
Efficient Bit-Plane Coding Scheme for Fine
Granular Scalable Video Coding

Seung-Hwan Kim, Yo-Sung Ho

Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong,
Buk-gu, Gwangju 500-712, Korea

Received 11 September 2006; accepted 27 November 2006

ABSTRACT: In this paper, we propose a new efficient bit-plane cod-

ing method for fine granular scalable (FGS) video coding. The general
structure of the proposed bit-plane coding method is based on the tra-

ditional bit-plane coding scheme in MPEG-4 FGS. However, to

enhance coding efficiency of bit-plane encoding, we apply an efficient

probability estimation scheme through employing the binary arithmetic
coding. For probability estimation, various context models are

designed to take advantage of the characteristics of each bit-plane as

well as the correlations of symbols among different bit-planes. Experi-

mental results show that the proposed FGS coding scheme provides
better coding performance, compared to the well-known FGS cod-

ing schemes in MPEG-4 FGS and JSVM. VVC 2007 Wiley Periodicals, Inc.

Int J Imaging Syst Technol, 16, 113–120, 2006; Published online in Wiley

InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20073

Key words: scalable video coding; H.264; bit-plane coding

I. INTRODUCTION

The fine granularity scalability (FGS) video coding technique,

defined in the Amendment of MPEG-4 (Li, 2001), has become an

attractive topic because it can provide scalable bit streams to differ-

ent bandwidth channels. In MPEG-4 FGS, in order to prevent the

drift problem, temporal prediction is limited to the base layer. How-

ever, it causes severely reduced coding performance relative to the

nonscalable single layer video encoding. Hence, there has been a

growing interest in FGS approaches that can enhance coding effi-

ciency by allowing the temporal prediction in the enhancement

layer (Peng and Chen, 2001; Sun et al., 2001; Wu et al., 2001; Reib-

man et al., 2003).

The progressive fine granularity scalable (PFGS) coding scheme

(Wu et al., 2001) has a significant improvement over MPEG-4 FGS

by introducing two prediction loops with different quality referen-

ces. Moreover, macroblock-based PFGS (Sun et al., 2001) and its

improved version (Huang et al., 2002) provide a good trade-off

between coding efficiency improvement and drifting error reduction

by optimally selecting the reference of the enhancement layer at the

macroblock level. Generally, all these schemes mainly focus on

motion estimation, motion compensation, and mode decision. Fur-

thermore, it is required to have a specific coding scheme to control

the drift problem in these approaches. Even though numerous scal-

able tools for drift control have been investigated, a wide accep-

tance in the market of prospective applications has never occurred

(Ohm, 2005).

With the introduction of H.264/AVC, the most powerful and

state-of-the-art video coding standard, the scalable extension of

H.264/AVC was selected as the first working draft (Joint Video

Team, 2005a). A reference encoder is described in the joint scalable

video model (JSVM 0). To support fine granular SNR scalability, a

progressive refinement (PR) slice is introduced to JSVM. A refine-

ment signal that corresponds to a bisection of the quantization step

size is represented in the PR slice. In addition, with an exception of

the modified coding order, the CABAC (Marpe et al., 2003) entropy

coding scheme, as specified in H.264/AVC, is reused in the PR

slice. In JSVM, key picture uses the conventional closed loop

motion compensation and the reference pictures for the key picture

shall be base representation without FGS enhancement. On the con-

trary, the reference pictures of nonkey picture shall be base repre-

sentation þ FGS enhancement. Hence, if FGS layers are truncated,

drift error is inevitable for the nonkey pictures. To limit the corre-

sponding drift, temporal prediction in a key picture is limited to the

base layer. Thus, the key picture is used as resynchronization point

between encoder and decoder.

In this paper, we focus on the design of an efficient FGS coding

scheme. After we briefly review the FGS coding schemes in

MPEG-4 FGS and JSVM, we propose a new FGS coding scheme.

The general structure of the proposed FGS coding scheme is based

on the traditional bit-plane coding in MPEG-4 FGS. However, to

enhance coding efficiency, a context-based binary arithmetic coding

scheme is specially designed for enhancement layer coding. Experi-

mental results show that the proposed FGS coding scheme outper-

forms the FGS schemes in MPEG-4 and JSVM.

