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Abstract—This paper presents two novel transforms based on 

the discrete Radon transform. The proposed transforms smartly 
solve two inherent problems of the Radon transform in rotation 
estimation in digital images, i.e., direction-dependency and 
nonhomogeneity, that come from the different numbers of pixels 
projected on a line for different directions and/or coordinates of 
a direction. While the first transform considers the sample mean 
operator on the same sets of pixels for a direction instead of 
summation in the discrete Radon transform, the second 
transform uses the mean operator on sets of pixels with the equal 
number of elements. In order to show the efficiency of the 
proposed transforms, we apply them on image collections from 
the Brodatz album for estimating the directional information. 
Experimental results show a significant increase in correct 
estimation as well as in the processing time compared to the 
conventional Radon transform.  

Keywords—Radon transform, rotation-invariancy, texture 
analysis, direction estimation; 

Topic area—Multimedia Databases (Content Analsysis). 

I. INTRODUCTION 
The Radon transform has received much attention in recent 

years. The capability of the Radon transform in transforming 
lines (line-trends) inside an image into a domain of possible 
line parameters even for a very noisy image has led to many 
line detection applications within image processing, computer 
vision, seismology, etc. The inverse Radon transform has also 
shown its worth in different fields such as electron microscopy, 
geophysical exploration, and imaging by ultrasound, X-ray, 
and magnetic resonance [1],[2].  

Although the Radon transform is not by itself a tool for 
rotation estimation in an image, it may be used by some other 
tools to capture the directional information of an image which 
is necessary for rotation-invariant image analysis [3],[4]. 
Specifically, if we define the principle direction for an image 
as the direction along which the image has more straight lines, 
the Radon transform along this direction is usually expected to 
have larger variations [5], especially if we filter out the low 
frequency information from the image before applying the 
Radon transform [6].  

However, for extracting the directional information, the 
Radon transform suffers from two inherent problems which 
have not been yet, to the best of our knowledge, tackled 

systematically. Let us consider the discrete Radon transform 
in order to clarify these problems. A similar idea can be 
depicted for the continuous case as well. In general, the Radon 
transform represents an image as a collection of projections 
along various line directions and corresponding coordinates 
along the directions. As a result, the number of pixels 
projected on a line is not the same for different directions 
and/or coordinates of a direction. 

While the different number of pixels on a line in different 
directions makes the method direction-dependent (anisotropic), 
the different number of pixels in different coordinates of a 
direction may result to a nonhomogeneous analysis. There are 
some simple techniques that may handle the problems to some 
extent, e.g. taking the Radon transform on a disk shape area 
from the middle of the image instead of the whole image to 
make the method isotropic. However, since these solutions do 
not concentrate on the inherent source of problems directly, 
they may neither be always applicable nor increase the 
performance considerably, in many applications.       

In the paper, we propose two different transforms based on 
the definition of the discrete Radon transform, where the first 
transform has a linear, and the second one has a nonlinear 
relation with the Radon transform. We will see that the 
proposed transforms not only solve the mentioned problems, 
but preserve the applicability of the Radon transform, as well.  

In order to show the efficiency of these transforms in the 
rotation-invariant image analysis, we utilize them for the 
purpose of direction estimation and examine their performance 
on standard texture images from the Brodatz album [7]. 
Through different experiments, we evaluate their performance 
and compare it to the Radon transform. Robustness of the 
methods to the additive noise and their processing times are 
also examined. Experimental results show that the proposed 
transforms significantly outperform the conventional Radon 
transform.  

II. BACKGROUND 
The Radon transform is the projection of the image 

intensity along a radial line oriented at a specific angle. It 
transforms a 2-D image with lines (line-trends) into a domain 
of the possible line parameters ρ and θ, where ρ is the smallest 
distance from the origin and θ is its angle with the x-axis. In 
this form, a line is defined as 
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Figure 1.  Radon transform of a typical 2-D image f(x,y). 

