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ABSTRACT

Spoken dialog systems aim to interpret meanings of users’

utterances and respond to them accordingly. The users’ ut-

terances are first recognized by an automatic speech recog-

nizer (ASR) and the intents of the users are extracted by the

spoken language understanding (SLU) unit. Both ASR and

SLU are noisy and in general their noise statistics are not
correlated. Our goal is to exploit the signal-noise informa-

tion and ASR lattice-based and semantic confidence scores

for SLU error prediction and prevention of these by reject-

ing erroneous utterances, or asking confirmation questions.

In our experiments, we have shown up to 80% relative de-

crease in the error rate of the accepted utterances collected

using the AT&T How May I Help You � � Spoken Dialog

System used for customer care.

1. INTRODUCTION

Spoken dialog systems aim to identify intents of humans,

expressed in natural language, and take actions accordingly,

to satisfy their requests [1]. In a natural spoken dialog sys-

tem, typically, first the speaker’s utterance is recognized us-

ing an automatic speech recognizer (ASR). Then, the intent

of the speaker is identified from the recognized sequence,

using a spoken language understanding (SLU) component.

This step can be framed as a classification problem for call

routing systems [1, 2, among others]. For example, if the

user says “I would like to know my account balance”, then

the corresponding intent or semantic label (call-type) would

be “Request(Balance)”, and the action would be prompt-

ing the user’s balance, after getting the account number, or

transferring the user to the billing department.

For each utterance in the dialog, SLU returns a call-

type associated with a confidence score. If the SLU confi-

dence score is more than the confirmation threshold, the di-

alog manager takes the appropriate action as in the example

above. If the intent is vague, the user is asked a clarification

prompt by the dialog manager. If the SLU is not confident

about the intent, the utterance is either simply rejected by

re-prompting the user (if the confidence score is less than

the rejection threshold) or a confirmation prompt is played

(if the SLU confidence score is in between confirmation and

rejection thresholds).

It is clear that SLU confidence score is critical for the

spoken dialog management. On the other hand, relying

solely on SLU confidence scores for determining the dia-

log strategy is suboptimal, because of several reasons. First

of all, with spontaneous telephone speech, the typical word

error rate (WER) for ASR output is around 25-30%; in

other words, one in every three to four words is misrecog-

nized [3, 4]. Misrecognizing a word may result in misunder-

standing the whole utterance, even though all other words

are correct, such as misrecognizing the word “balance” in

the utterance above. Second, SLU confidence scores may

depend on the estimated call-type and other utterance fea-

tures such as the length of utterance in words, or contextual

features, such as the previous prompt played.

In the literature, there is a large number of studies on

ASR confidence score estimation using acoustic and lin-

guistic features. Our aim is to detect SLU errors due to

noisy ASR output or other reasons, and prevent further

problems that may result due to these errors with the help of

these confidence scores. In addition to the SLU confidence

score, we compute stationary and time-varying quantity of

noise, and ASR lattice-based confidence scores which are

obtained from acoustic and language models. We have used

various ways of combining these information sources, such

as logistic regression and decision trees, with the aim of de-

tecting the correctly interpreted utterances.

Combining multiple information sources for error detec-

tion in spoken dialog systems includes the following work:

Langkilde et al. [5] used various features like the recognized

utterances, their length, confidence scores of call-types,

prompts, type of the prompts, etc. in order to find problem-

atic dialogs. Our approach is very similar to this, however,

instead of finding problematic dialogs, we search for prob-

lematic utterances on-line, and help the dialog manager to

take the appropriate action during the dialog. An additional

difference, is that, we also utilize ASR and signal-noise re-
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lated features when making the decision. Hazen et al. also

exploited ASR confidence scores and other utterance related

features, like the hypothesized number of words, to reject

utterances [6]. However, they did not consider the SLU

confidence scores or dialog level features. Moreover, they

made a binary decision of rejection and acceptance, ignor-

ing confirmations. Raymond et al. combined the confidence

scores obtained from the acoustic model, language model,

and semantic model for better spoken language understand-

ing via re-scoring the semantic � -best hypotheses [7]. Our

previous work focused on using word confidence scores to

improve the decision of various classifiers [8], and improv-

ing the SLU confidence scores using logistic regression with

utterance related features [9].

In the next section, we describe the computation of the

confidence scores we have employed, and how we improve

dialog strategies by combining these with other features.

Then we present experimental results on AT&T Spoken Di-

alog System for customer care applications.