The rest of this paper is organized as follows. We first briefly

overview two FGS coding schemes in MEPG-4 FGS and JSVM in

Section II. The new FGS coding scheme is then proposed in Section

III. The performance of the proposed coding technique is compared

to those of the existing FGS coding schemes in Section IV. The

paper is concluded with some discussions in Section V.

Correspondence to: Seung-Hwan Kim; e-mail: kshkim@gist.ac.kr or Yo-Sung Ho;
e-mail: hoyo@gist.ac.kr

Grant sponsors: MIC through RBRC at GIST and MOE through the BK21
project.

' 2006 Wiley Periodicals, Inc.



II. REVIEW OF PREVIOUS FGS CODING

In this section, we will discuss two kinds of well-known FGS cod-

ing techniques used in MPEG-4 FGS and JSVM, respectively.

A. MPEG-4 FGS. Figure 1 shows the encoder structure of the

MPEG-4 FGS system. As shown in Figure 1, the FGS encoder con-

sists of two parts: base layer and enhancement layer. In the base

layer, the basic information of the input signal is coded in the same

way as the traditional block-based coding method. In the enhance-

ment layer, the residual signal that is not coded in the base layer is

divided into 8 3 8 blocks and each block is discrete cosine trans-

formed (DCT). All the 64 DCT coefficients in each block are bit-

plane coded using four VLC tables (Li, 2001).

The bit-plane coding in MPEG-4 FGS (or Bit-plane VLC) con-

siders each quantized DCT coefficient as a binary number of several

bits instead of a decimal integer of a certain value (Li, 2001). For

each DCT block, the 64 absolute values are zigzag ordered into an

array. A bit-plane of the block is defined as an array of 64 bits,

taken one from each absolute value of the DCT coefficients at the

same significant position. For each bit-plane of each block, (RUN,

EOP) symbols are formed and variable-length coded (‘‘Bit-plane

VLC’’) to produce the output bitstream.

Bit-plane VLC is based on Huffman coding. Since the statistics

of the first three bit planes (MSB, MSB-1, and MSB-2) are very dif-

ferent from each other and from the lower bit-planes, corresponding

four VLC tables have been designed for MSB plane, MSB-1 plane,

MSB-2 plane, and the other bit planes. The designed Bit-plane

VLC tables reflect the statistical distribution of each bit plane. But

still there is plenty of room for improvement. It still shares the fun-

damental disadvantage of Huffman coding that assigns a codeword

containing an integral number of bits to each symbol. The usage of

only fixed VLC tables does not allow an adaptation to the actual

symbol statistics, which may vary over spatial and temporal as well

as for different source material and coding conditions.

B. JSVM. To support fine granular SNR scalability, JSVM

adopted so-called PR slices (Reichel et al. 2004; Ridge et al., 2004;

Joint Video Team, 2005a,b; Schwarz et al., 2005a,b). To achieve

the SNR scalability, the residues after the inter-layer prediction are

coded using a hybrid approach of bit-plane and (Run, Level) cod-

ing. Specifically, the residues are firstly transformed by the 4 3 4

integer transform. Then the transform coefficients are successively

quantized into multiple quality enhancement layers (also known as

FGS layers) for the SNR scalability. For the property of fine granu-

larity, the bit-planes in a FGS layer are coded using a cyclical block

coding. Basically, the coding is partitioned into two passes, the sig-

nificant and the refinement passes. The significant pass first encodes

the insignificant coefficients that have values of zero in the subordi-

nate layers. Then, the refinement pass refines the remaining signifi-

cant coefficients with range from �1 to þ1. During the significance

pass, the transform blocks are coded in a cyclical and block-inter-

leaved manner. On the other hand, the coding of the refinement

pass is conducted in a suband-by-subband fashion. In cyclical block

coding, for each cycle, the coding of a block is continued until a

nonzero coefficient in zigzag order is coded. Particularly, the

coding of each cycle in a block includes an EOB symbol, a Run

index and a nonzero quantization level. The EOB symbol is coded

prior to the other symbols for signaling whether there are nonzero

coefficients to be coded in a cycle. In addition, the Run index, rep-

resented by several significance bits, is used for recording the loca-

tion of a nonzero coefficient. To further reduce the bit rate, each

symbol is coded by a context-adaptive binary arithmetic coder.

