
The 4th international symposium on ubiquitous VR

Simulating Context-Aware Systems based on
Personal Devices

Yoosoo Oh, Hyoseok Yoon, and Woontack Woo

Abstract— Context-aware systems have been a research focus

in Ubiquitous Computing. Advances with regard to context
acquisition and activity recognition allow interesting small scale
applications. However in larger systems including many sensors
and actuators and spanning multiple administrative domains still
central issues are not solved. Most systems are designed on a
single type of context (e.g. location) or restricted to laboratory size.
In this paper we motivate large scale context-aware systems that
have support for the full life cycle using a simulation prototype
that was implemented and tested. We then describe in detail the
underlying architecture. The system is implemented and tested
but to further simulate its qualities.

Index Terms— Context-aware system, Context fusion, Context
reasoning, Personal Device

I. INTRODUCTION
ontext-aware systems have been a research focus in
Ubiquitous Computing since its very beginning [7]. Many
systems have been developed in the research community

using various sensors and acting on different contexts.
However outside the research laboratories context-aware
systems have had little impact, with the exception of location
aware applications. Nevertheless, many issues with regard to
more generic context-aware systems beyond laboratory scale
are still unsolved. In particular the life-cycle support of
context-aware systems simulation has received little attention.
These issues need to be addressed on an architectural level to
provide generic solutions. In this paper we will introduce a new
and open architecture for context-aware systems that provides
mechanisms to solve these problems in parts.

Advances in context-aware computing have been published
in the area of acquiring activity and context information using
various sensors [2], [8]. This research indicates that for given
situations it is in many cases possible to create sensors and
recognition subsystems that provide context information to a
larger system. It also shows that a system needs to be open and
provide appropriate interfaces for different subsystems
acquiring context. Looking at the development cycle, it is also
of interest to support the simulation of context recognition. As
indicated in recent work on prototyping [4], having manually
simulated sensor can ease the early phase of development of
context-aware systems. Similarly improvement in sensors and

recognition algorithms are common and hence a system has to
cater for changes on this level.

This works was supported by the UCN Project, the MIC 21st Century Frontier
R&D Program in Korea, under CTRC at GIST.

The authors are with GIST U-VR Lab., Gwangju 500-712, S. Korea (e-mail:
{yoh, hyoon, wwoo}@gist.ac.kr).

When the designing and developing of context-aware system
and architectures one central issue is to show that the solution
presented is appropriate and that it fulfils the criteria set. In the
literature several approaches can be found that evaluate the
suitability of a solution. Often the argument is made that the
architecture was successfully applied to one or more projects,
e.g. [1]. This is in our view not necessarily a good measure of
the quality as it is from the paper usually not clear how much a
specific solution relies on the presented architecture and where
there clear benefits in the development and deployment were.
The main contributions of the work presented in this paper are a
novel architecture for context-aware computing systems and a
new approach for simulating context-aware system
architectures based on personal devices.

The paper is structured as follows. In section 2 we present a
mobile user interface called ubiController. The focus is on
simulating physical sensors. In section 3, Context Integrator,
the underlying system architecture and context middleware is
described. In particular issues regarding context acquisition
and context fusion are addressed. In section 4, we present a
prototype of a large scale context-aware system. The focus is
on including simulated and physical components of various
kinds dynamically into a single system supporting multiple.
Finally, we report our findings of this simulation for
architectures.

II. UBICONTROLLER
We have developed a mobile user interface called

ubiController to explicitly allow users to take control and
mediate in context-aware computing environments. There are
three main features for ubiController, service discovery for
universal service control, situation-aware for service filtering
and intuitive GUI.

A. The features of ubiController
ubiController is able to discover available services in the

network serving as a control point in UPnP architecture [9].
Services are implemented as an UPnP service, so that it can
advertise itself through the network. Since UPnP by itself
cannot perform communication using context, we incorporate
UPnP modules into our context-aware framework, ubi-UCAM
(Unified Context-aware Application Model for Ubiquitous
Computing), which enables communication using context.

C

49

The 4th international symposium on ubiquitous VR

Discovered services are directly accessible by clicking service
control buttons augmented on the user interface.

To help users to interact more intuitively, ubiController uses
a panoramic background of the current environment. As shown
in figure 1, a user can see the same scene through the screen of
his mobile device where he can click an item of interest to
access the service. This interaction metaphor of
‘click-and-control’ simplifies and helps natural interaction.

B. ubiController as a Simulation Input Device
One ubiController is a representative of one user in our

ubiquitous computing scenarios which holds personal
information including profiles and preferences of each person.
So we can add any number of ubiControllers to represent and
simulate the number of people in the scenario.

When a user explicitly gives a command or clicks a button
through an interface in ubiController, that information is
captured in a form of preliminary context. Preliminary context
refers to any information derived from sensors, so by treating
users’ direct input as such sensor input, we can simulate
context-aware systems. For example, ubiController provides an
interface to control Light Service. When the user clicks “Turn
On” button on the interface, then the information is captured
and generated as context to include, who is this input from,
what service this input triggers, what service content the input
requested, etc.

