
A 3D Vision-Based Ambient User Interface

Dongpyo Hong
Woontack Woo

Ubiquitous Computing and Virtual Reality Lab, GIST

This article proposes a 3-dimensional (3D) vision-based ambient user interface as an
interaction metaphor that exploits a user’s personal space and its dynamic gestures. In
human–computer interaction, to provide natural interactions with a system, a user in-
terface should not be a bulky or complicated device. In this regard, the proposed ambi-
ent user interface utilizes an invisible personal space to remove cumbersome devices
where the invisible personal space is virtually augmented through exploiting 3D vi-
sion techniques. For natural interactions with the user’s dynamic gestures, the user of
interest is extracted from the image sequences by the proposed user segmentation
method. This method can retrieve 3D information from the segmented user image
through 3D vision techniques and a multiview camera. With the retrieved 3D informa-
tion of the user, a set of 3D boxes (SpaceSensor) can be constructed and augmented
around the user; then the user can interact with the system by touching the augmented
SpaceSensor. In the user’s dynamic gesture tracking, the computational complexity of
SpaceSensor is relatively lower than that of conventional 2-dimensional vision-based
gesture tracking techniques, because the touched positions of SpaceSensor are
tracked. According to the experimental results, the proposed ambient user interface
can be applied to various systems that require real-time user’s dynamic gestures for
their interactions both in real and virtual environments.

1. INTRODUCTION

With the rapid progress of technologies in the computers and communications
fields, future computing environments will provide users with a large volume of
information and services. In such computing environments, users will be able to re-
ceive just-in-time services from any (invisible) computer, anytime and anywhere,
due to ubiquitous computers and pervasive networking (Dey, Salber, & Abowd,
1999; Shafer et al., 2000; Weiser, 1991). Eventually, users will request more natural
and comfortable user interfaces to interact seamlessly with computing environ-
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ments. Through such interfaces, users can exploit their intentions or emotions
when they want personalized services.

In spite of the great demand of natural and comfortable user interfaces, conven-
tional user interfaces such as the keyboard and the mouse still remain very limited
with regard to expressing the user’s intentions or emotions. In virtual reality appli-
cations, for example, most systems still make participants use two-dimensional
(2D) user interfaces even though the systems can support three-dimensional (3D)
interactions. In this regard, new types of user interfaces have been introduced to
overcome the limitations of 2D user interfaces in the last few decades. For example,
eye-gaze tracking, gestures, voice, and even haptic user interfaces have drawn
public attention because of the expectation of replacing conventional user inter-
faces with more natural and seamless ones (Freeman et al., 1998; Hayward, 2001;
Maes, Darrell, Blumberg, & Pentland, 1995; Park, Lee, & Kim, 2002). However,
these types of user interfaces are still complicated or bulky when the user is en-
gaged in interacting with a system, because the user has to wear a data glove or mo-
tion tracking equipment (VRLOGIC Co., 2004). To compensate for these obstacles,
many researchers have been exploiting vision techniques. The advantages of a vi-
sion-based user interface over other interfaces are its relatively easier calibration
and more natural interactions with the systems by removing obtrusive devices.

In general, vision-based user interfaces are categorized into two types (Woo,
Kim, Wong, & Tadenuma, 2001). One type is the contact vision-based user inter-
face, which generally exploits markers worn by the user (Billinghurst & Kato,
1999). The other is the noncontact vision-based user interface, which generally ex-
ploits dynamic gesture tracking techniques (Ebihara et al., 1998; Haritaoglu et al.,
1998). In the contact vision-based user interface, we can extract information of in-
terest from tracking markers, which is simple and easy. However, there are several
drawbacks in marker-based tracking techniques. When markers are occluded or
when multiple markers are used, it is difficult to track them robustly and correctly.
Furthermore, marker-based user interfaces require a user to wear markers or carry
marker-attached objects. The noncontact vision-based user interface overcomes
these limitations by removing distracting wires and markers. Although the
noncontact vision-based user interface has many advantages, it is still vulnerable
to various environmental conditions such as interference from lighting sources,
casting shadows on the user, and so on. To resolve these restrictions, many vision
algorithms have been developed, such as background subtractions, which can ex-
tract information robustly regardless of environmental changes (Elgammal,
Duraiswami, Harwood, & Davis, 2002; Elgammal, Harwood, & Davis, 2000;
Horprasert, Harwood, & Davis, 1999). Meanwhile, the previous vision-based dy-
namic gesture tracking techniques have been used in simple applications like
hand-movement tracking, because they are relatively complicated and their com-
putational complexity is comparatively higher to compute 3D information from 2D
vision techniques (Freeman & Weissman, 1995; Kohler, 1997; Lenman, Bretzner, &
Thuresson, 2000; Nishikawa, Ohnishi, & Miyazaki, 1998). Consequently, we be-
lieve that another technique is required to compensate complexity of dynamic ges-
ture tracking for natural user interactions.

