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Abstract

We propose a novel method to generate a 3D surface using many 3D point clouds ac-

quired from a multi-view camera. Until now, numerous disparity estimation algorithms have been
developed with their own pros and cons. Thus, we may get various sorts of depth images. In this
paper, we deal with the generation of a 3D surface using several 3D point clouds acquired from a
generic multi-view camera. Firstly, a 3D point cloud is estimated based on spatio-temporal prop-
erty of several 3D point clouds. Secondly, the evaluated 3D point clouds, acquired from two
viewpoints, are projected onto the same image plane to find correspondences, and registration is
conducted through minimizing errors. Finally, a surface is created by fine-tuning 3D coordinates
of point clouds, acquired from several viewpoints. The reconstructed model can be adopted for in-
teraction with as well as navigation in a virtual environment.

1 Introduction

Image-based reconstruction of a real environment
plays a key role in providing visual realism while al-
lowing users to navigate in and interact with a Virtual
Environment (VE). The visual realism of recon-
structed models encourages a user to interact with the
VE proactively. Especially, off-the-shelf multi-view
cameras enable generation of 3D models more con-
veniently. For this purpose, elaborate registration and
integration are required in merging 3D point clouds
for 3D model generation.

Until now, various reconstruction methods have
been proposed. ICP (Iterative Closest Point) has been
widely used, and Color ICP was proposed by Johnson
for registration of 3D point clouds [1][2]. Especially,
Park and Subbarao proposed a new method to remove
inherent depth errors induced by disparity estimation
[3]- Meanwhile, Pulli proposed a projective registra-

tion method employing planar perspective warping [4].

On the other hand, the volumetric methods funda-
mentally discretizes a 3D space, and determines the
full and empty sets [5][6]. Even though an arbitrary
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shape can be represented, the resolution of the model
is mainly determined by an initial discretization.
Pixel-based PDE approaches do not depend on the
discretization, and compute a continuous depth for
every pixel [7]. Mesh representations can also adopt
their resolutions to reconstruct detailed shapes, but
have problems in dealing with self-intersections and
topological changes during the search [8]. Meanwhile,
there are probabilistic approaches on the basis of
wide-baseline stereo techniques [9][10].

In this paper, we reconstruct a real environment
using depth and color images. Firstly, a depth image is
generated based on depth image refinement with the
help of spatio-temporal property. Secondly, registra-
tion is accomplished by projecting 3D point clouds
onto an image plane to find correspondences, and by
minimizing errors. Finally, a surface is created by
fine-tuning 3D coordinates of several 3D point clouds.
The proposed method is carried out effectively even if
the precision of 3D point cloud is relatively low by
exploiting the correlation with the neighborhood.
Furthermore, the proposed method is better than ICP
(or Color ICP) with kd-tree with respect to the proc-
essing time. In general, many 2D images can be used
for 3D reconstruction [11][12]. However, much time
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is required to generate a final 3D model.

The paper is organized as follows. In Chapter 2,
high-resolution 3D scene reconstruction for an indoor
scene is explained. After experimental results are
shown and analyzed in Chapter 3, conclusions and
future work are presented in Chapter 4.

2 Indoor Scene 3D Reconstruction
2.1 Depth Image Refinement

In general, disparity estimation results in inherent ste-
reo mismatching errors that cause poor registration
results. Thus, a depth image is refined by spa-
tio-temporal property. Firstly, erroneous 3D points are
removed by using the temporal property that the erro-
neous 3D points change dramatically in 3D space with
time. Secondly, holes are filled by means of the spatial
property that there is a spatial correlation among
neighboring pixels [13]. Fig. 1 shows a flow diagram
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Fig. 1: Flow diagram for 3D reconstruction

2.2 Projection-based Registration

ICP algorithm is widely used for registration of 3D
point clouds. However, the registration method ex-
ploiting the conventional ICP (or Color ICP) is not
appropriate since it relies on the shortest distance
[1]{2]. Thus, a projection-based registration method is
proposed by carrying out a pairing process that
searches for correspondences between 3D point
clouds acquired from destination and source view-
points. We let a multi-view camera stationed around a
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wall, and acquire partial surfaces successively. Desti-
nation and source viewpoints mean the camera view-
points at the previous and current positions of the
camera, respectively.

In initial registration phase, a rigid-body trans-
formation is applied to 3D points of corresponding
features to estimate the poses of the camera [14]. We
project each 3D point cloud acquired from destination
and source viewpoints onto the destination viewpoint
after the initial registration. It should be noted that the
projection of 3D point cloud acquired from source
viewpoint causes self-occlusion. This is eliminated
based on the rays that originate at the camera center
and pass though each pixel. However, there exist dis-
crepancies between two projected data due to the er-
rors in disparity estimation, camera calibration, etc.