Figure 1. In this figure a PDA is a Universal Control(ubiController)

for simulating sensors.

III. A NEW ARCHITECTURE FOR CONTEXT INTEGRATION
Different architectures and middleware systems to support

context-aware systems have been developed over recent years,
examples from different domains include the Context-Toolkit
[5], the TEA context acquisition architecture [6], and the JCAF
middleware [1]. Even though there have been advances,
especially improving the separation of concerns, many issues,
in particular with regard to large scale context-aware systems
are still unsolved. Central concerns for simulating
context-aware system need to be addressed on an architectural
level to provide generic solutions. In this section, we introduce
a novel architecture for context fusion and reasoning designed

for large scale context-aware systems.

A. Context Integrator Architecture
Context fusion and reasoning are the central functionality

provided by the Context Integrator, which is a novel
architecture for context-aware systems. An architectural
overview is shown in Figure 2.

Figure 2. The architectural of the Context Integrator.

The Context Object Analyzer collects contexts (preliminary

or final alike) periodically from various kinds of sensors which
are placed semantically in the same active area. The Context
Repository stores and manages context the history of the
integrated contexts. The Preliminary Context Fusion module
integrates the inputted Preliminary Contexts as an integrated
4W1H context according to characteristics of each sub-context
of 4W1H (Who, What, Where, When, and How). Integrated
Contexts are created by applying the appropriate fusion
method. Preliminary Context (PC) expresses the feature
information and sensor description. Integrated Context (IC)
forms the complete 5W1H context generated by Context
Integrator which additionally includes the inferred intention
using the context inference engine. The Context Inference
Engine has reasons the ‘Why’ component of the context
(intention) by using the result of Preliminary Context Fusion
module. It contains a knowledgebase which consists of facts
and rules that describe the behavior of the system. This is
described in more detail in the next section. The Integrated
Context Generator combines all components into a 5W1H
Integrated Context. This contains information, such as user’s
identity, location, activities, behavior, patterns, and intention.

The generic behavior and functionality of a specific
context-aware system running based on Context Integrator are
specified by rules. Changes and reconfiguration of the system
by a developer or maintainer are done by adding, deleting, and
modifying rules. For simplicity these rules are specified in plain
text and reconfiguration just requires a text editor. Hence
changes to the overall system behavior do not require changes
in any source code in Context Integrator. In the implementation
of the Context Integrator the Context Inference Engine is
implemented on top of JESS (Java Expert System Shell). Rules

50

The 4th international symposium on ubiquitous VR

are specified in syntax similar to LISP. Compared to
declarative programming language this eases reconfiguration
as rules do not require order.

Throughout the development of a middleware which
implement the architecture described above tests based cases
were performed. These test cases were based on simulated
sensors (ubiController) integrated with the simulation
environment of the virtual building implemented by
Macromedia Flash.

B. Explanation and Accountability
To make it feasible for developers and operators to

understand how and why a system is performing certain
actions, a component for explanation was added. In the
simulation example this was also implemented in Flash to allow
easy changes and provide more options for visualization. By
logging the information presented in the explanation tool we
hope to achieve accountability for actions taken on context. In a
real environment it is essential to know why the heating is
switched off or why certain people have access to a certain
area.

During the development of prototypes it proved to be an
invaluable tool for debugging. Based on the information
provided, it was in many cases possible to quickly find out
where the problem was. Often in larger context-aware system,
finding the component responsible for the systems misbehavior
is a major step in finding an error.

The simulation example can show the intention output
message from Context Integrator for debugging. This message
describes the user’s current intention with his current activity as
a point of view of an outsider. For easy debugging to
developers, the significant information (eg. the weighting
factor to the current output) is presented and also the previous
information (activity, location, no of persons) is revealed.

IV. SIMULATION FOR A LARGE SCALE CONTEXT-AWARE
SYSTEM

To explore issues related to large scale context-aware
systems we implemented an example system that includes
different features that we see as important for in this area. These
requirements have been deduced from a number of projects
which are described in literature [3] or have been conducted by
the authors. To assess these requirements we included them
into one prototypical system. To assess these requirements we
included them into one prototypical system. In particular the
focus is on:

• The system should support context-awareness for large
systems which contain many sensors and actuators.

• Sensors, actuators and computational components
should be independent of each other (and it is likely that
they are under different administrative control).

• Context, derived at different units within the system,
should be maintained.

• The system should support online dynamic changes. It
is assumed that components like sensors, actuators or

computational components can be added, replaced, or
broken.

• The system should provide means for accountability
and explanations for actions taken automatically.

The prototypical system was implemented and some parts

are shown in Figure 3. The prototype is a context-aware
building including a number of real sensors(ubiControllers) as
well as a number of simulated actuators(ubiBuilding). Having
simulation as basic concept allows development before a real
environment can exist. This is in particular interesting when
developing context aware systems for new environments that
do not exist when the context-aware software is developed but
where the software is required when the environment is ready.
For example, while a new building is physically built the
software can already be developed and tested in simulation so
that when the building is finished the tested software can be put
to use. This is significant for buildings where
context-awareness is at the center of controlling access and
heating/ventilation of a building.