In Figure 2, the encoding structure of the PR slice is depicted.

Each PR slice is regarded as a FGS layer which represents a refine-

ment signal that corresponds to a bisection of the quantization step

size (D ¼ 6). In JSVM, in order to enhance coding efficiency within

an FGS slice, they first encode \more significant" coefficients. By

arranging the bit stream in this way, the decoding process is biased

so that a simple truncation is likely to retain those \more signifi-

cant" coefficients, and therefore improve the reconstructed quality.

In Figure 2, each FGS layer is represented as a group of multiple

bit-planes. However, these bit-planes are coded by a cyclic block

coding instead of traditional bit-plane coding used in MPEG-4

FGS. The coding order of transform coefficient levels has been

modified. Instead of scanning the transform coefficients macroblock

by macroblock as it is done in the \normal" slices, transform coeffi-

cient blocks are scanned in several paths, and in each path only a

few coding symbols for a transform coefficient block are coded.

Therefore, quality of the SNR base layer can be improved in a fine

granular way. With the exception of the modified coding order, the

CABAC entropy coding is reused, as specified in H.264/MPEG4-

AVC (Marpe et al., 2003).

Figure 1. MPEG-4 FGS encoder. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Figure 2. Encoding structure of progressive refinement slice. [Color
figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

114 Vol. 16, 113–120 (2006)



III. PROPOSED FGS CODING SCHEME

In this Section, we further employ a context-adaptive bit-plane cod-

ing to improve the coding scheme of the enhancement layer. Our

goal is to provide a generic bit-plane coding that delivers higher

coding efficiency. Moreover, our scheme is designed not only for

MPEG-4 FGS (Li, 2001), but also for the advanced FGS al-

gorithms.

The main difference in coding schemes between previous FGS

coding methods and proposed method are as follows.

1. Firstly, the proposed FGS replace the Bit-plane VLC in

MPEG-4 FGS with context-adaptive binary arithmetic

coding.

2. Secondly, the proposed context-adaptive binary arithmetic

coding scheme is newly designed for bit-plane coding and

different from CABAC in JSVM in terms of coding structure

and used context information.

Figure 3 shows the basic structure of the proposed entropy cod-

ing. The proposed entropy coding is divided into two steps. The first

step is the same as MPEG-4 FGS. The residual image, which is

obtained by subtracting the reconstructed base image from the orig-

inal image is first divided into 8 3 8 blocks and transformed

(DCT). Then, those DCT coefficients are zigzag-scanned as repre-

sented by corresponding bit-planes (Li, 2001). In the second step,

the bit-plane VLC (Li, 2001) is replaced by binary arithmetic cod-

ing with adaptive probability estimation to enhance coding effi-

ciency of bit-plane coding. For adaptive probability estimation, a

proper context model is selected to estimate the probability distribu-

tion of the current symbol. In the next step, a binary arithmetic cod-

ing engine generates a bitstream using the estimated probability dis-

tribution of the symbol.

A. Bit Classification and Bit-Plane Partition. In our proposed

FGS coding scheme, the design of context model is most critical to

the coding efficiency. To improve the efficiency of context refer-

ence, we propose a bit classification scheme and a bit-plane parti-

tion method for distinguishing the coefficient bits with different

importance so that the context models can be designed by different

sources of correlations. For the bit classification, we partition the

coefficient bits into three types, including significant bit, refinement

bit, and sign bit, as in Li (2001). Given our bit classification, the fol-

lowing further presents the context model for each type of bits. Par-

ticularly, in our design, we consider various context information to

efficiently encode the significant bit and refinement bit.

B. MSB REACHED and sign bit. The proposed FGS coding

scheme is based on the bit-plane coding, and the MSB plane of

each 8 3 8 block can vary from block to block. Hence, before the

MSB plane in each block is reached, we need to send a signal,

msb_not_reached, which indicates whether MSB plane is reached

or not. To signal msb_not_reached, we use the same coding scheme

used in MPEG-4 FGS (Li, 2001). From the extensive experiments,

we confirm that MPEG-4 FGS provided very good solution for the

case. Since many 8 3 8 blocks have fewer bit planes than the maxi-

mum number of bit planes in a frame, there are many cases that

MSB is not reached. Therefore, to signal msb_not_reached for ev-

ery 83 8 block efficiently, we group the blocks in each macroblock

and code the MB_msb_not_reached case in the macroblock unit.