)sincos θθρ yx += . (1)

Considering this definition of a line, the Radon transform 
of a 2-D image f(x,y) can be then defined as  
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Fig. 1 exhibits the Radon transform of a typical image for 
a reference line with parameters ρ and θ. However, for 
applying the Radon transform on a 2-D digital image, we first 
need to discretize the continuous equation. In practice, there 
are some different ways to approximate the discrete form [2]. 
Here, we solve this problem in a slightly different way which 
is more convenient for our goal in this paper. For this purpose, 
we use an equivalent form of (2), defined as 

∫
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where the s-axis lies along the line. Note that in (3), ρ and s 
can be calculated from x, y, and θ using (1) and the following 
equation, respectively:  
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In order to apply the Radon transform on a 2-D digital image 
g(m,n) of size MxN, we first sample continuous variables: 
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where we set:  
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Here, for simplicity and without loss of generality, we suppose 
that the image is square (i.e., M=N) and M is odd. Furthermore, 

if we consider θmin=0, ∆θ should be π/T to let θ span π. We 
also set ∆ρ and T to 1 and π, respectively.  

The values of the remaining parameters ∆s, Pθ, and Sρ,θ are 
not fixed and depend on ρ and/or θ. They should be set 
precisely to let all pixels of the image be utilized in the Radon 
transform for any angle θ. Fig. 2 represents two examples of 
applying the Radon transform on an image of size 5x5 (i.e., 
M=5) for two different angles. Considering the examples, and 
using (4) and (5), ∆s and Pθ can be suitably approximated as 
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where ⎡ ⎤.  represents the ceiling operation, and Pθ is adjusted to 
take an odd integer value. 

The approximation of Sρ,θ, is rather complicated, since the 
value of Sρ,θ depends on both ρ and θ. While it is fixed and 
equal to M for some values of ρ, it is arithmetically decreased 
in a series afterwards, depending on both ρ and θ. Here, we 
skip details which are not a matter of importance for our work.  
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Further, ρconst and d are: 
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where [.] represents the rounding operation. 
 

 
Figure 2. An example of applying Radon transform on an image with M=5. 

  (a) reference lines for θ=120°, (b) reference lines for θ=135°. 
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In approximating Sρ,θ, we also assume that each pixel 
assigned to its nearest reference line. In other words, as it can 
be seen from Fig. 2, the pixels are not always exactly on the 
reference lines. Here, without loss of generality, we simply 
apply a rounding operation to find the best choice, instead of 
more complicated interpolation mechanisms that may be used 
now and then [2]. Basing on this fact, let define x’

k and y’
k as  
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The discrete Radon transform of a 2-D digital image g(m,n) 
is then approximated from (3) as 
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III. PROPOSED APPROACH 

A. Motivation  
As it was mentioned before, despite the capability of the 

Radon transform in line (-trend) detection in images, it suffers 
from two inherent problems that prevent the Radon transform 
to become a complete tool for rotation-invariant image 
analysis applications. The source of these problems arises 
from this fact that in the Radon transform, the number of 
pixels projected on a line is not necessarily the same for 
different directions and/or coordinates of a direction. This 
point can be recognized easily in Fig. 2 and also mathematically 
verified from (8), where it is seen that the number of pixels Sρ,θ 
on the line along the s-axis depends on ρ and θ .  

Consequently, the results of the Radon transform that is 
the summation of all coordinates along this line may not act in 
a similar statistical base for different parameters ρ and/orθ. In 
next sections, we propose two new transforms based on the 
definition of the discrete Radon transform in (11) to solve the 
abovementioned problems.  

B. First Proposed Transform 
Define a set Φr,t as 
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Using (12), equation (11) can be rewritten as 
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where φk
r,t is the kth element of the set Φr,t.  

Furthermore in (13), we can substitute the summation with 
the sample mean operator as  
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Using (14), we define the first proposed transform R1 as 
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1

tr
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Since the sets {Φr,t | r=0,1,…,Pθ -1 and θ=θt} have 
different number of elements, we can expect a more stabilized 
statistical behavior as compared to the conventional Radon 
transform, if we use sample mean as it is done in (15), instead 
of summation in (13). Thus, we can expect a better 
performance for direction estimation. This fact will be shown 
through experiments later. 

Comparing (14) and (15), it can be easily seen that there is 
a linear relation between the conventional Radon transform 
and the one we defined here as the first proposed transform: 

),(1),( 1
,

trtr R
S
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So, R1 inherits almost all properties of the Radon transform 
such as linearity, shifting, rotation and so on [2]. Also, we 
expect R1 has approximately the same processing time as the 
Radon transform. 