In this article, we propose a 3D vision-based ambient user interface as an interac-
tion metaphor that exploits the user’s personal space and their dynamic gestures. To
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exploit the gestures in interactions, we need 3D information of the user, which is ex-
tracted from a sequence of acquired images, and a gesture-tracking method. In re-
trieving 3D information of the user, we exploit the proposed user segmentation
method, which takes advantages of RGB and normalized RGB color space (Hong &
Woo, 2003). Because of the proposed user segmentation method, we do not have to
use special facilities or devices to segment the user from the given background, like a
blue screen or chroma-keying device. In addition, we can retrieve 3D information
from the segmented user image because we utilize a multiview camera. In tracking
the user’s dynamic gestures, we construct a set of invisible 3D boxes and augment it
around the user dynamically based on 3D information of the user. This set of 3D
boxes is called SpaceSensor. Consequently, the user can interact with the system by
touching the augmented SpaceSensor. Regarding the user’s dynamic gesture track-
ing, the computational complexity of SpaceSensor is relatively lower than that of
conventional 2D vision-based gesture tracking techniques, because we do not have
to calculate 3D information additionally from the segmented images. In particular,
we adopt the concept of “Ambient Media” in Ishii’s “Tangible Bit” in the proposed
ambientuser interfaceandexploitair (orspace)as themediumfor theuser to interact
with a system (Ishii & Ullmer, 1997). Therefore, we expect that the proposed ambient
user interface enhances naturalness while it removes the cumbersome devices.

This article is organized as follows. In section 2, we explain the key components
of the proposed techniques (i.e., user segmentation algorithm, design of
SpaceSensor and dynamic gesture tracking). Experimental results and some appli-
cations are shown in section 3. Discussion and future works follow in section 4.

2. SpaceSensor: 3D VISION-BASED AMBIENT USER INTERFACE

2.1. User Segmentation

The general background subtraction technique is to subtract a current image from
the reference image. Although various cues (color, motion, block, etc.) are utilized
in many studies, the proposed method exploits the characteristics of the pixel’s
color values in the well-known two color spaces (RGB and normalized RGB). In ad-
dition, we need to determine the optimal threshold values in the background sub-
traction techniques.

In the proposed method, we train the background images in RGB and normal-
ized RGB color space, respectively. Then, we can evaluate the mean and standard
deviation at pixel i’s (R,G,B) color channels in the reference image during the back-
ground training. Each pixel of the reference image is modeled as follows:

where Rfi is the tuple of reference image. µi and σi are the vector of the mean and
standard deviation of pixel i’s color channels in RGB color space. µi and σi are the
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vector of the mean and standard deviation of pixel i’s color channels in the normal-
ized RGB color space. Ii and Ii is the intensity of each pixel in RGB color and normal-
ized RGB color space, respectively.

The following equations show how to compute the vector of the mean and stan-
dard deviation at pixel i in RGB and normalized RGB color space.

where N is the number of trained images.
When we observe the variations of pixels in the image of a static background

scene, they are easily modeled as a Gaussian distribution. From this observation,
the threshold value of pixel i is mapped by function of standard deviation of pixel i.

where Thi and is threshold values of pixel i in RGB and normalized RGB color
space, respectively. The determinant constants α and β determine the confidence
interval.