By combining FLC and VLC used in MPEG-4 FGS, we encode

MB_msb_not_reached and msb_not_reached.

The sign bit records the sign of a coefficient. Statistical analysis

reveals that the distribution of a transform coefficient is approxi-

mately symmetric with respect to zero, i.e., the sign bit averagely

consumes one bit. Thus, we use a fixed probability model for the

coding of sign bits.

C. Adaptive Probability Estimation for bit-plane
coding. Binary arithmetic coding is based on the principle of re-

cursive interval subdivision and an estimated probability of the

given symbol is represented by its range. The given interval is sub-

divided into two subintervals, LPS and MPS. Depending on the

observed binary decision, either identified as the LPS or the MPS,

the corresponding subinterval is then chosen as the new current

interval. Thus, if we know the probability of a given symbol to be

zero, P(0), the probability of the symbol to be one is automatically

determined by 1 � P(0). Therefore, in the probability estimation

step, only the estimation of P(0) is necessary.
To efficiently estimate the probability of a given symbol to

code, we apply three types of probability estimation techniques.

The first type relies on local information, such as bit-plane level

and frequency component, of a given symbol to code. The second

type mainly depends on the complexity of a block where a current

symbol is included. The complexity of a block is measured by the

number of nonzero coefficients. In the third type, we use preceding

symbols in the same bit-plane layer and in the higher bit-plane

layer. In the following paragraphs, we are going to discuss in detail

these three types of probability estimation techniques.

In bit-plane coding, we generally have different statistical distri-

bution of binary symbols for each bit-plane level. To more accurately

estimate P(0) for a symbol, we basically use the local information.

Local information includes bit-plane level (BPL), data level (DL),

and scanning position (SP). Each of them is defined as follows.

� BPL (bit-plane level): the index of the bit-plane layer of the

given symbol in terms of the most significant bit-plane level

in each frame.

� DL (data level): the index of the bit-plane layer of the given

symbol in terms of the most significant bit-plane level in each

8 3 8 block.

Figure 3. The basic structure of the proposed FGS encoder. [Color

figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Vol. 16, 113–120 (2006) 115



� SP (scanning position): the order of zigzag scanning of the

given symbol in each 8 3 8 block (0–63).

Since not every 8 3 8 DCT block has the same number of bit-

planes, the MSB plane of each individual block (DL) can vary from

block to block in terms of the MSB plane of each frame (BPL).

Through extensive experiments on many video sequences, we have

observed the probability distribution of binary data according to

BPL, DL, and SP. In Figure 4, the actual probability distribution of

zero according to local information is represented. From Figure 4, it

can be observed that the probability distribution depends not only

on SP but also on DL and BPL. Hence, if we use the local informa-

tion together, we can estimate the probability distribution of the

source data more precisely.

In the first DL (DL ¼ 0), we can estimate, P(0), probability of a

given symbol to be zero by using local information. However, for

DL larger than zero, we can also use the correlation between current

bit-plane layer and the previously coded bit-plane layers.

Context modeling is based on the fact that a symbol which has

appeared recently will appear in a near future, and so the more

times that it appears the higher probability that it appears again

(Fig. 5). We use context because the probability of a binary symbol

appearing in a given position heavily depends on the symbols that

have appeared before. When using the information of context we

also have to take care of what is the context of the current symbol,

and thus we take only the probability of the symbols which have

appeared under the given context. In bit-plane coding, binary data

are context sensible, that is, under a given context the same symbols

tend to appear, and so we can get a more reliable probability. The

goal of a context modeling is to get a skewed probability distribu-

tion, which hopefully gives high probability to the symbols which

actually occur, and thus we can code them with fewer bits. For the

sake of convenience in context modeling, we define several termi-

nologies as follows.

C (BPL, DL, SP, i, j) represents a given binary symbol in a block

located in (i, j) position in a frame. Each index i and j represents the
horizontal and vertical index of an 8 3 8 block in a frame,

respectively.

