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Abstract. The multi-view video is a collection of multiple videos, cap-
turing the same scene at different viewpoints. If we acquire multi-view
videos from multiple cameras, it is possible to generate scenes at arbi-
trary view positions. It means that users can change their viewpoints
freely and can feel visible depth with view interaction. Therefore, the
multi-view video can be used in a variety of applications including three-
dimensional TV (3DTV), free viewpoint TV, and immersive broadcast-
ing. However, since the data size of the multi-view video linearly increases
as the number of cameras, it is necessary to develop an effective frame-
work to represent, process, and display multi-view video data. In this pa-
per, we propose inter-camera coding methods of multi-view video using
layered depth image (LDI) representation. The proposed methods rep-
resents various information included in multi-view video hierarchically
based on LDI. In addition, we reduce a large amount of multi-view video
data to a manageable size by exploiting spatial redundancies among mul-
tiple videos and reconstruct the original multiple viewpoints successfully
from the constructed LDI.

Keywords: multi-view video coding, layered depth image, MPEG.

1 Introduction

The multi-view video is a collection of multiple videos capturing the same scene
at different camera locations. If we acquire multi-view videos from multiple cam-
eras, it is possible to generate video scenes from any viewpoints, which means
that users can change their views within the range of captured videos and can feel
the visible depth with view interaction. The multi-view video can be used in a
variety of applications including free viewpoint video (FVV), free viewpoint TV
(FTV), three-dimensional TV (3DTV), surveillance, and home entertainment.

Although the multi-view video has much potential for a variety of applications,
one big problem is a huge amount of data. In principle, the multi-view video data
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are increasing linearly as the number of cameras; therefore, we need to encode
the multi-view video data for efficient storage and transmission. Hence, it has
been perceived that multi-view video coding (MVC) is a key technology to realize
those applications.

ISO/IEC JTC1/SC29/WG11 Moving Picture Experts Group (MPEG) has
been recognized the importance of MVC technologies, and an ad hoc group
(AHG) on 3-D audio and visual (3DAV) has been established since Decem-
ber 2001. Four main exploration experiments (EE) on 3DAV were performed
from 2002 to 2004: EE1 on omni-directional video, EE2 on FTV, EE3 on cod-
ing of stereoscopic video using multiple auxiliary components (MAC), and EE4
on depth/disparity coding for 3DTV and intermediate view interpolation. In
response to the Call for Comments issued in October 2003, a number of compa-
nies have expressed their interests for a standard that enables FTV and 3DTV.
After MPEG called interested parties to bring evidences on MVC technologies
in October 2004 [1], some evidences were recognized in January 2005 [2] and a
Call for Proposals (CfP) on MVC has been issued in July 2005 [3]. Then, the
responses to the CfP has been evaluated in January 2006 [4].

In this paper, we propose representation and inter-camera coding methods
of multi-view video using the concept of layered depth image (LDI) [5], which
is an efficient image-based rendering (IBR) technique. Based on the proposed
framework [6], we generate LDI frames from the natural multi-view video, which
is different from the previous LDI generation methods mainly using 3-D synthetic
objects. We also describe coding methods for the number of layer (NOL) and
residual data of the constructed LDI.

The paper is organized as follows. In Section 2, we review our framework
[6] for representing multi-view video and explain the generation procedure of
LDI from the natural multi-view video. Then, we describe encoding methods of
NOL and residual data in Section 3. After experimental results and analysis are
presented in Section 4, we draw conclusions in Section 5.

2 Representation of Multi-view Video Based on LDI

An important aim of the multi-view video is to provide view-dependant scenes
from the pre-captured multiple videos. This goal is similar to the functionality
of image-based rendering (IBR) techniques; the novel view generation using 2-D
input images.

Traditionally, IBR has been mainly applied to static objects, architectures,
and sceneries. However, there have been several approaches to extend it to the
dynamic scenes [7], which are called video-based rendering. Kanade et al. [8]
extract a global surface representation at each time frame using 51 cameras (512
x 512) in a geodesic dome. They tried to construct 3-D objects from captured
images and render them at interactive rate. Matusik et al. [9] use the images
from four calibrated cameras (256 x 256) to compute and shade visual hulls.
They could render 8000 pixels of the visual hull at about 8 fps. Carranza et
al. [10] used seven inward looking synchronized cameras (320 x 240) distributed
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around a room to capture 3D human motion. They used a 3-D human model as
a prior to compute 3D shape at each time frame. Yang et al. [11] designed an 8
x 8 camera array (320 x 240) for capturing dynamic scenes. Instead of storing
and rendering the data, they transmit only the rays necessary to compose the
desired virtual view. In their system, the camera capture rate is 15 fps, and the
interactive viewing rate is 18 fps. In 2004, Zitnick et al. [7] proposed efficient
view interpolation and rendering methods using multiple videos acquired from
eight cameras. However, these approaches are mainly focusing on the real-time
rendering rather than the representation and encoding of a huge amount of input
video data.

