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ABSTRACT 
 

In this paper, we propose an active shape image segmentation 
method for three-dimensional (3-D) medical images. The ap-
proach consists of a generation method of a 3-D shape model 
and a segmentation method using a scale model. The 3-D shape 
generation method uses a tetrahedron algorithm for landmarking 
based on the view of geometry. After generating the 3-D model, 
we extend the shape model training and gray-level model train-
ing of two-dimensional (2-D) active shape models (ASMs). We 
use the integrated modeling process with scale and gray-level 
models for the appearance profile to represent local structure. 
Scale models are more compact, have more information in the 
region close to boundary, and have less information in the region 
far away from the boundary. Therefore, a scale can be consid-
ered as a weighting factor. Experimental results are comparable 
to those of manual tracing by the radiologist and 2-D ASMs, and 
demonstrate that this algorithm is effective for the semi-
automatic segmentation method of livers. 

 
Keywords : Active shape image segmentation, 3-D model genera-
tion, liver segmentation 
 

1. INTRODUCTION 
 
Biomedical images usually contain complex objects, which 
will vary in appearance significantly from one image to an-
other. Attempting to measure or detect the presence of par-
ticular structures in such images can be a daunting task. The 
inherent variability will thwart naive schemes. However, it 
is possible to successfully analyses complex images by us-
ing models which can cope with the variability.  

Active Shape Model (ASM) [1] algorithm usually per-
forms well in many recognition tasks in two-dimensional (2-
D) applications. They efficiently search images with a flexi-
ble and compact model by using prior knowledge derived 
from training data sets. It is possible to recognize objects 
with large variations in shape and appearance. 

However, 2-D model-based ASMs do not provide a sat-
isfying method for accurate segmentation in volume data. 

Also, it needs more than one model to use a 2-D model-
based ASM in object data which has large shape variation. 

Three-dimensional (3-D) model-based approaches are 
more promising than 2-D approaches since they can bring in 
more and realistic shape constraints for recognizing and 
delineating the object boundary. For 3-D model-based ap-
proaches, however, building the 3-D shape model from a 
training data set of segmented instances of an object is a 
major challenge and currently remains an open problem. 

In building statistical shape models, one essential step is 
generally to generate a point distribution model (PDM). 
Corresponding landmarks must be selected in all training 
shapes for generating the PDM. In practice, correspondence 
has often been established using manually defined ‘land-
marks’, but this is time-consuming, tedious, and error-prone. 
This is particularly true for 3-D approaches, where the 
amount of image data to analyze, and the number of land-
marks required to describe the shape increase dramatically 
in comparison to 2-D applications [2].  

Several methods for selecting landmarks in 2-D and 3-D 
have been proposed [3-5]. In Davies' method [3], corre-
spondence is established by optimizing an information theo-
retic objective function based on the minimum description 
length approach. This method manipulates correspondence 
based on re-parameterising each training shape, showing the 
ability to build more compact models than the manual 
method. In Frangi's method [4], landmark selection is done 
by means of dense triangulations in a mean binary volume 
computed from the training set. Then, a free-form elastic 
registration technique based on maximization of normalized 
mutual information (volume-based technique) is used to 
propagate landmarks across the training shapes. The method 
of Hill [5] uses a direct approach to landmark selection by 
minimizing the total variance of a shape model. This re-
quires an iterative local optimization scheme, and rebuilding 
the model at each stage. However, existing methods of 
PDM generation impose some constraints on the types of 
shapes that can be handled, and the resulting correspon-
dences are essentially arbitrary.  
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In this paper, we propose a 3-D statistical shape model-
based active shape image segmentation algorithm. For the 
3-D active shape image segmentation algorithm, we use a 
generation method of 3-D statistical shape models proposed 
by Lim and Udupa [6]. Given a set of training 3-D shapes, 
3-D model generation is achieved by 1) building the mean 
shape from the distance transform of the training shapes, 2) 
utilizing a tetrahedron method for automatically selecting 
landmarks on the mean shape, and 3) subsequently propa-
gating these landmarks to each training shape via a distance 
labeling method. After obtaining the 3-D shape model, we 
perform a 3-D active shape image segmentation scheme by 
using scale and gray-level models for the appearance model-
ing. This combination model of a scale and a gray-level can 
bring in more accurate and precise results. 