C. Second Proposed Transform 
Using (8) and (9), it can be easily shown that the total 

number of elements for any arbitrary direction θt in the sets 
{Φr,t | r=0,1,…,Pθ -1 and θ=θt} is almost M2, where M is the 
dimensions of a 2-D square image. In other words, 

2
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r
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θ
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Now, we define Ψt as a set of successive concatenations of 
the sets {Φr,t | r=0,1,…,Pθ -1 and θ=θt}: 

t
trt Pr θθθ ==Φ=Ψ  and 1-,...,1,0  ),(Concat , . (18)

Using (18), the second proposed transform R2 is then defined as 

1...,1,0  ),(Mean),(2 −=Ψ⋅∆≡ MjsR t
jtj θλ , (19)

where Ψj
t is the jth M-elements subset1 of the set Ψt (Fig 3), 

and λj is defined as 

1,...,1,0                ,min −=+== Mjjj λλλ . (20)

As a result, R2 has no longer a linear relation with the 
Radon transform, because we apply the mean operator on 
collections with the equal number of elements instead of the 
sets {Φr,t | r=0,1,…,Pθ -1 and t=0,1,…,T -1} with the non-
equal number of elements. The fact can be more clarified if we 
compare ρt and λj in Fig. 3.  

                                                           
1  For a non-square image, Ψj

t is the jth N-elements subset, where the size of 
the image is MxN, and for any arbitrary block of an image, Ψj

t is the jth K-
elements sunset, where the size of the block is MxK.   
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Figure 3. Applying the second proposed transform on examples of Fig. 2. The 
figures show how the sets Ψj

t with equal numbers of elements are extracted 
from the sets Φr,t with different numbers of elements for two different directions. 
 

For the second proposed transform, we can expect a faster 
processing time compared to the Radon transform, because the 
matrix simplification techniques are widely applicable at time. 
We will also examine this fact later. 

D. Applications in Direction Estimation 
For image analysis applications, we usually need to extract 

some features from an image and then develop our approaches 
based on those features. Among the different features, texture 
is one of the most important ones, due to its presence in most 
real world images which makes it under high attention for 
many applications in content-based image representation and 
retrieval, medical imaging, remote sensing, and so on. 

However, the problem with the majority of existing works 
on texture analysis is that it is assumed that all images are 
acquired from the same orientation. This assumption is not 
realistic in practical applications, where images may be taken 
with different rotation, scale, etc. As a result, the performance 
of these methods becomes worse when this underlying 
assumption is no longer valid.  

There are many methods proposed to address the problem 
of the rotation-invariant texture analysis [8], where almost all 
of them try to estimate the directional information in an image. 
Among them, there are some works that utilize the Radon 
transform for this purpose [5],[6]. Here, we consider these 
approaches and show that the proposed transforms achieve 
this goal significantly better than the Radon transform.  

Generally the texture of an image consists of anisotropic 
(directional) and/or isotropic (non-directional) textures [9]. In 
this respect, textures may be divided into four different 
categories: (i) anisotropic with one dominant direction; (ii) 
multidirectional anisotropic; (iii) isotropic; and (iv) mixed, 
where the dominant direction for a texture is defined as the 
direction with more straight lines.  

Basing on this fact, we can estimate the directional 
information for an image with directional textures in their 
structures using the Radon transform. For this purpose, the 
Radon transform is usually calculated for all directions with θt 
from 0° to 179°. We then compute the variance of the result 
for each direction, and form the variance array SR as 

[ ) )],([)( 180,0 trR RVarS
t

θρθ θ ∈= . (21)

Figs. 4-7 show the variance arrays for four images with 
different kinds of textural structure and their 30° rotated 
versions. For comparison, we depict the variance array for the 
Radon transform as well as the proposed transforms, where 
the variance arrays for the first and second transforms are 
calculated, substituting R by R1 and R2 in (21), respectively.  

However, in the case of the conventional Radon transform, 
since it is not an isotropic method as mentioned before, we 
applied it on a disk shape area from the middle of images to 
get a better result.  

 

 
Figure 4.  Rotation estimation for a one-directional texture (fabric). 

 
Figure 5.  Rotation estimation for a multidirectional texture (tile). 

