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Abstract. The multi-view video is a collection of mul-
tiple videos, capturing the same scene at different view-
points. Since the data size of the multi-view video lin-
early increases as the number of cameras, it is neces-
sary to develop an effective framework to compress,
store, and transmit multi-view video data. Currently,
most multi-view video coding algorithms are based on
the H.264/AVC standard. However, we can exploit the
three-dimensional depth information contained in mul-
tiple videos to efficiently encode multi-view video data.
In this paper, we describe how to encode multi-view
video data with depth information based on the frame-
work using layered depth image (LDI).
Index Terms -MPEG, H.264/AVC, multi-view video
coding (MVC), layered depth image (LDI)

1 Introduction

The multi-view video is a collection of multiple
videos, capturing the same scene at different cam-
era locations. If we acquire multi-view videos from
multiple cameras, it is possible to generate scenes
at arbitrary view positions. It means that users
can change their viewpoints freely within the lim-
ited range of captured videos and can feel the vis-
ible depth with view interaction. The multi-view
video can be used in a variety of applications in-
cluding free viewpoint video (FVV), free viewpoint
TV (FTV), three-dimensional TV (3DTV), surveil-
lance, and home entertainment.

Although the multi-view video has much poten-
tial for a variety of applications, one big problem
is a huge amount of data. In principle, the size
of multi-view video data increases linearly as the
number of cameras; therefore, we need to encode
the multi-view video data for efficient storage and
transmission. Hence, it has been perceived that

multi-view video coding (MVC) is a key technol-
ogy to realize those applications.

ISO/IEC JTC1/SC29/WG11 Moving Picture
Experts Group (MPEG) has been recognized the
importance of MVC technologies, and an ad hoc
group (AHG) on 3-D audio and visual (3DAV) has
been established since December 2001. Four main
exploration experiments (EEs) on 3DAV were per-
formed from 2002 to 2004: EE1 on omni-directional
video, EE2 on FTV, EE3 on coding of stereoscopic
video using multiple auxiliary components (MAC),
and EE4 on depth/disparity coding for 3DTV and
intermediate view interpolation. In response to the
call for comments issued in October 2003, a num-
ber of companies have expressed their interests for
a standard that enables FTV and 3DTV. After
MPEG called interested parties to bring evidences
on MVC technologies in October 2004 [1], some ev-
idences were recognized in January 2005 and a call
for proposals (CfP) on MVC has been issued in July
2005 [2]. Then, the responses to the call have been
evaluated in January 2006 [3].

In this paper, we describe how to encode the
multi-view video with depth information using the
concept of the layered depth image (LDI) [4]. While
most MVC techniques are based on the predictive
coding structure, our framework [5] takes a com-
pletely different approach using LDI.

2 Algorithms and Tools for MVC

The major objective of multi-view videos is to pro-
vide free views or depth impression using captured
videos at different viewpoints. In order to provide
such a functionality, it is essential to compress a
huge amount of multi-view video data. Recently,



several algorithms have been proposed in response
to the CfP on MVC [6] and have been evaluated at
the 75th MPEG meeting in January 2006 [3].

Evaluation results of the responses to the CfP on
MVC demonstrate that new MVC technologies pro-
vide significant gains over view independent cod-
ing using H.264/AVC as defined in the CfP, both
in terms of better quality at the same rate and
lower rate at the same quality. While all the sub-
missions to the CfP were based on H.264/AVC, a
number of different tools were proposed including
hierarchical B pictures in both temporal and view
dimensions, view interpolation prediction, illumi-
nation compensation, disparity vector prediction,
asymmetric macroblock (MB) partitioning, etc [3].

The key idea of those MVC algorithms is to uti-
lize spatial and temporal relationships in multiple
videos. As we apply motion estimation along the
temporal direction in a single video, we can per-
form disparity estimation among different views in
the multi-view video. In other words, they try to
exploit the spatio-temporal correlation among ad-
jacent views. Those methods outperform the simul-
cast coding scheme that encodes each view indepen-
dently using H.264/AVC. The following subsection
describes various MVC tools briefly.

2.1 Hierarchical B Pictures in Both
Temporal and View Prediction

In the current MPEG scalable video coding (SVC)
scheme, temporal scalability is achieved by the mo-
tion compensated temporal filtering (MCTF) using
prediction and update steps. The hierarchical B pic-
ture coding has the similar decomposition structure
as the H.264/AVC-based MCTF layers without up-
date steps. As shown in Fig. 1, the first picture
is independently coded as IDR picture, and all re-
maining pictures are coded in “B...B I/P” group of
pictures using the concept of hierarchical B pictures
[7]. The coding order of the pictures in a GOP is “I
I/P B1 B2 B2 B3 B3 B3 B3...”