In the proposed method, we show how to effectively use the determined thresh-
old values to subtract the user from a background scene. Equations 5 and 6 are the de-
terminant functions that compare the color channels differences of pixel i and the de-
termined threshold values in RGB and normalized RGB color space, respectively.

where . . Fi(0 ≤ Fi ≤ 3) and fi(0 ≤ fi ≤ 3) are the
determinant functions that characterize pixel i in each color space and c is the num-
ber of channels. Here, u is a unit step function, and it has either 0 or 1. Each of Di

and is the vector difference between current image and reference image at pixel
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i in RGB color space and normalized RGB color space, respectively. Thus, if Di > Thi,
then it is 1. Otherwise, it is 0.

Using Equations 5 and 6, we can determine pixel i as follows.

.

where B is the background image and Bs is the background image with cast shad-
ows. Hs is the segmented user image with shadows, and H is the segmented user
image without shadows. c1 and c2 are the numbers of color channels. In RGB and
normalized RGB color space, its range is 0 ≤ c1 ≤ 3 and 0 ≤ c2 ≤3, respectively.

As shown in Figure 1, each stage has two steps in the proposed method. In the
first stage, we train background images and make the reference image in RGB and
normalized RGB color space, respectively. Then in the second stage, we subtract the
current image from the reference image in each color space. In training background
scenes, we model background using Equation 1 and determine the threshold at
pixel i through Equation 4. After background modeling is done in each color space,
we separate the user with the cast shadows from the background scene in RGB
color space using Equation 5. After quantizing the image as a binary map, it can be
used as mask image in normalized RGB color space. When we apply the mask im-
age into the reference image and current image in normalized RGB color space at
the same time, we simply discard the cast shadows from the user, because shadows
have only effects on luminance. Through these two stages, we can easily achieve
the user image (H) without cast shadows.

3-D Vision-Based Ambient User Interface 275

� ��
�
�
� � ���

� �
� ��
�
� � ����

2

2

:
: 0

(8)
:
: 0

i i

s i i
i s i

i

B F c

H F c
Obj

B f c

H f c

FIGURE 1 The proposed background subtraction.



2.2. Design of SpaceSensor

In human–computer interaction, a natural user interface is an important compo-
nent of an interactive system. In the proposed user interface, we exploit the user’s
dynamic gestures as an interaction metaphor. In general, however, it requires in-
tensive computational power and complicated algorithm to process 3D dynamic
gestures when a vision technique is exploited. Therefore, we adopt a set of 3D
box-based invisible virtual sensors, SpaceSensor, which improves the efficiency of
tracking the user’s dynamic gestures while maintaining its simplicity.

For the design of SpaceSensor, we need to acquire the segmented information as
well as the depth information of the user. The design of the proposed SpaceSensor is
focused on tracking natural movements by making it dynamically augmented
around the user instead of fixing it at a certain location (Woo et al., 2001). Further-
more, it is augmented into a reachable space from the movements of the user to track
their gestures as accurately as possible. To implement the proposed SpaceSensor, we
calculate the center position of the user (Hc = {Hx, Hy, Hz}) as follows:

where Segmented User Depth information, SUDj, represents the 3D points and Nj

is the number of 3D points in each coordinate within the segmented user’s dispar-
ity map image. From Equation 9, we can compute requisite parameters for the im-
plementation of SpaceSensor as the following equation:

where SSwidth, SSheight, and SSdepth represent width, height, and depth of SpaceSensor
which is based on the user’s center point, respectively. and
represent the top and bottom points of regions being occupied by the user, respec-
tively. Equation 10 is based on “Leonardo da Vinci: The Vitruvian man” (Morphvs,
2004). From Equation 9 and 10, the proposed SpaceSensor is augmented around the
user as shown in Figure 2.