 

2. CONSTRUCTION OF 3-D SHAPE MODEL 
 
In this section, we first present the required preliminaries 
from the previous works by Lim and Udupa [6]. Landmark 
finding is composed of three steps: creating the mean shape, 
landmark finding on the mean shape, and landmark propa-
gation to other shapes. We assume that a set of 3-D binary 
images corresponding to the training shapes is given. These 
data sets are aligned and scaled via a 3-D affine transform 
first. 
 
2.1. Mean Shape 
 
After data alignment, all training data sets are in a common 
coordinate frame. Creating the mean shape is built by apply-
ing a distance transform '( )iDT b  to each training shape '

ib  
that denotes the aligned shape, with the convention that the 
distances inside the boundary are negative and those outside 
are positive. Then, the mean of all distance transformed 
images is computed as follows [7] : 
 

'

1

1( ) ( )
n

m i
i

DT b DT b
n =

= ∑    (1) 

 
This mean image is thresholded at 0 to get a binary im-

age corresponding to a set of pixels whose distance value is 
at least 0 in the mean distance image. The digital boundary 
of this binary image (which represents the mean shape) is 
then found. Correspondence of landmarks on all training 
shapes is guided by the mean shape. 

 
2.2. Landmark Finding 

 
There are several methods for finding landmarks. All previ-
ous methods have some limitations of a shape. We propose 
a method for automatic landmarking from the view of 
geometry.  

The proposed method is as follows :  
 
(1) Find the major inertia axis of the surface S via PCA 

[8] and its points of intersection L1, L2 with S. Out-
put points : L1, L2 . 

(2) Find the farthest point L3 on S from the line L1L2. 
If its distance from L1L2 is less than a fixed thresh-
old θ, then stop. Else, output is L3. 

(3) Find the plane P containing L1, L2, L3, and for one 
side of P, find the farthest point L4 from P. If its dis-
tance from P is less than θ, then consider the other 
side of P and proceed recursively. 

(4) Else output L4, form new planes containing (L1, L2, 
L4), (L1, L3, L4), and (L2, L3, L4) and proceed re-
cursively. 

(5) Stop when no more planes need to be considered 
and no points are found with “distance to plane” 
greater than or equal to θ.  

 
 

 
Fig. 1. Tetrahedron method 

 
Landmark threshold, θ is determined based on the de-

gree of the compactness of a model that is its ability to de-
scribe the variability of a shape using as few modes as pos-
sible. The set of all output points by the procedure consti-
tutes the set of landmarks defined for S. Figure 1 and Figure 
2 illustrate the tetrahedron method and its block-diagram, 
respectively. In essence, the method recursively subdivides 
the interior of S into tetrahedra. When the method stops, it 
will have partitioned the interior of S into tetrahedra of vari-
ous sizes whose union approximates the interior of S. The 
vertices of the tetrahedra constitute the landmarks on S. 

When S is not convex, during recursive subdivision, 
there is no guarantee that the part of S on one side of the 
current dividing plane is connected. This is illustrated in Fig. 
3 for the 2-D cases; both sides of L1L2 contain two con-
nected components of S. In this case, therefore, connectivity 
analysis becomes necessary. Further, for each disconnected 
part (such as the concavity in the middle in Fig. 3), initial 
landmarks have to be found (in accordance with the first 
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step) to start the recursive process. This is done by finding 
the major inertia axis. That contour results from intersecting 
S with the plane, which is associated with the particular 
connected component. Subsequently the recursive process 
proceeds as previously described. When the above method 
is applied to the surface representing mean shape S , we get 
a set L of labeled landmarks on S . 

 

 
Fig. 2. Block diagram of the tetrahedron method 

 

 
Fig. 3. The illustration for a 2-D shape of the tetrahedron method 

 
2.3. Landmark Propagation 

 
For selecting corresponding landmarks L found on the sur-
face of mean shape S  in all training shapes, we propagate 

landmarks to each training shape. In this method, to propa-
gate landmarks to the surface S of a given training shape, 
we use distance labeling to find the point on S that is closest 
to each landmark on S . The distance value from each land-
mark of S  is gradually increased. Whichever frontier (from 
a particular landmark) reaches a point of S first, determines 
the landmark label to be assigned to that point. In this man-
ner, the points on S and their labels are determined 
simultaneously. This method again is very general and can 
be used in any dimensional space [6]. 