In fine registration phase, corresponding features
are employed. We register two partial surfaces by it-
eratively adjusting extrinsic parameters of source
viewpoint with respect to destination viewpoint. In
other words, we apply a Euclidean transformation T:
R3 > R to the source surface. The destination sur-
face, Spy, is projected onto its own image plane and
features, fpy, are extracted in the projected image
plane. On the other hand, at each iteration, the source
surface, Ss., is projected onto the destination image
plane and corresponding features, fs.’, are searched
for. This is illustrated in Fig. 2.
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Fig. 2: Selection of corresponding features

For each feature fp,, of the destination image, the
corresponding feature fs.' of the source image is
searched for within the neighborhood of fp using the
modified KLT feature tracker [15]. Pps and Pg, are
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3D points of fp, and fs,., respectively. cp, and cg,. are
RGB color components of fp,, and fs,., respectively.

Firstly, features are extracted over the overlapping
area, Q, in the destination image. The modified KLT
feature tracker is adopted to extract feature corners.
Then, Ss. is projected onto the destination image
plane using the same calibration parameters that are
used for the projection of Sp,. Correspondences are
searched for in the projected source image in
sub-pixel unit. However, there may occur some mis-
matches that should be filtered out. That is, we should
eliminate outliners and obtain only correct pairs be-
tween source and destination viewpoints.

Projecting Ss. onto the destination viewpoint
Then, we can define a cost
function measuring the mismatch between I’ and the
destination image Ip,, as follows.

produces an image I’

f Ist i f (4N
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where || . || and Disty represent norm, a value preset by

considering the distances between fp, and f5.’, re-
spectively. «; is a weighting factor for color informa-
tion, and N, denotes the number of features. x; is
described as follows to exclude the pair whose dis-
tance in 3D space exceeds a preset threshold Th. In
other words, if the distance between Pp, and P, is
large, they are not included. Otherwise, the weighting
is decided depending on the distance between the pair.
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“Disr, if |Pou — P < TR
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where Distpp represents a value preset by considering
the distances between Pp,, and Psg,..

In summary, we search for correspondences and
use them to define a total cost function within the
overlapping area. By minimizing the cost function, a

final pose of the source viewpoint is estimated. That is,

we can estimate the pose of source viewpoint {Rg;.,
T}, with respect to the pose of destination viewpoint
{Rpst» Tps} through minimizing errors of Ny, corre-
sponding features as follows.
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Given two sets of corresponding points,
Flnd { Src? TSrc} wri {RDst > TDsl}
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The total error is minimized through Leven-
berg-Marquardt algorithm.

2.3 3D Surface Generation

Even after the fine registration phase, there may exist
some 3D points, which are not close in 3D space al-
though they are very close in the real world, due to
disparity estimation errors. Thus, those 3D points
should be manipulated so that they may be located
closely in the reconstructed space.

In general, measurements are always corrupted by
noise. The uncertainty of 3D point cloud affects not
only the local properties of the reconstructed entity,
but also the global structure one wants to recover.
Thus, we want to suppress the influence of uncertainty
on the recovered structure, and integrate 3D point
clouds, acquired from several viewpoints, into a single
3D point cloud. In Fig. 3, we can see one example of
data acquisition from each camera viewpoint using a
multi-view camera. Note that each camera represents a
multi-view camera, and thus enables to capture 3D
point cloud and a pair of images at the same time.

Our final goal is to find a 3D representation of a
scene from a given set of image pairs as well as rough
3D point clouds with full calibration information, i.e.
known intrinsic and extrinsic parameters. Thus, for
every pixel in input images, we want to infer the depth
of the 3D point that each pixel is seeing. These depth
images are integrated into a single 3D reconstructed
model. For depth estimation, we define an energy
function as follows.

d" = argmin E(d).
d

)
E(d) = EDara (d) + ]’l ESmou/hness (d)
Epaa(d)= |1 (x-d', )+ L(x,y)
(x.y)
(5)
j 1,0
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Jj=2
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where Ny represents the number of views, and N¢ de-
notes the number of neighboring cubes. PL’ 4 means
color information for each 3D point. The notation j is
used for the j* view, and L/R is employed to indicate
left or right image. The notation d is a disparity value
with respect to the j* view. Meanwhile, #C o
the number of 3D points associated with the i* cube
with respect to the j* view.

d’ is a final disparity value to be sought through
minimizing E(d). The energy function is composed of
mainly two components: (i) data part Ep,,, and (ii)
smoothness part Egmoommess. The data part measures
how well a disparity value d agrees with several pairs
of input images and 3D point clouds. On the other
hand, the smoothness part encodes the smoothness
assumptions made by the algorithm.

, means
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Fig. 3: Cube representation (a) a cube with respect to
the current pixel of the reference camera (b) a variable
cube depending on a disparity value (c) neighboring
cubes (off-centered cubes) as well as a centered cube

The first terms of both parts are similar to data
and smoothness constraints of the general disparity
estimation algorithm except that the disparity range is
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determined depending on the disparity value which is
already provided as an input data.