In our design of SpaceSensor, we allocate eight invisible 3D box-based virtual
sensors around the personal space. The more 3D box-based sensors, the more accu-
rate the tracking of movement will be. However, there is a trade-off between accu-
racy and computational complexity of processing the users’ dynamic gestures be-
cause the increased latency or time delay caused by an increased number of boxes
will distract the users when they interact with the system. This allocation of
SpaceSensor is based on the height of the segmented user. We determined that
eight 3D virtual boxes are enough to track the user’s dynamic gestures in a 3D
space.
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2.3. Dynamic Gesture Tracking

As explained in the previous subsections, the proposed gesture-tracking technique
is simple but accurate. With regard to keeping the tracking technique as simple as
possible, we created eight different regions in SpaceSensor, in which each region
has its state. The state of SpaceSensor can be represented by SS = {ss0, ss1, …, ssN},
where N denotes the number of 3D box-based virtual sensors. The state of the i-th
box, ssi, is denoted by 1 or 0, where 1 indicates that the user is touching the box
when the i-th box is observed and 0 indicates that the user is not touching the box.
Unlike other vision-based approaches, we keep only the state of SpaceSensor, SS, to
track dynamic gestures rather than keep tracking the movement of the user’s body
parts such as arms, legs, feet, and torso.

As shown in Figure 2, SS{0,…,7} represents the regions of SpaceSensor that cover
the user’s personal space sufficiently. Through the sequence of states of SS{0,...,7}, a
user is able to manipulate virtual objects directly for explicit interactions as well as
make gestures for implicit interactions. When a user touches one of eight 3D boxes,
its state is changed to 1, and the touched position is calculated as follows:

where P(x,y,z) represents the touched position in SpaceSensor. Nx, Ny, and Nz are
the number of touched points in SpaceSensor.

Figure 3 shows the measurement of the touched position in SpaceSensor. Given
the segmented user with the depth information and SpaceSensor, gestures can be
tracked by observing how the touched position moves through SpaceSensor. The
proposed SpaceSensor is able to track the user’s gestures as well as extract addi-
tional information using a combination of states of SpaceSensor in real time. For ex-
ample, the proposed user interface could be applied in determining the move-
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FIGURE 2 Allocation of SpaceSensor.
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ments of the user (Speed), the usage of the personalized space (Large or Small), the
weight of movements (Acceleration), and so on. Therefore, the proposed
SpaceSensor can be employed as a new type of user interface in a virtual environ-
ment without distracting the user.

3. EXPERIMENTAL RESULTS

For the proposed user interface, we utilize the commercially available imaging de-
vice, DigiclopsTM, and Intel® XeonTM CPU 2.80GHz with 2GB RAM (Point Grey
Research Inc., 2002). With this experimental setup, we are able to acquire image se-
quences in 320 × 240 size with up to 25 fps. Figure 4 shows the experimental config-
uration to measure the accuracy of SpaceSensor.

As shown in Figure 4, we measure the distance of the two known points (0.25 m)
from the acquired disparity map to calculate the error bounds. When the multiview
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FIGURE 3 Position mea-
surement of SpaceSensor.

FIGURE 4 Experimental configuration for SpaceSensor’s accuracy.



camera is positioned at 2 m to about 5 m, the minimum and maximum errors are
from 0.02 to 0.07 m. It is reasonable to apply SpaceSensor into interactive systems
that require large motions of the users. As we indicated in the previous sections, the
accuracy of SpaceSensor is directly proportional to the accuracy of segmentation
and disparity map.

In general, the higher the resolution of image size, the more information we are
able to extract. However, high-resolution images require not only more computa-
tional power but also the loss of real time. Thus, we selected relatively low resolu-
tion (320 × 240) of image to guarantee real-time user interactions. Table 1 shows the
frame rate according to the applied algorithms.

As shown in Table 1, the proposed user segmentation algorithm is adequate to
be applied into real-time applications because it uses only 1/23 seconds or 1/12
seconds to separate the user from the given image sequences.

In fact, it is hard to extract the 3D information of the user directly from the dis-
parity image acquired by a multiview camera. This disparity image includes not
only the user but also information about background or other objects. Figure 5
shows the results of the proposed user segmentation method.

As shown in Figure 5c, we can extract accurate 3D information of the user of in-
terest if we exploit both the segmented user image and the disparity image.