I B1 I/PB3B3 B2 B2 B3B3II B1 I/PB3B3 B2 B2 B3B3

Fig. 1. The structure of hierarchical B pictures

The concept of hierarchical B pictures can be
applied to inter-view prediction. In H.264/AVC,
any group of picture (GOP) length can be selected

and a maximum of four reference pictures can be
used for each picture in general. These reference
pictures are taken from temporal as well as inter-
view direction, such that the encoder can choose
the best reference. In order to exploit inter-view
dependency, each second view uses reference pic-
tures from neighboring views. For an even number
of views, the last view has only references to one
of the neighboring views. For memory optimization
purposes, picture reordering before encoding and
inverse reordering after decoding are applied [3].

2.2 View Interpolation Prediction

Three types of prediction schemes are mainly used
in MVC: temporal, inter-view, and view interpola-
tion prediction. The basic idea of the view interpo-
lation prediction is that a set of one or more previ-
ously encoded/decoded frames are used to interpo-
late a new virtual frame that is used to predict the
current frame to be coded. The interpolation pro-
cess could exploit the camera parameters as well as
a depth/disparity map to first compute the pixel
locations in the reference frames corresponding to
the pixel location to interpolate, and then computes
a weighted average of these pixels to produce the
interpolated pixel. One way is to generate the re-
quired disparity map at the decoder using previ-
ously received sequences combined with an optional
depth correction values sent by the encoder. In the
other way, the depth could be estimated at the en-
coder and encoded using H.264/AVC. Finally, each
block of the frame to be coded may be predicted
from the interpolated frame [3].

2.3 Illumination Compensation

In a practical scenario, multi-view video systems
involving a large number of cameras might be built
using heterogeneous cameras, or cameras that have
not been perfectly calibrated. This leads to dif-
ferences in luminance and chrominance when the
same parts of a scene are viewed with different
cameras [6]. Methods to compensate the illumina-
tion changes among cameras are include: (1) new
syntaxes are introduced to convey the informa-
tion used for illumination compensation, (2) mac-
roblock/block level processing is used for illumi-
nation compensation, and (3) disparity estimation
needs to be modified to take illumination compen-
sation into account [3].



2.4 Disparity Vector Prediction

When camera arrangements are fixed with respect
to each other, disparity relations are similar in short
time intervals such as a single GOP. As motion vec-
tors are used in the temporal direction, the reuse of
disparity vectors among views is effective in multi-
view cases. Decoded disparity vectors can be stored
in a disparity vector memory, and the stored dis-
parity vectors are used to predict disparity vectors
for different pictures that belong to other views [3].

2.5 Asymmetric MB Partitioning

A boundary of objects typically exists in an asym-
metrical position in a MB. Therefore, the symmetri-
cal segmentation implemented in H.264/AVC does
not always efficiently describe motion information.
Although the adaptive block size technique as im-
plemented in H.264/AVC is applied, many dispar-
ity/motion vectors are still necessary. The asym-
metric MB partitioning (AMP) technique reduces
disparity/motion vectors for a MB. The AMP tech-
nique efficiently represent motion information even
in such a case by exploiting segmentation pattern
information of a macroblock [3].

3 Coding of Multi-view Video with
Depth Information using LDI

In order to efficiently compress, store, and transmit
multi-view video data, we have proposed a frame-
work utilizing the depth information based on the
concept of LDI [5]. Unlike other algorithms based
on H.264/AVC, our proposed framework is based
on the conversion between multi-view videos and
LDI frames. The generation of LDIs from natural
multi-view video is described in “A Framework for
Multi-view Video Coding using Layered Depth Im-
ages” [5]. In this section, we explain the encoding
methods of the generated LDI frames.