2. APPROACH

In spoken dialog systems, once the utterance is recognized,

spoken language understanding examines each utterance,�� � � � 	 � � 	 � � � 	 � � , and assigns the utterance an intent (or

a call-type),
�� � �� � , as well as a confidence score, � � �� � , ob-

tained from the semantic classifier. This score is used to

guide the dialog strategies. If the intent is not vague and the

score is higher than some threshold � � (that is, � � �� � � � � ),

then the decision is accepted by the dialog manager, and the

appropriate action is taken. If the score is lower than an-

other threshold � � (that is, � � �� � � � � ), then the utterance is

rejected, and the user is re-prompted. If the score is in be-

tween the two thresholds (that is, � � � � � �� � � � � ), then the

user is asked a confirmation question to verify the estimated

intent. These thresholds are selected to optimize the spoken

dialog performance.

In order to be more robust to ASR errors, and im-

prove acceptance, confirmation and rejection strategies dur-

ing spoken dialog processing, we propose combining ASR

lattice-based, and semantic confidence scores and stationary

and time-varying quantity of noise. Note that it is straight-

forward to augment this set with dialog level features (such

as turn number), utterance level features (such as utterance

length in words), prosodic features, other semantic level

features (such as the top scoring intent), etc. In this work

we have only focused on the errors due to ASR.

2.1. Stationary and Time-Varying Quantity of Noise

The stationary quantity of noise in each utterance is mea-
sured as a signal-to-noise ratio (SNR), where signal and
noise powers are estimated by detecting background noise.
In this paper, the noise detection is through forced align-
ment, either by preserving the state segmentations during

recognition, or by performing forced alignment with recog-
nized transcriptions [10]. Let � � � � be the identifier for the� ! # analysis frame of a given utterance, where � � � � � &
indicates that the � ! # frame belongs to the speech interval,
and � � � � � * indicates that the � ! # frame belongs to the
silent interval. If the number of frames for the utterance is+

, the average log energy for the speech intervals, , . , is
given by: / 0 1 23 56 7 9 ; = ? A

5B
6 7 9 C = ? A E F G 6 I 7 9

where K � � � is the log energy of the � ! # frame, which is

defined as & * M N O � Q S U V W � X � � Y � where [ is the number of
samples in a frame and X � Y � is a sample value. Similarly, the
average log energy for the silent intervals, [ . , is computed
by: ^ 0 1 2_ a 3 56 7 9 ; = ? A

5B
6 7 9 C = ? A E F G 6 I 7 c

As a result, the stationary SNR measurement for the utter-

ance is estimated as the difference between the average log

energies of speech and silent intervals: , [ e � , . h [ . �
The stationary SNR measurement does not reflect the lo-

cal characteristics of environmental noise and in many cases
such measurements can be very misleading. For example,
although the utterance is with high SNR, the average SNR
measurement would be low due to the highly non-stationary
noise signal in the last part of that utterance. Tracking such
non-stationarities is essential for providing a more accurate
SNR measurement. A non-stationary measure to quantify
the variation of SNR along an utterance, which is referred
to as non-stationary SNR (NSNR). NSNR is defined as the
standard deviation of noise power normalized by the aver-
age signal power, and computed by:^ / ^ k 1 = 2_ a 3 56 7 9 ; = ? A

5B
6 7 9 =

/ 0 a C = ? A A n E F G 6 I 7 c a / ^ k n A rs
NSNR, which is measured in dB, becomes smaller when

the average of the frame-dependent SNR, defined by ( , . hK � � � ), approaches the SNR measurement. This implies that

smaller variations in the noise characteristics among differ-

ent frames would result in low measurement of NSNR.

2.2. ASR Lattice-Based Scores

In order to capture the scores obtained from acoustic and

language models, we compute word posterior probabilities

for each word � v , of each utterance from the lattice output

of ASR, where w � & 	 � � � 	 � . We use these posterior prob-

abilities as word confidence scores � X v for each word � v .

We use the word confidence scores � X v to assign an ASR

score to the utterance, � � �� � � | � � X � 	 � � � 	 � X � � where | is

the arithmetic mean function.

The algorithm for computing word confidence scores is

based on the pivot alignment for strings in the word lattice.

A detailed explanation of this algorithm and the compari-

son of its performance with other approaches is presented

in [11].

I - 1042

➡ ➡



2.3. Semantic Scores

In AT&T spoken dialog system, the goal of the SLU unit is
understanding the intent of the user, which can be framed
as a classification problem [1]. Given a set of examples� � � � � 	 �  	 � � � � � � � � � �  � � � , the problem is to associate
each instance � � � �

into a target label  � � "
, where

"
is a finite set of call-types that are compiled automatically
or semi-automatically from the data. However, it is often
useful to associate some confidence score to each of the
classes. In this work, we have employed a discriminative
classifier, namely Boostexter [12]. This is an implemen-
tation of the AdaBoost algorithm, which iteratively learns
simple weak base classifiers [13]. Friedman et al. have sug-
gested a method for converting the output of AdaBoost to
confidence scores using a logistic function [14]:#

$ & ' & ) + , . 0 ' 1$ 1 3 5 7 8 : ; < > ? @ A C D 0
where E �  F � � � � is the weighted average score of the base

classifiers produced by AdaBoost for utterance � �
and call-

type  F . Then the SLU score for � �
is computed using the

following equation: H � I � K M O P R ? S �  �  F V � � � .