Inspired by these ideas, we have proposed a framework for representation and
encoding of multi-view video using the concept of LDI [6]. In our framework,
we have obtained LDI frames from natural multi-view video test sequences by
3-D warping using the given depth images. As the concept of LDI, it is possible
to generate LDI by storing intersecting points with color and depth. However,
this method can only be applied to 3-D computer graphics (CG) models because
rays cannot go through the real object. Therefore, we have exploited multiple
color and depth images to construct LDI for natural scenes [5][6] and have used
the modified LDI data structure [12].

In the previous work [6], the following incremental 3-D warping equation [5]
has been used in the warping stage. When C1 = V1 · P1 · A1, C2 = V2 · P2 · A2,
the transform matrix T1,2 = C2 · C−1

1 . C is a camera matrix, V is the viewport
matrix, P is the projection matrix, and A is the affine matrix.
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where (x1, y1) is the pixel location in C1, z1 is the depth at (x1, y1). (x2, y2) is
the warped pixel location in C2.

However, the problem is that these matrices are designed for 3-D graphics
models; there is no clear definition of them for real scenes or objects. Since the
camera matrix C was only appropriate for 3-D synthetic scenes, we have cal-
culated a new camera matrix from the given camera parameters contained in
multi-view video test sequences. In this paper, we have modified the previous
camera matrix C because it does not properly consider the intrinsic character-
istics of multiple cameras. It has only considered affine transformations of each
camera. The modified camera matrices and the 3-D warping equation are as
follows.

Ċ1 = Ȧ1 · Ė1, Ċ2 = Ȧ2 · Ė2, ˙T1,2 = Ċ2 · ˙C−1
1 (2)
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where fsx , fsy are focal length, sx, sy, are scaling factors, tx, ty, are positions of
the focal center, and θ is the skew angle. Ȧ defines the intrinsic camera parame-
ters and Ė is an affine transform matrix expressing a rotation and a translation.
Finally, we add an additional row to make a homogeneous 4 x 4 camera matrix
Ċ, because Ȧ · Ė becomes a 3 x 4 matrix.

3 Inter-camera Coding of Multi-view Video Using LDI

3.1 Color and Depth Components

After generating LDI frames from the natural multi-view video with depth, we
separate each LDI frame into three components: color, depth, and the number of
layers (NOL). Specifically, color and depth component consists of layer images,
respectively. The maximum number of layer images is the same as the total
number of views. In addition, residual data should be sent to the decoder in order
to reconstruct multi-view images. Color and depth components are processed by
data aggregation/layer filling to apply H.264/AVC. NOL could be considered as
an image containing the number of layers at each pixel location. Since the NOL
information is very important to restore or reconstruct multi-view images from
the decoded LDI, it is encoded by using the H.264/AVC intra mode. Finally, the
residual data, differences between the input multi-view video and reconstructed
ones, are encoded by using the H.264/AVC intra mode.

The data aggregation or layer filling is used in the preprocessing stage [12].
Although H.264/AVC is powerful to encode rectangular images, it does not sup-
port shape-adaptive encoding modes. Therefore, we need to aggregate each layer
image and then fill the empty locations with the last pixel value of the aggregated
image [13]. One problem of the data aggregation is that the resultant images have
severely different color distributions. It leads to poor coding efficiency because
the prediction among aggregated images is difficult.

The second method is called the layer filling. In order to solve the above
problem, we can fill the empty pixel locations of all layer images using pixels in
the first layer. Since the first layer has no empty pixels, we can use same pixels
in the first layer to fill the other layers. This increases the prediction accuracy
of H.264/AVC, therefore data size could be reduced further. We can eliminate
the newly filled pixels in the decoding process because the information of NOL
is sent to the decoder. It is an eight bit gray scale image that each pixel contains
an unsigned integer number representing how many layers there are.

3.2 Coding of Number of Layers (NOL)

For color and depth components, we have applied two kinds of preprocessing
algorithms. Still remaining important data to encode are the NOL and residual
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data. Therefore, we describe a coding method of NOL and an algorithm to reduce
the residual information in this section.