 
2.4. Creating the 3-D Shape Model 

 
For creating the 3-D shape model, we use the ASM method 
to construct the statistical shape model from the information 
about landmarks on all training shapes. Principal component 
analysis (PCA) is applied to the aligned shape vectors. To 
this end, the mean shape x , the covariance matrix S , and 
the eigensystem of S  are computed. The eigenvectors ip  of 
S  provide the modes of shape variation present in the data. 
The eigenvectors corresponding to the largest eigenvalue iλ  
account for the largest variation; a small number of modes 
usually explain most of the variation. By sorting eigenval-
ues and corresponding eigenvectors in descending order, the 
t  principal axes, or modes, responsible for a predefined 
level of variance, i.e. 95\%, can be identified. Let the speci-
fied quantile, q , be defined as 
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3. ACTIVE SHAPE IMAGE SEGMENTATION 
 

The training process for 3-D ASMs requires the extension 
of shape model training and gray-level model training. In 
addition to the training, the segmentation process must also 
be extended.  

In the extension of shape model training, we use the 3-
D statistical shape model of the previous section. However, 
the extension of gray-level models to 3-D requires a new 
profile sampling strategy. The gray-level models are formed 
by sampling all training volumes along the profile that is 
normal to the object surface. Once these profiles are ex-
tracted, the gray-level model for each landmark point con-
sists of the objective function Eq. 3 where g  and gS  are 
the mean profile and covariance matrix of all the profiles 
across the training set. The value of this function is the 
Mahalanobis distance between a candidate profile sg  and 
the mean profile g . 

1( ) ( ) ( )T
s s g sf g g g S g g−= − −                  (3) 
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There were two developments in the gray-level model-
ing process. Since the objects were landmarked after the 
reorientation process, the landmark points had to be mapped 
back to the original 3-D space before the gray-level profiles 
could be obtained. The second development was that of 
estimating the normals to the surface. The normal was taken 
as the mean of the normals to each triangle of the eight near-
est neighbors in the surface. 

We use the integrated modeling process with scale and 
gray-level models for the appearance model to represent 
local structure. The scale was previously proposed to deter-
mine the size of local structures at every pixel in the scene 
[9]. The scale at every pixel was defined as the radius of the 
largest ball centered at the pixel such that all pixels within 
the ball satisfied a predefined scene intensity homogeneity 
criterion. Similar with the gray-level appearance, the scale 
also can be used to build a morphometric appearance model 
to represent local structure. Compared with gray-level ap-
pearance models, scale models are more compact, have 
more information in the region close to boundary, and have 
less information in the region far away from the boundary. 
Therefore, the scale can be considered as a weighting image, 
giving the important part, such as interfaces, more weight. 
Eq. 4 is the weighing function of the integrated modeling 
process where sf  and α  are the scale profile and the 
weighting factor, respectively. Figure 4 shows the example 
of scale models of a 2-D image and Fig. 5 illustrates the 
intensity along the profile on a scale model. 

 
( ) ( ) (1 ) ( )o s g s s sf g f g f gα α= ⋅ + − ⋅               (4) 

 

  
Fig. 4. Scale models of 2-D CT image 

 
After a shape model and combination (scale and gray)-

level models are formulated, they work together to guide the 
process of searching for the surface of a new 3-D object 
within a volumetric data set. To implement the model de-
formation and search process, software was written to per-
form the following functions:   

(1) Given an initial location of 3-D landmark points 
within the new volume, update the position of all 
landmark points by minimizing the objective function 
(Eq. 4) .  

(2) Adjust the set of landmark points to comply, in a sta-
tistical sense, with the shape model generated during 
training by adjusting the shape parameters in the 
PCA space.  

(3) During segmentation, these two functions are called 
iteratively until the set of landmark points (i.e. 
shape) settles into a consistent position within the 
volume. 

 

   
Fig. 5. Intensity along profile on a scale model 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 
 
The image data sets used for validation were obtained from 
30 standard CT liver scans of patients acquired in the ve-
nous phase of enhancement. Each CT image contains up to 
71 image slices with an interslice spacing of 3.8mm. 
 
4.1. Evaluation of the 3-D Model Generation 
 
Figure 5 (a) shows the example of a sphere whose radius is 
50, and the landmark threshold of this example is 5. Figure 
5 (b) shows the mean shape and landmarks on the mean 
shape of the liver. The number of landmarks is 170 and the 
surface size is 12757 voxels. The proposed method utilizing 
170 landmarks captured 95\% shape variability with 3 
modes. Recall that eigenvectors are axes along which the 
mean shape expresses variations. 