Figure 6 shows the dynamic augmentation of SpaceSensor around a user. As
shown in this figure, we projected the 3D information of the segmented user in the
virtual 3D space to show whether the invisible virtual sensors are accurately allo-
cated around the user. As a result of the augmentation, SpaceSensor can change its
shape dynamically using the requisite parameters, for example, shrinking and
growing SpaceSensor itself. These parameters are automatically calculated in real
time. In this regard, the proposed user interface is able to interpret the movements
or gestures of the user as values. For example, the volume of SpaceSensor in Figure

3-D Vision-Based Ambient User Interface 279

Table 1: Processing Result of the Proposed Algorithm

Image Size Step in the Proposed Algorithm Frame Per Sec.

320 × 240 Acquiring live images 25
320 × 240 Acquiring disparity images 14–15
320 × 240 Applying user segmentation algorithm with disparity images 12–13
320 × 240 Applying user segmentation algorithm with live images 23–24

FIGURE 5 Extraction 3D information of the user.



6a is larger than Figure 6b, thus we can assume that the user in the pose of Figure 6a
is more active compared to the user in Figure 6b.

Figure 7 depicts the top view of the augmented SpaceSensor. As shown in this
figure, we can determine the center position of the user approximately even though
the depth information is only computed for objects that are located at the closest
position to the camera. Thus, the proposed method cannot retrieve full 3D informa-
tion of the user, but exploits full 3D information when the user interacts with the
proposed user interface.

Figure 8 shows the experimental results of detecting the touched positions in
SpaceSensor and tracking gestures. As shown in this figure, the 3D information of
touched positions is calculated by using Equation 3 when the user touches one of
the areas of SpaceSensor. As explained in the previous section, we trace the trajec-
tory of the touched positions to track the user’s gestures. The result indicates that
SpaceSensor is able to track gestures in any direction around the user. However, in
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FIGURE 6 Augmentation of SpaceSensor around a user.

FIGURE 7 Top view of
SpaceSensor.



our current scheme, a user must touch certain regions of SpaceSensor to track ges-
tures continuously. Currently, we let the hand position be (0,0,0) when there is no
collision with SpaceSensor .

To show the effectiveness of the proposed user interface, we have applied it into
real environments and virtual environments, respectively. Figure 8 shows how a
user controls a home appliance with his or her gestures.

As shown in Figure 9, the red circle indicates a multiview camera. In this appli-
cation, SpaceSensor enables the user to play, play forward, and play backward
movies through the user’s gestures. In addition, the user is able to control the level
of sound.

As a user interface of virtual environments, we also apply SpaceSensor into an
interactive virtual reality system, in which users are able to experience the interac-
tive expressions and share their experiences over the network in real time. Figure
10 depicts the users’ interacting with either virtual objects or each other in a virtual
space using the proposed user interface, SpaceSensor.

As shown in Figure 10a, there are several background scenes in the virtual envi-
ronment that are changeable by the users’ interactions. Through the experiments,
the participants are able to express their intentions interactively in real time over
the network. In the explicit interactions, however, it is difficult for them to scratch
the hidden layer on the virtual object due to the restrictions in the accuracy of
SpaceSensor. Therefore, we need to improve the collision detection algorithm and
accuracy of SpaceSensor to provide interactive expressions.
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FIGURE 8 Tracking and detection of SpaceSensor.

FIGURE 9 Control Movie Player using SpaceSensor.



4. CONCLUSION AND FUTURE WORK

In this article, we proposed a 3D vision-based ambient user interface that enables a
user to interact with a system by tracking the user’s dynamic gestures in real time.
The proposed ambient user interface is an expansion of interaction metaphors as
well as interface metaphors in the conventional computing environment. As tested
in various applications, SpaceSensor can be exploited as a user interface in various
systems because it tracks a user’s real-time gestures without distracting the user.
Furthermore, it not only overcomes some restrictions of 2D vision-based user inter-
faces but also resolves the complexity of real-time gesture-tracking algorithms.
Eventually, we can utilize SpaceSensor to extract various key features from the
user’s dynamic gestures such as uses of personal space, activities in the personal
space, and emotional cues. If various analytical methods of the extracted key fea-
tures are possible, then the proposed ambient user interface can also be used as a
personalized user interface. However, the proposed ambient user interface is as yet
dependent on both the robustness of user segmentation technique and the accu-
racy of disparity estimation due to its pixel-wise computation algorithm. There-
fore, we need to investigate both the user segmentation technique and disparity es-
timation method at the same time.
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