NOL could be considered as an image containing the number of layers at each
pixel location. Figure 1 illustrates an example of the NOL image. Usually, the
maximum number of layers is the same as the number of cameras used to capture
the scene. If we use eight cameras to acquire eight-view video, then the maximum
number of layers is eight. The minimum number of layers is one because there
always exists more than one layer. In other words, there are no empty pixels in
the first layer of LDI.

4 1 4 2 1 4 6 4

6 2 4 4 2 6 2 2

4 4 6 2 4 6 4 2

2 1 4 5 8 5 4 1

4 2 5 7 8 4 3 2

8 4 3 5 3 5 4 2

4 4 8 5 5 5 7 3

2 2 2 3 8 2 3 1

1 2 3 6 5 6 4 2

4 1 4 2 1 4 6 4

6 2 4 4 2 6 2 2

4 4 6 2 4 6 4 2

2 1 4 5 8 5 4 1

4 2 5 7 8 4 3 2

8 4 3 5 3 5 4 2

4 4 8 5 5 5 7 3

2 2 2 3 8 2 3 1

1 2 3 6 5 6 4 2

Fig. 1. An example of the NOL image

The physical meaning of the NOL is that it represents the hierarchical struc-
ture of the constructed LDI in the spatial domain. Assuming the NOL is known,
we can efficiently use empty pixel locations to increase the coherency between
pixels. We can freely change the pixel orders, add dummy pixels in the empty
locations, and remove them after the decoding because we know where those
pixels are.

Since the NOL information is very important to restore or reconstruct multi-
view images from the decoded LDI, it is encoded by using the H.264/AVC intra
mode. However, if we treat the NOL image as a direct input to the codec, we
cannot assure the restoration accuracy. Since the dynamic range of the values
of NOL is small, quantization noises can contaminate the reconstructed values.
Consequently, it is difficult to restore the original NOL image.

In order to solve this problem, we change the dynamic range of the pixel
values of the NOL image by considering both the encoding bits required for the
changed dynamic range and the accuracy of restored NOL value.

α · nMinLayer ≤ α · VNOL ≤ α · nMaxLayer, α(∈ N) ≤ 255/VNOL (5)

where nMinLayer is the minimum number of layers, nMaxLayer is the maximum
number of layers, and α is the scaling factor.
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3.3 Reduction of Residual Information Using Pixel Interpolation

Theoretically, one way of reducing residual data is to reconstruct multi-views
without using the information from the original images. It means that we should
maximally exploit depth pixels (DPs) in back layers of LDI, neighboring pixels
within a layer image, and spatial relationships between multiple images for the
same scene.

In our reconstruction algorithms, there are three steps such as, inverse 3-D
warping, reconstruction without residual information, and reconstruction with
residual information [12]. In order to reduce residual information, we exploit the
neighboring reconstructed images in the second reconstruction stage. We can get
intermediate reconstruction results after applying inverse 3-D warping and depth
ordering of the back layer pixels. As shown in Fig. 2, we can get intermediate
reconstruction results after applying the inverse 3-D warping and depth ordering
of the back layer pixels.

Fig. 2. Reconstruction using back layers: (a) view 0, (b) view 1, (c) view 4, (d) view 7

Our approach is to use the neighboring pixels and reconstructed images for
interpolating empty pixels of the current reconstructed image. There are mainly
two factors influencing the interpolation result: one is spatially located neigh-
boring pixels within the current reconstructed image and the other is temporally
located pixels in neighboring reconstructed images. We define the following equa-
tion to perform the pixel interpolation.

IS(x, y) =
1
k

·
W∑
i=0

W∑
j=0

I(R(i,j)) (6)

IV (x, y) =
N−1∑
n=0

an · I(Rn),
N−1∑
n=0

an = 1 (7)

IE(x, y) = α · IS(x, y) + (1 − α) · IV (x, y), 0 ≤ α ≤ 1 (8)

where IS(x, y), IV (x, y) is the intensity value of the interpolated pixel at the (x,
y) position of the current image, respectively, IE(x, y) is the final interpolated
pixel value, k is the valid number of pixels within a W x W window, an and
α are the weighting factors, N is the number of cameras, and R means the
reconstructed image. These equations are only applied to interpolate the empty
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pixels of the current image. The weighting factors have been determined by
experiments.

Figure 3 shows the reconstruction results after performing the interpolation
using the above equations. We can observe that most holes except left-most and
right-most sides are recovered with much less visual artifacts compared to the
results in Fig. 2.