K is the index that represents whether nonzero symbol (\1") is
already reached or not at a given SP in a block. If a given symbol is

in a L-th DL, we calculate the index K as follows:

K ¼ 0 for
XL�1

DL¼0

CðBPL;DL; SP; i; jÞ ¼ 0

1 Otherwise

8><
>:

ð1Þ

N is the number of encoded nonzero coefficients in a block for

the higher DLs of a given symbol to encode. Hence, N is also used

for measuring the degree of complexity of a given block. If a given

symbol is in a L-th DL, we calculate the index K as follows:

CðSPÞ ¼
0 for

XL�1

DL¼0

CðBPL;DL; SP; i; jÞ ¼ 0

1 Otherwise

8>><
>>:

N ¼
X63
SP¼0

CðSPÞ

ð2Þ

We define the block as a complex block, which includes many non-

zero coefficients. In the complex block, we have more nonzero sym-

bols compared to a normal block. After calculating N, we classify the

complex bit-plane into four cases according to the value of N.

Figure 4. Probability distribution of zero. (a) Data level and bit-

plane level. (b) Scanning position. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Figure 5. Contexts of a given symbol in a block. [Color figure
can be viewed in the online issue, which is available at www.

interscience.wiley.com.]

116 Vol. 16, 113–120 (2006)



A � N < Aþ a

Aþ a � N < Aþ 2a

Aþ 2a � N < Aþ 3a

Aþ a � N

ð3Þ

Selection of A and a depends on the statistical distribution of the

source data. For simplicity, in our experiments, we set A and a to

the fixed values 5 and 3, respectively. The variation of P(0) accord-
ing to N is shown in Figure 6.

If a given symbol is neither in the first DL nor in a complex

block, we use neighboring symbols in the same data level (Fig. 7).

We then calculate context offset M as follows:

M ¼
X2
m¼1

CðBPL;DL; SP� m; i; jÞ ð4Þ

Based on the context information K and M, we estimate the proba-

bility of the corresponding symbol. For some low frequency com-

ponents (SP < 2), we consider only K.

Basic procedure of probability estimation technique of the pro-

posed entropy coding is represented in Figure 9. Binary arithmetic

coding procedure in Figure 8 represents the binary arithmetic

coding engine that generates a bitstream using P(0) of the given

symbol to code. To implement binary arithmetic coding, we

followed the general rule for the arithmetic coding. At the start, the

coding interval is initialized to the whole scale. We then project the

estimated probability model of a new symbol to the initialized inter-

val and obtain a new interval. The new interval for the symbol is

repeatedly updated and calculated from the model scale of the new

input symbols. In the meantime, we compare the new interval with

the scale to determine whether there is any bit for transmission

down the channel. These bits are due to the redundancy in the

binary representation of lower and upper values.

D. Binary Arithmetic Coding. To implement binary arithmetic

coding, we designed several steps. At the start, the coding interval

is initialized to the whole scale [0, T). We then project the estimated

probability model of a new symbol to the initialized interval and

obtain a new interval. The new interval for the symbol is repeatedly

updated and calculated from the model scale of the new input sym-

bols. In the meantime, we compare the new interval with the scale

[0, T) to determine whether there is any bit for transmission down

the channel. These bits are due to the redundancy in the binary rep-

resentation of lower and upper values. For example, if values of

both lower and upper are less than half the [0, T) range, then their

most significant number in binary form is 0. Similarly, if both

belong to the upper half range, their most significant number is 1.

Hence we follow the general rule for the arithmetic coding:

In Figure 9, if the lower value is in the second quarter of the

scale and the upper value is in the third quarter, then the range of

Figure 6. The various of P(0) according to N. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]

Figure 7. The various of N according to DL. [Color figure can be
viewed in the online issue, which is available at www.interscience.

wiley.com.] Figure 9. Basic structure of binary arithmetic coding.

Figure 8. Basic procedure of probability estimation.

