3D space. 

Figure 12. Performance comparison

6. Conclusions and Future Work 

We proposed a novel registration method exploiting 

color and depth information acquired from a multi-

view camera to carry out 3D reconstruction for an in-

door environment. We proved that even though the 

error of depth information is relatively large compared 

to that of laser-scanned data, 3D point clouds are effec-

tively registered between two views. We also showed 

that an effective reconstruction is possible using a few 

views of the real environment instead of many 2D im-

ages. There are still several remaining challenges. First, 

we have to reduce convergence rate for registration. 

Global registration should be optimized to do 3D re-

construction for the entire indoor environment. Natural 

augmentation of virtual objects into the reconstructed 

room environment requires light source estimation and 

analysis to match illumination condition of the VE. Up 

to now, we limit the proposed method to only indoor 

scenes due to the disparity estimation errors. However, 

if the precision is enough high, it can be applied to 

outdoor scenes. 
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