 
Figure 6.  Rotation estimation for an isotropic texture (fabric). 

 
Figure 7.  Rotation estimation for a mixed texture (a building, trees, and sky). 
(a) original image, (b) variance array of the original image, applying the 
Radon transform (c) variance array of the original image, applying the first 
proposed transform (d) variance array of the original image, applying the 
second proposed transform (e) a 30° rotated version of the image, (f) variance 
array of the rotated image, applying the Radon transform (g) variance array of 
the rotated image, applying the first proposed transform (h) variance array of 
the rotated image, applying the second proposed transform. 
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From Figs. 4-7, we can see that in the case of an 
anisotropic texture, the variance array has a large value in the 
direction perpendicular to the dominant direction. It means 
that the Radon transform (or any of the proposed ones) has 
larger variations along the dominant direction which is in an 
agreement with the definition of the Radon transform. In fact, 
a variance array is expected to have a global maximum at this 
direction for an anisotropic texture. Thus, the dominant 
direction D can be estimated as 

°−= 90)(maxarg RSD
tθ . (22)

Now, considering the global maxima of the variance arrays 
of the original images (D0) and the rotated images (D30) in 
Figs. 4-7, their differences are expected to be equal to the 
rotation angle 30°. From these figures it can be seen that for 
the proposed transforms, the differences are precisely or 
almost precisely equal to 30°, even in the case of an isotropic 
image whose spectrum does not change significantly by 
rotation [5]. However, for the Radon transform, this is not true 
and estimates are not as good as the proposed transforms.  

IV. EXPERIMENTAL RESULTS 
In the first experiment, we evaluated the correct estimates 

of the dominant directions on a dataset with 4080 images that 
has been already used in [5]. For generating the dataset, we 
utilized 60 images of size 512x512 from the Brodatz album. 
Fig. 8 exhibits the images, including 8 one-directional textures 
D16, D49, D50, D51, D68, D76, D77, and D105; 13 (almost 
purely) isotropic textures  D4, D5, D9, D23, D24, D27, D28, 
D48, D66, D74, D75, D98, and D110; and 17 mixed textures 
(including semi-isotropic textures) D8, D10, D11, D19, D25, 
D37, D46, D57, D81, D83, D84, D85, D86, D87, D92, D101, 
and D111. The remaining images are multidirectional textures.  

Each image was then divided into 256x256 nonoverlapping 
blocks, and one 128x128 subimage was extracted from the 
middle of each block. In order to create rotated versions of 
these subimages, each 256x256 block was rotated at angles 10° 
to 160° with step size 10° and then from each rotated block, 
one 128x128 subimage was selected from its middle.  

 

 
Fig. 8. 60 typical images from the Brodatz album. From left to right: 
1st row: D1, D4, D5, D6, D08, D9, D10, D11, D15, D16.                 . 
2nd row: D17, D18, D19, D20, D21, D22, D23, D24, D25, D26.      . 
3rd row: D27, D28, D34, D37, D46, D47, D48, D49, D50, D51.      . 
4th row: D52, D53, D55, D56, D57, D64, D65, D66, D68, D74.       . 
5th row: D75, D76, D77, D78, D81, D82, D83, D84, D85, D86.       . 
6th row: D87, D92, D93, D94, D98, D101, D103, D105, D110, D111. 

Keeping non-rotated images as references for comparison, 
the dominant direction was then estimated for other 3840 
images based on the procedure described in Section III.D. 
Here, the estimation is supposed to be correct if the following 
condition is satisfied: 

( ) deviation- 0 ≤−
R

DDR αα , (23)

where αR is the rotation angle, and D0 and DαR are the 
dominant directions of the non-rotated and rotated images, 
respectively, calculated using (22). 