Vol. 16, 113–120 (2006) 117



frequency is less than 0.5. In this case, the two most significant bits

are different, 01 for the lower and 10 for the upper, but we can

deduce some information from them. That is, in both cases, the sec-

ond bit is the complementary bit to the first. Hence, we can find out

the second bit, the previous bit is its complement. Therefore, if the

second bit is 1, then the previous value should be 0, and we are in

the second quarter, meaning the lower value. Then, the scaling and

shifting for this case will be done only on the portion of the scale

containing second and third quarters. Therefore, if the interval

belongs to the second and third quarters of the scale, unknown bit is

sent to a waiting buffer for later definition and the interval trans-

formed as shown in Figure 9. If the interval belongs to more than

two different quarters of the scale, the probability in the given inter-

val is greater than 0.5. Hence, no bits are transmitted.

To verify the efficiency of the each proposed probability estima-

tion schemes depicted in Figure 10, we compare the number of av-

erage coding bits for encoding four bit-planes in the enhancement

layer by changing used probability estimation schemes for APE. In

Case 1, only local information (BPL, DL, SP) is used for probability

estimation process. In Case 2, local information and the context in-

formation obtained from neighboring symbols, (K, M), are used for

probability estimation. In Case 3, all proposed methods depicted in

Figure 8 are used for probability estimation. From the Figure 10,

we can verify that each probability estimation technique provides

additional coding efficiency.

IV. EXPERIMENTAL RESULTS

Through experimentation, we compared coding efficiency among

three different FGS coding schemes: MPEG-4 FGS, JSVM FGS,

and the proposed FGS. We have tested a large number of sequences

with different motion and texture characteristics to represent vari-

ous types of contents.

In the first experiment, we used the same base layer coding

scheme (H.264: JM 9.5; Suehring) to evaluate coding efficiency

between the proposed FGS and MPEG-4 FGS coding. Since we

have encoded the base layer as the same quality, the overall PSNR

values and subjective quality are exactly the same for both codecs.

The only difference is the number of bits used to encode each bit-

plane in the enhancement layer. Table I represents the relative cod-

ing gain of the proposed FGS coding over MPEG-4 FGS in terms

of the total number of bits. The results show that the proposed FGS

coding is more efficient than MPEG-4 FGS in all cases, and up to

20% of bit savings can be achieved with the proposed FGS coding.

In the second experiment, we used compliance with H.264 for

the base layer coding in JSVM (version 6; Joint Video Team, 2006)

to evaluate coding efficiency between JSVM FGS and the proposed

FGS. In the proposed FGS codec, no temporal prediction is per-

formed for enhancement layers. In JSVM, the key picture utilizes

the conventional closed loop motion compensation, and the refer-

ence pictures for the key picture shall be the base representation

without FGS enhancement. On the contrary, the reference pictures

of a nonkey picture shall be the base representation plus the FGS

enhancement. Hence, to compare the performance of the FGS cod-

ing schemes without any temporal prediction in the enhancement

layer, we apply only key pictures by selecting GOP ¼ 1 (I P P

P. . .). We then compared the rate-distortion performance between

two FGS schemes. The results have been shown in Figure 11. It can

be observed that the proposed FGS coding provides better rate dis-

tortion performance than the FGS coding scheme in JSVM.

Figure 10. The number of average coding bits according to using

each proposed probability estimation method. [Color figure can be

viewed in the online issue, which is available at www.interscience.
wiley.com.]

Table I. Comparison of coding bit rate between CBACBP and H.264-FGS-VLC.

Sequences (CIF, 30 Hz) Coded Bit-Planes MPEG-4 FGS (kbps) Proposed FGS (kbps) Bit-Savings (%)