The second term of data part investigates the con-
stellation of 3D points in 3D space so that their rela-
tive 3D positions as well as their relative colors may
be compared. Fig. 3(a) shows a cube that is created
with respect to a 3D point of the reference camera.
The cube is employed to incorporate a spatial rela-
tionship among 3D points in 3D space. Whereas Fig.
3(a) shows a cube with respect to the current pixel of
the reference camera, Fig. 3(b) depicts a variable cube
depending on the changeable disparity value.

The second term of smoothness part deals with all
3D points included in neighboring cubes whose sizes
change according to the distance from camera center
to current 3D point of the reference viewpoint. Fig.
3(c) depicts neighboring cubes (off-centered cubes) as
well as the centered cube with respect to the current
pixel of the reference camera for the smoothness part.

3 Experimental Results and Analysis

The experiments were carried out under a normal il-
lumination condition of a general indoor environment.
We used Digiclops, an IEEE 1394 multi-view camera
for color image and 3D point cloud acquisition [16]. It
calculates 3D coordinates through a block-based dis-
parity estimation algorithm in sub-pixel unit by ex-
ploiting three lenses, and uses ICX084AK CCD cen-
sor. Its baseline (B) is 10 cm and focal length (f) of
each lens is 6 mm. Correlation error (m) and calibra-
tion error (p) are 0.08 and 0.08, respectively.

We set Nyto 30 and Ty, to 0.15 [13]. Before ap-
plying the registration step, we removed invalid areas,
such as object boundaries, homogeneous areas. Holes,
whose depth differences are small, are also filled. Fig.
4 illustrates the results of the depth image refinement.
Fig. 4(a) and Fig. 4(b) show an original image and a
corresponding depth image, respectively. Corre-
sponding 3D point cloud and the results of depth im-
age refinement are shown in Fig. 4(c) and Fig. 4(d),
respectively. In this example, we cut the right side of
the original image since the error bound of the right
side is very large. We can observe that invalid areas
are effectively eliminated. In addition, holes, whose
depth differences are small, are also filled.
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Fig. 4. Depth image refinement results (a) original
image (b) depth image (c) 3D point cloud before depth
image refinement (d) 3D point cloud after depth im-
age refinement

(d)

The registration results are shown in Fig. 5, which
explain that the visual quality of the proposed method
is better than that of ICP. Fig. 5(a) and Fig. 5(b) show
left and right images, respectively. After initial regis-
tration, we can obtain the results as shown in Fig. 5(c).
Note that heart shape, face part of bear and some let-
ters are smeared. In Fig. 5(d) and Fig. 5(e), we can see
the final registration results of ICP and the proposed
method, respectively. Actually, total error of the pro-
posed method is larger than that of conventional ICP
in terms of the closest distance. However, we ob-
served that the visual quality of the proposed method
is much better than that of the conventional ICP. The
reason is that the conventional ICP only considers the
closest distance instead of data themselves.

Fig. 6 depicts the performance comparison with
other methods. In the experiments, the numbers of 3D
points acquired from the destination and source
viewpoints are 145,870 and 189,341, respectively. We
can see that speed as well as performance of the pro-
posed method is better than that of ICP (or Color ICP)
with kd-tree. Table 1 shows the registration accuracy
and processing time.

The registration and modeling results for two
walls are shown in Fig. 7. To get the results, we
moved the multi-view camera around two walls and

registered the acquired 3D point clouds. On the left
wall, sofa, vase, table, TV, doll are observed. On the
other hand, vase, sofa, bookshelf and window are on
the right wall.

Fig. 5. The comparison of visual quality (a) left image
(b) right image (c) initial registration (d) ICP (e) pro-
posed method
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Fig. 6. Performance comparison

Table 1. Registration accuracy and processing time

Method ICP with Color ICP p d
Tropose
e kd-tree with kd-tree WV‘?*
Final PSNR |- ¢ 556 272856 28.1307
(dB)
Time 436.531 511516 | 238.8590
(sec) (10 Itr’s) (10 Itr’s) (43 Itr’s)
Time/ltr 43.6531 51.1516 5.55486
(sec)
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Fig. 7. Indoor scene reconstruction and virtual object
augmentation results

4 Conclusions and Future Works

We proposed a novel 3D scene reconstruction method
that exploits partial 3D point clouds acquired from a
multi-view camera for an indoor environment. We
showed that even though the error of depth informa-
tion is relatively large compared to that of la-
ser-scanned data, 3D point clouds are effectively reg-
istered between two viewpoints. Furthermore, the time
required for registration is less compared to ICP (or
Color ICP) with kd-tree. We also showed that an ef-
fective reconstruction is possible using 3D point
clouds combined with 2D image pairs. There are still
several remaining challenges. First, global registration
should be optimized for 3D reconstruction of the en-
tire indoor environment. Natural augmentation of vir-
tual objects into the reconstructed room environment
requires light source estimation and analysis to match
illumination conditions of the VE. Finally, dense dis-
parity estimation is required to obtain better results.
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