TABLE I.CORRECT DETECTION RATE IN DIFFERENT TRANSFORMS FOR 
IMAGES WITH ONE-DIRECTIONAL TEXTURAL STRUCTURES 

Correct Detection Rate Texture Category 
(deviation) Radon 

Transform 
Proposed 

Transform I 
Proposed 

Transform II 
One-Directional 
(deviation<=1)  

71.5% 95.3% 94.5% 

One-Directional 
(deviation<=3) 

75.4% 98.2% 98.6% 

One-Directional 
(deviation<=5) 

77.1% 99.2% 99.0% 

TABLE II.CORRECT DETECTION RATE IN DIFFERENT TRANSFORMS FOR 
IMAGES WITH MULTI-DIRECTIONAL TEXTURAL STRUCTURES 

Correct Detection Rate Texture Category 
(deviation) Radon 

Transform 
Proposed 

Transform I 
Proposed 

Transform II 
Multi-Directional 
(deviation<=1)  

55.0% 85.4% 86.8% 

Multi-Directional 
(deviation<=3) 

64.9% 89.8% 89.9% 

Multi-Directional 
(deviation<=5) 

74.5% 90.3% 91.3% 

TABLE III.CORRECT DETECTION RATE IN DIFFERENT TRANSFORMS FOR 
IMAGES WITH MIXED TEXTURAL STRUCTURES 

Correct Detection Rate Texture Category 
(deviation) Radon 

Transform 
Proposed 

Transform I 
Proposed 

Transform II 
Mixed 
(deviation<=1)  

51.5% 69.3% 66.9% 

Mixed 
(deviation<=3) 

58.7% 76.2% 74.6% 

Mixed 
(deviation<=5) 

66.7% 80.6% 80.1% 

TABLE IV.CORRECT DETECTION RATE IN DIFFERENT TRANSFORMS FOR 
IMAGES WITH ISOTROPIC TEXTURAL STRUCTURES 

Correct Detection Rate Texture Category 
(deviation) Radon 

Transform 
Proposed 

Transform I 
Proposed 

Transform II 
Isotropic 
(deviation<=1)  

41.3% 54.5% 55.4% 

Isotropic 
(deviation<=3) 

50.7% 63.2% 65.0% 

Isotropic 
(deviation<=5) 

56.4% 68.6% 71.4% 
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The results of the correct detection rate for each category 
have been summarized in Tables I to IV for different values of 
deviation. As expected, the results proved that both proposed 
transforms outperform the Radon transform significantly, for 
all kinds of images with different textural categories.  

For the second experiment, we examined the performance 
of the transforms in the presence of the additive noise to 
evaluate their robustness to noise. For this purpose, we highly 
distorted images by adding Gaussian random noises with zero 
means and SNR=0db. Results for deviation=3 in (23) are 
shown in Table V. Comparing Table V with Tables I-IV, we 
see that the transforms are highly robust to the noise.     

TABLE V.ROBUSTNESS TO NOISE FOR DIFFERENT TRANSFORMS 

Correct Detection Rate  Texture Category 
(deviation=3) Radon 

Transform 
Proposed 

Transform I 
Proposed 

Transform II 

One-Directional 72.9% 96.5% 96.9% 

Multi-Directional 64.1% 87.6% 87.6% 

Mixed 57.7% 73.8% 72.2% 

 
Finally, in the last experiment, we computed the processing 

time needed to perform each transform. Table VI shows the 
results in millisecond for an image of size 128x128 on a work 
station computer with CPU 3.06 GHz and 2GB RAM. Results 
indicate that the second proposed transform is considerably 
faster than the conventional and the first proposed ones.  

TABLE VI.PROCESSING TIME FOR DIFFERENT TRANSFORMS 

 Radon 
Transform 

Proposed 
Transform I 

Proposed 
Transform II 

Processing Time 482ms 543ms 159ms 

 

V. CONCLUSIONS AND FUTURE WORKS 
In this paper, we proposed two new transforms based on 

the Radon transform which is a well-developed tool in the 
field of image analysis. Through the paper, we discussed that 
while the proposed transforms preserved the most important 
characteristics of the conventional discrete Radon transform, 
they solved the inherent problems of the Radon transform in 
detecting the directional information of an image.  

Experimental results indicated a considerable increase in 
the performance of the direction estimation in images using 
the proposed transforms compared to the Radon transform. 
Experiments also showed that the processing time for the 
second proposed transform (19) was significantly faster. This 
property makes this transform very interesting for applications 
such as content-based image retrieval whose reply times 
should be as short as possible.  

In future, we plan to extend the idea to the continuous 
domain as well as to generalize the definition of the proposed 
transforms for any kinds of curves rather than straight lines. 
The applicability of the transforms to other domains such as 
content-based image retrieval (CBIR) will be also studied and 
examined in later works.  
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