2.4. Combining Scores

We have converted the problem of estimating a better confi-

dence score for each utterance into a classification problem,

where we try to find a function to combine multiple fea-

tures, and estimate a new score. For this purpose, we have

employed logistic regression and decision trees and used the

individual scores computed for the utterance as features.

3. EXPERIMENTS AND RESULTS

3.1. Data

We used AT&T How May I Help You spoken dialog system

for automated customer care, in order to test our approach.

There are 84 unique call-types in this application, and the

test set call-type perplexity, computed using the prior call-

type distribution estimated from the training data, is 32.64.

We split the data into three sets: training set, development

set, and test set. The first set is used for training the ASR

language model and SLU model, which are then used to

recognize and classify the other two sets. We used an off-

the shelf acoustic model. The development set is used to

estimate the parameters of the score combination function.

We show our results on the test set. Some properties of these

data sets are given in Table 1. SLU accuracy (SLU Acc.) is

the percentage of utterances, whose top-scoring call-type is

among the true call-types. The top-scoring call-type of an

utterance, is the call-type that is given the highest score by

the classifier. The true call-types are the call-types assigned

by human labelers to each utterance.

In order to simulate the effect of this approach in a de-

ployed application, we selected the test set from the latest

Training Dev. Test
Set Set Set

No. of utterances 9,094 5,171 6,296

ASR Word Acc. - 68.8% 70.2%

SLU Acc. (ASR) - 65.65% 62.81%

SLU Acc. (Trans.) 75.22% 71.68%

Table 1. Some properties of the training, development and

test data used in the experiments.
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Fig. 1. The SLU accuracy for ASR and SLU confidence

score bins. The color of each rectangle shows the SLU ac-

curacy in that bin, and the size of each rectangle corresponds

to the number of examples in that bin.

days of data collection, therefore there is a mismatch in the

performance of ASR and SLU on the two test sets. When

we examined the data, we noticed a difference in the distri-

bution of the call-types, due to changes in customer traffic.

3.2. Evaluation Results

In order to check the feasibility of improving the accuracy

of accepted utterances, we first plotted the SLU accuracy for

various ASR lattice-based and semantic confidence score

bins. Figure 1 shows the 4-dimensional plot for these bins,

where W -axis is the lattice-based confidence score bin, X -

axis is the semantic confidence score bin. The color of each

rectangle, corresponding to these bins, shows the SLU ac-

curacy in that bin, and the size of each rectangle is propor-

tional to the number of examples in that bin. As can be seen

from this plot, when the two scores are high, SLU accu-

racy is also high, when both of them are low, SLU accuracy

is also low. But when the lattice-based confidence score is

low, SLU accuracy is also low, even though SLU score is

high. This figure proves that SLU score alone is not enough

to determine the accuracy of the estimated intent.
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Fig. 2. The accuracy of accepted utterances, where the new

score is used to accept utterances.

Using logistic regression, we have got the normalized

coefficients presented in Table 2. This can be considered as

another indicator of the importance of each of the features

for the SLU error detection task.

Const ASR SLU SNR NSNR Length

-4.957 4.516 2.531 -3.219 0.374 -0.341

Table 2. Normalized coefficients of the logistic regression.

Figure 2 presents the results of our experiments for com-

bining multiple information sources. The � -axis is the per-

centage of the accepted utterances, and the � -axis is the per-

centage of utterances that are correctly classified. The base-

line is using only the SLU scores for this purpose, and the

upper bound is the cheating experiment, where we first re-

ject all the erroneously classified utterances, by comparing

them with their true call-types. As another upper bound,

we have used the manual transcription of each utterance,

and used only the SLU confidence score. Both methods

for combining features with SLU confidence scores helped

improving the accuracy of the accepted utterances. Due

to the decision tree we have trained, the points until 40%

acceptance rate is unaccessible. One impressive results is

obtained using logistic regression for an acceptance rate of

5%. The rejection error rate has decreased 80% from around

10% to only 2%. Then this improvement vanishes as the ac-

ceptance rate increases as expected.

4. CONCLUSIONS

We have presented an approach for combining signal-noise,

ASR and SLU confidence scores to detect understanding er-

rors and prevention of these by rejecting erroneous utter-

ances, or asking confirmation questions. We have evaluated

this approach using a deployed AT&T Spoken Dialog Sys-

tem for a customer care application and have shown up to

80% relative decrease in the error rate of the accepted ut-

terances. As a future work, we would like to extend the set

of features to include prosodic, dialog and utterance level

features.
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