3.1 Data Structure of LDI

LDI contains several attribute data together with
multiple layers at each pixel location. A single LDI
pixel, which is called layered depth pixel (LDP),
contains different number of depth pixels (DPs).
Each DP consists of color, depth, and auxiliary data
that support reconstruction of multi-view images
from the decoded LDI. Thus, multi-view video data
can be stored within the data structure of LDI. The
data structure of LDI is shown in Fig. 2 [4].
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Fig. 2. Data structure of the constructed LDI

3.2 Characteristics of the Generated LDI

Before encoding the generated LDI frames, we first
analyze the properties of the constructed LDIs.
Three key characteristics of LDI are: (1) it contains
multiple layers at each pixel location, (2) the distri-
bution of pixels in the back layer is sparse, and (3)
each pixel has multiple attribute values. Because of
those special features, LDI enables us to render ar-
bitrary views of the scene at new camera positions
[5]. Table 1 lists the number of pixels included in
each layer of the generated LDI. The LDI frame in
Table 1 is constructed from the first eight color and
depth frames of the “Breakdnacers” sequence with
depth threshold 3.0. The basic assumption of our
framework is that the depth information is avail-
able for the input multi-view video. Therefore, we
focus on the “Breakdancers” sequence, which con-
tains depth images for whole frames [8][9].

The maximum number of layer is determined by
the number of cameras. As we can observe from the
table, the pixel distribution becomes sparse as the
layer number increases. It means that the data size
of the original multi-view video could be reduced
by converting them into the specific data structure
based on LDI.

Table 1. Pixel distribution of the generated LDI for the
1st frames of “Breakdancers” (Depth threshold: 3.0)

Layer Distribution [%] Layer Distribution [%]

1 100.0 5 46.8
2 90.4 6 34.7
3 69.8 7 29.0
4 47.0 8 19.1



3.3 Encoding of LDI Frames

After generating LDI frames from the natural
multi-view video with depth, we separate each LDI
frame into three components: color, depth, and
the number of layers (NOL). Specifically, color and
depth component consists of layer images, respec-
tively. The maximum number of layer images is
the same as the total number of views. In addi-
tion, residual data should be sent to the decoder in
order to reconstruct multi-view images. Color and
depth components are processed by data aggrega-
tion/layer filling to apply H.264/AVC. NOL could
be considered as an image containing the number
of layers at each pixel location. Since the NOL in-
formation is very important to restore or recon-
struct multi-view images from the decoded LDI, it
is encoded by using the H.264/AVC intra mode.
Finally, the residual data, differences between the
input multi-view video and reconstructed ones, are
encoded by H.264/AVC. Figure 3 illustrates the en-
coder block diagram.
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Fig. 3. Encoder block diagram

In this paper, we have experimented with two
kinds of encoding algorithms for color and depth
components of LDI. The first idea is that we need
to aggregate scattered pixels into the horizontal
or vertical direction [10][11] because each layer of
the constructed LDI has different number of pixels.
Moreover, there are lots of empty pixel locations
in back layers. Although H.264/AVC is powerful
to encode rectangular images, it does not support
shape-adaptive encoding modes. Therefore, we ag-
gregate each layer image and then fill the empty lo-
cations with the last pixel value of the aggregated
image. First, the scattered pixels in each layer are
pushed to the horizontal direction. Second, the lo-
cally aggregated images are merged into a single
huge image and empty pixels are padded. For exam-
ple, if each layer image has XVGA (1024 x 768) res-
olution, the single aggregated image becomes 8192

x 768. Finally, the generated one is divided into
the images with pre-defined resolutions, e.g., 1024
x 768, to employ H.264/AVC.

Fig. 4. Data aggregation with the horizontal direction

Figure 4 shows an example of the data aggrega-
tion with the horizontal direction. The maximum
number of layers is eight, because there are eight
different views in the “Breakdancers” sequence.
One problem of the data aggregation is that the
resultant images have severely different color distri-
butions. It leads to poor coding efficiency because
the prediction among aggregated images is difficult.

Fig. 5. Layer filling using the first layer information

The second method is called the layer filling,
which is shown in Fig. 5. In order to solve the above
problem, we can fill the empty pixel locations of
all layer images using pixels in the first layer. Since
the first layer has no empty pixels, we can use same
pixels in the first layer to fill the other layers. This
increases the prediction accuracy of H.264/AVC,
therefore data size could be reduced further. We
can eliminate the newly filled pixels in the decod-
ing process because the information of NOL is sent
to the decoder. It is an eight bit gray scale image
that each pixel contains an unsigned integer num-
ber representing how many layers there are.



4 Experiments and Analysis

We have generated LDI frames from the “Break-
dancers” sequence and encoded the constructed
LDIs using the data aggregation or layer filling.
The reconstruction procedure starting with the de-
coded LDI is as follows [12]. After moving whole
pixels in the decoded LDI to world coordinates of
the reference camera, for example, the central cam-
era among eight cameras, we re-project those 3-D
points into each camera location. In this step, the
target of the inverse 3-D warping is each camera lo-
cation. Consequently, a different number of pixels
are located at each pixel location of each camera.
Figure 6 shows results of inverse 3-D warping at
several camera locations.