Fig. 3. Reconstruction results using the pixel interpolation: (a) view 0, (b) view 1, (c)
view 4, (d) view 7

4 Experimental Results and Analysis

In our experiments, we have used the “Breakdancers” sequence provided by
Microsoft Research. It includes a sequence of 100 images captured from eight
cameras; the camera arrangement is 1-D arc with about 20cm horizontal spac-
ing. Depth maps computed by stereo matching algorithms are provided for each
camera together with the camera parameters: intrinsic parameters, barrel dis-
tortion, and rotation matrix. The exact depth range is also given [7][14].

4.1 Generation of LDIs from Natural Multi-view Video

The main part of generating LDI frames from the natural multi-view video is the
incremental 3-D warping. Figure 4 shows the results of 3-D warping using the
modified camera matrices. We can observe that actors are slightly rotating as
the camera number changes. In order to identify the warping results clearly, we
did not interpolate holes. White pixels in each image represent the holes, which
are generated by the 3-D warping. Among eight cameras, the fifth camera is
the reference LDI view and the warping has been performed from other camera
locations to the reference LDI view. When the warping is carried out from the
left cameras (view 0, 1, 2, and 3) to the reference camera (view 4), major holes
are created along the right side of the actors. On the other hand, holes are mainly
distributed in the left side of the actors as the warping is done from the right
cameras (view 5, 6, and 7) to the LDI view.

The generated LDI has several layers and the maximum number of layer is
the same as the camera number. For the test sequence used in our experiments,
each LDI frame can therefore have eight layers in maximum. The layer images
(color components) of the constructed LDI frame with depth threshold 3.0 is
presented in Fig. 5.
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Fig. 4. Results of the incremental 3-D warping: (a) view 0 to view 4, (b) view 1 to
view 4, (c) view 7 to view 4

Fig. 5. Layer images of the first LDI frame: (a) 1st layer; (b) 2nd layer, (c) 3rd layer,
(d) 4th layer, (e) 5th layer, (f) 6th layer, (g) 7th layer, (h) 8th layer

4.2 Inter-camera Coding of Multi-view Video Using LDI

In Table 1, we have compared the data size between the sum of frames of the
test sequence and the generated LDI frame. In Table 1, the sum of frames means
the summation of eight color and depth images of the test sequence without
encoding. Simulcast using H.264/AVC (color + depth) means the summation of
data size calculated by the independent coding of color and depth images.

Table 1 shows the data size by changing the depth threshold value from 0.0
to 5.0, but the data size has not been decreased much as the threshold value is
over 3.0 from the experiments. The depth threshold means the difference among
actual depth values. The given depth range was from 44.0 to 120.0. The size of
NOL data is varying to the encoding condition, mainly by the dynamic range of
NOL and quantization parameters. In addition, the depth threshold could affect
to the size of them. In Table 1, the size of NOL is computed by using the fixed
alpha value of one. From our experiments, about 60 to 70% of the total bitrates
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Table 1. Data size for the “Breakdnacers” sequence [kbytes]

1st 8 Frames 2nd 8 Frames

Sum of frames 25,166 25,166
Simulcast (color+depth) 137.7 132.5

LDI frame (threshold=0.0) 24,520 24,644
Encoded LDI (Layer filling) 71.4 72.9
Number of Layers (NOL) 6.3 6.4

LDI frame (threshold=3.0) 13,924 13,803
Encoded LDI (Layer filling) 48.4 48.2
Number of Layers (NOL) 5.1 5.0

LDI frame (threshold=5.0) 13,808 13,723
Encoded LDI (Layer filling) 46.3 47.0
Number of Layers (NOL) 4.2 4.4

are consumed to encode NOL data as near-lossless fashion and 10% are used for
residual data coding.

Still remaining issues of the LDI-based approach are how to select the proper
back layer pixels to fill out the current pixel location and how to dynami-
cally adjust bitrates per each component, e.g., color, depth, NOL, and residual
data.

5 Conclusions

In this paper, we have described a procedure to generate layered depth images
(LDIs) from the natural multi-view video and encoding methods for the number
of layers (NOL) and residual data. Incremental 3-D warping has been modified
to consider intrinsic characteristics of multiple cameras. For the inter-camera
coding of multi-view video, we have applied two kinds of preprocessing algo-
rithms to encode color and depth components of the constructed LDI based
on our framework. The number of layers (NOL) and residual data are coded
by changing the dynamic range and exploiting pixel interpolation techniques.
We have reduced a large amount of multi-view video data to a manageable size
by combining the proposed encoding techniques and reconstructed the original
multiple viewpoints successfully. Finally, we will investigate temporal prediction
structures of the constructed LDI frames in the future.
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