FOREMAN Base þ 2 bit-planes 317 290 8.51

Base þ 4 bit-planes 3,033 2,752 9.26

BUS Base þ 2 bit-planes 652 607 6.90

Base þ 4 bit-planes 4,809 4,459 7.27

CITY Base þ 2 bit-planes 508 467 8.07

Base þ 4 bit-planes 4,032 3,704 8.13

CREW Base þ 2 bit-planes 355 326 8.16

Base þ 4 bit-planes 2,840 2,596 8.59

HARBOUR Base þ 2 bit-planes 691 624 9.69

Base þ 4 bit-planes 4,723 4,245 10.12

ICE Base þ 2 bit-planes 201 184 8.45

Base þ 4 bit-planes 1,824 1,654 9.32

SOCCER Base þ 2 bit-planes 412 395 4.12

Base þ 4 bit-planes 3,830 3,655 4.56

MOBILE Base þ 2 bit-planes 845 751 11.12

Base þ 4 bit-planes 6,326 5,487 13.26

FOOTBALL Base þ 2 bit-planes 643 554 13.84

Base þ 4 bit-planes 5,107 4,350 14.82

118 Vol. 16, 113–120 (2006)



V. CONCLUSIONS

In this paper, a new FGS coding scheme was presented. The basic

structure of the proposed FGS coding is based on the traditional bit-

plane coding in MPEG-4 FGS. However, to enhance coding effi-

ciency of the bit-plane coding, we proposed a new efficient binary

arithmetic coding with adaptive probability estimation. For adaptive

probability estimation, various probability estimation models were

designed to take advantage of the characteristics of each bit-plane

and correlations of symbols among different bit-planes. Experimen-

tal results showed that the proposed FGS coding provides bit-sav-

ings up to 20% than MPEG-4 FGS, and even better rate-distortion

performance than JSVM.

REFERENCES

H. Huang, C. Wang, and T. Chiang, A robust fine granularity-scalability

using trellis-based predictive leak, IEEE Trans Circuits Syst Video Technol

12(6) (2002), 372–385.

Joint Video Team of ITU-T VCEG and ISO/IEC MPEG, Joint scalable

video model JSVM0, Joint Video Team, Document JVT-N021, January

2005a.

Joint Video Team of ITU-T VCEG and ISO/IEC MPEG, Scalable video

coding—Working draft 1, Joint Video Team, Document JVT-N020, January

2005b.

Joint scalable video model JSVM-6, Joint Video Team JVT-S202, Geneva,

Switzerland, April 2006.

W. Li, Overview of fine granularity scalability in MPEG-4 video standard,

IEEE Trans Circuits Syst Video Technol 11(3) (2001), 301–317.

D. Marpe, H. Schwarz, and T. Wiegand, Context-based adaptive binary

arithmetic coding in the H. 264/AVC video compression standard, IEEE

Trans Circuits Syst Video Technol 13(7) (2003), 620–636.

J.-R. Ohm, Advances in scalable video coding, Proc IEEE 93 (2005), 42–

56.

W.S. Peng and Y.K. Chen, Mode-adaptive fine granularity scalability, IEEE

ICIP, Greece, October 2001.

Figure 11. Comparison of R–D performance between JSVM and proposed FGS coding. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

Vol. 16, 113–120 (2006) 119



A.R. Reibman, L. Bottou, and A. Basso, Scalable video coding with man-

aged drift, IEEE Trans Circuits Syst Video Technol 13(2) (2003), 131–

140.

J. Reichel, H. Schwarz, M. Wien, Joint scalable video model (JSVM) 2, ISO/

IEC JTC1/WG11, m11244, Palma de Mallorca, Spain, October 2004.

J. Ridge, Y. Bao, M. Karczewicz, and X. Wang, FGS block enhancements

for scalable video coding, ISO/IEC JTC1/SC29/WG11, M11509, 2004.

H. Schwarz, D. Marpe, and T. Wiegand, Basics concepts for supporting spa-

tial and SNR scalability in the scalable H. 264/MPEG4-AVC extension,

IEEE IWSSIP, Greece, 2005a.

H. Schwarz, T. Hinz, H. Kirchhoffer, D. Marpe, and T. Wiegand, Technical

description of the HHI proposal for SVC CE1, IEEE IWSSIP 2005b.

K. Suehring, H. 264/AVC Reference Software, JM 9.5, http://bs.hhi.de/

*suehring/tml/.

X. Sun, F. Wu, S. Li, W. Gao, and Y.-Q. Zhang, Macroblock-based progres-

sive fine granularity scalable (PFGS) video coding with flexible temporal-

SNR scalabilities, IEEE ICIP, Greece, October 2001.

F. Wu, S. Li, and Y.-Q. Zhang, A framework for efficient progressive fine

granular scalable video coding, IEEE Trans Circuits Syst Video Technol

11(3) (2001) 332–344.

120 Vol. 16, 113–120 (2006)