In order to illustrate this fact, Fig. 6 displays the varia-
tions found in a given data set along the largest three princi-
pal axes. 

 

  
(a) Landmarks on the sphere 
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(b) Landmarks on the liver 

Fig. 5. Landmarks on the mean shape of 3-D shape 
 
Figure 6 are converted landmarks to surface represen-

tation of the mean shape (middle) and the largest mode of 
variation for 1 13b λ= −  (left) and 1 13b λ=  (right) via a 
convex hull algorithm. The modes are shown by displaying 
just the modified landmark positions with reference to the 
mean shape. 
 

 
Fig. 6. Surface representation of landmarks via convex hull 

 
The compactness of a model is its ability to describe 

the variability of a shape using as few modes as possible. In 
Fig. 7, we show the compactness, i.e., variance per mode, of 
the model generated by our method. The concentration of 
variability in the first m eigenvalues is shown in Fig. 7. It 
can be seen about 95\% of the shape variation is already 
captured by the first three eigenvectors. 

 

 
Fig. 7. Protion of variability captured by the first m eigenvectors 

 
4.2. Evaluation of the 3-D ASM Algorithm 
 
Figure 8 demonstrates the liver segmented manually by us-
ing the live-wire (LW) method in 3Dviewnix [11], a Unix-

based software system for the visualization, manipulation, 
and analysis of multidimensional multi-parametric, multi-
modality images. We use the manual segmentation result as 
truth for the accuracy measure. Figure 9 shows the liver 
segmented by using the proposed 3-D ASM method. We 
call the proposed 3-D ASM using a scale model 3-D ASM-s.  

For any scene, let b
oC  be the segmentation result (bi-

nary scene) output by the proposed method for which the 
true delineation result is b

tC . The following measures, 
called false-positive volume fraction (FPVF) and true-
positive volume fraction (TPVF) were used to assess the 
accuracy of the method [10]. 
 

| |( , ) 100
| |

b b
b b o t
o t b

t

C CTPVF C C
C
∩

= ×   (5) 

 
| |( , ) 100
| |

b b
b b o t
o t b

d t

C CFPVF C C
C C

−
= ×

−
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where | |X  denotes the cardinality of set X . TPVF indi-
cates the fraction of the total amount of tissue in the true 
delineation. FPVF denotes the amount of tissue falsely iden-
tified. dC  is a binary scene representation of a reference 
superset of voxels that is used to express the four measures 
as a fraction. We utilize FPVF and TPVF which are inde-
pendent each other to describe accuracy. Table 1 lists the 
mean and standard deviation values of FPVF and TPVF 
achieved for the liver in CT images. Table 1 shows that the 
proposed 3-D ASM algorithm is more accuracy, efficiency 
and effective method than 2-D ASM algorithm. 
 

Table 1. Mean and standard deviation of FPVF and TPVF. 

 2-D ASM 3-D ASM 3-D ASM-s 

FPVF 0.94 0.03± 0.96 0.05±  0.85 0.06±  

TPVF 89.26 1.52± 90.67 1.09±  92.13 1.04±  

 

5. CONCLUSIONS 
 
We have described a method for three-dimensional (3-D) 
active shape image segmentation using a shape model. For 
the active shape image segmentation, we used a generation 
method of 3-D shape models previously proposed by us. 
The tetrahedron method for automatic landmark selection 
guided by the mean shape is independent of the object shape, 
geometry, and topology. The method can be used in any 
application for building 3-D models. For the segmentation, 
we proposed the integrated modeling process with a scale 
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model and a gray-level model for the appearance profile to 
represent local structure. Scale models are more compact, 
have more information in the region close to boundary, and 
have less information in the region far away from the 
boundary. Therefore, the combination of a scale modeling 
and a gray-level modeling can get more accurate and effi-
cient results comparing with general active shape models 
(ASMs). The experimental results are comparable to those 
of manual tracing by the radiological doctor and 2-D ASMs, 
and demonstrate that this algorithm is effective more than 
5% by comparison to 2-D ASMs and general 3-D ASMs. 
 

 

 
Fig. 8. Liver segmented manually by using the LW method 

 

 

 
Fig. 9. Liver segmented by using the 3-D ASM method 
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