Figure 3. In this figure components of the prototypical system are
shown. In an output simulator for a large building implemented in

Flash is depicted (ubiBuilding).

The real input components have been implemented as typical
representative of sensors we expect in a large scale
context-aware system. The real output component can be any
component in a real building system which can be controlled
electronically, e.g. door locks, heating, shutters or lightning. In
the prototype these are not implemented yet.

The simulated output component is ubiBuilding Simulator
which is a building simulation system implemented in
Macromedia Flash, partly shown in Figure 2 a). It simulates a
full scale building comprises 5 floors of 19 rooms with in total
of 41 actuators (9 door-lock, 19 lights, and 13 heaters).

The central process of the system is context fusion module
and computation engine. Context fusion module integrates
contexts obtained from all sensors attached to the system. The
computation engine is an inference rule engine based on JESS
(Java Expert System Shell). The rules are fired by user’s

51

The 4th international symposium on ubiquitous VR

explicit or implicit input which is behavior rules, event rules,
and explicit or implicit control rules. This central component is
described in the next section in more detail.

Implementing a prototypical system, which combines many
features we expect in context-aware systems, along with the
development of the context integration architecture helped for
testing. Having a set of applications, based on real and virtual
sensors makes it easy to create test cases so that basic principles
of software testing can be applied during the development.

V. CONCLUSION
In this paper we have introduced Context Integrator, a novel

architecture for context-aware systems. The proposed
architecture has been used to develop prototypical systems. Its
central component is a rule based system that creates a system
behavior based on contexts detected. Using rules as the basic
means are a flexible way to change and manipulate the system
behavior during all phases of the life cycle of a context-aware
system. The central advantage for large scale systems is that a
change in behavior can be introduced at run time by adding,
changing or deleting rules.

In a prototypical system we showed that given this level of
abstraction it is easily feasible to have components
exchangeable including personal devices in the system, for
sensors and actuators alike. Especially for the development of
context-aware software-systems in parallel to the building of
the real environments, simulation of sensors and actuators
becomes very important.

To make the context-aware system understandable, in a first
step for the developer and operator and later to the user, a
component that provides explanations for decisions taken is
introduced. Providing information why certain actions are
taken and based on what data intentions have been inferred is
crucial for developing understandable and user-friendly
context-aware systems.

Currently we further develop the Context-Integrator
architecture to fix issues those surfaces in the expert evaluation.
Additionally we assess further projects on large scale
context-aware systems where the developed system can be
applied. With regard to the simulation for context architectures
we are planning to use the method in further related projects
such as the assessment of toolkit support.

REFERENCES
[1] Jakob E. Bardram. The Java Context Awareness Framework (JCAF) - A

Service Infrastructure and Programming Framework for Context-Aware
Applications. In Proceedings of the 3rd International Conference on
Pervasive Computing (Pervasive 2005), Lecture Notes in Computer
Science, Munich, Germany, May 2005. Springer Verlag.

[2] L. Bao and S. S. Intille, "Activity recognition from user-annotated
acceleration data," in Proceedings of PERVASIVE 2004, vol. LNCS 3001,
Springer-Verlag, 2004, pp. 1-17.

[3] G. Chen, and D. Kotz. A Survey of Context-Aware Mobile Computing
Research. Dartmouth College, Technical Report: TR2000-381, 2004.

[4] Steven Dow, Blair MacIntyre, Jaemin Lee, Christopher Oezbek, Jay
David Bolter, Maribeth Gandy, "Wizard of Oz Support throughout an
Iterative Design Process," IEEE Pervasive Computing, vol. 4, no. 4, pp.
18-26, Oct-Dec, 2005.

[5] D. Salber, A.K. Dey and G.D. Abowd, “The Context Toolkit: Aiding the
Development of Context-Aware Applications,” In the Workshop on
Software Engineering for Wearable and Pervasive Computing, Jun. 2000.

[6] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. Van Laerhoven,
and W. Van de Velde. Advanced interaction in context. In H.W. Gellersen,
editor, Proc. of First International Symposium on Handheld and
Ubiquitous Computing (HUC99), volume 1707 of LNCS, pages 89--101.
Springer-Verlag, 1999.

[7] B. Schilit, N. Adams, and R. Want, "Context -Aware Computing
Applications," Proc. Workshop Mobile Computer Systems and
Applications, IEEE CS Press, Los Alamitos, Calif., 1994, pp. 85-90.

[8] K. Van Laerhoven, A. Schmidt and H.-W. Gellersen. "Multi-Sensor
Context-Aware Clothing". In Proc. of the 6th Int. Symposium on
Wearable Computers, ISWC 2002, Seattle, WA. ISBN: 0-7695-1816-8;
IEEE Press, 2002, pp. 49-57.

[9] Universal Plug and Play (UPnP), http://www.upnp.org

52