Fig. 6. Results of the inverse warping

There are several holes in the re-projected multi-
view images because information is lost when pixels
are moved to the reference camera location during
the generation process of LDI. In order to fill those
holes, we can use color and depth information con-
tained in DPs of back layers. By using DPs moved
from other camera locations, we can restore some
empty pixels at the current camera view. The re-
construction results with back layer pixels is de-
picted in Fig. 7.

After restoring some empty pixels of each view,
we can still see uncovered regions. The main reason
is that several cameras cannot capture certain parts
of the scene, for instance, the left-most side of the
camera 0 and the right-most side of camera 7. Ac-
tually, the camera arrangement of MSR data is 1-D
arc of eight cameras with 20cm spacing. Therefore,
it is natural that we cannot find sufficient informa-
tion to restore both left-most side and right-most
side of the reconstructed images at certain camera

Fig. 7. Reconstruction with back layer pixels

locations. In this case, we need additional infor-
mation to restore those regions. Although we can
reduce the empty regions using interpolation meth-
ods, inaccurate pixel values could cause artifacts in
the reconstruction results. Therefore, we need to fill
the holes using the compensation module [5]. Dur-
ing the compensation process is performed, we have
used the residual data extracted from the original
multi-view images. The final reconstruction results
with residual data is illustrated in Fig. 8.

Fig. 8. Reconstruction with residual data

In Table 2, we have compared the data size be-
tween sum of frames of the test sequence and the
generated LDI frame. In the table, sum of frames
means the summation of eight color and depth im-
ages of the test sequence without encoding. Simul-
cast using H.264/AVC (color + depth) means the
summation of data size calculated by the indepen-
dent coding of color and depth images. Two kinds of
encoding methods, one is data aggregation with the
horizontal direction and the other is the layer fill-
ing, are used to encode the constructed LDI frames.

Table 2 shows the data size by changing the
depth threshold value from 0.0 to 5.0, but the data



Table 2. Comparison of data size for the “Breakdnac-
ers” sequence [kbytes]

1st 8 Frames2nd 8 Frames

Sum of frames 25,166 25,166
Simulcast (color+depth) 137.7 132.5
Simulcast (color only) 97.4 96.3

LDI frame (threshold=0.0) 24,520 24,644
Encoded LDI (Aggregation) 135.4 133.7
Encoded LDI (Layer filling) 71.4 72.9

LDI frame (threshold=3.0) 13,924 13,803
Encoded LDI (Aggregation) 131.7 133.8
Encoded LDI (Layer filling) 48.4 48.2

LDI frame (threshold=5.0) 13,808 13,723
Encoded LDI (Aggregation) 91.7 93.0
Encoded LDI (Layer filling) 46.3 47.0

size has not been decreased much as the threshold
value is over 3.0 from our experiments. The depth
threshold means the difference among actual depth
values. For the ”Breakdancers” sequence, the given
depth range is from 44.0 to 120.0. The residual in-
formation mainly depends on the distance among
cameras and the actual viewing range. In our exper-
iments, the size of residual data has changed based
on the depth thresholding.

There are several issues to be considered in the
future experiments. A shape adaptive transform,
such as a shape-adaptive discrete wavelet trans-
form (SA-DWT), could be used to encode LDI data
because H.264/AVC supports only the 4x4 integer
transform. The other one is the temporal predic-
tion of the constructed LDI frames. Because the
performance comparison results in terms of PSNR
vs. bitrates require the rate allocation for each LDI
frame, it could be given after performing the tem-
poral prediction of LDIs.

5 Conclusion

In this paper, we have described the encoding pro-
cedure for multi-view video with depth using the
concept of the layered depth image (LDI). After
generating LDI frames from the natural multi-view
video, we have separated them into three compo-
nents. For color and depth components, we have
applied the data aggregation or the layer filling to
efficiently encode them. Information for the num-
ber of layers (NOL) and residual data used for re-

construction are coded using H.264/AVC. The pro-
posed encoding methods result in the smaller data
size than the simulcast case in terms of depth cod-
ing. In other words, if we use multi-view video data
with the depth information to provide 3-D depth
impression, the proposed approach could be useful
to process and encode those kinds of data.
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