
Algorithm-level Optimization for Real-time H.264/AVC Encoder

Seung-Hwan Kim and Yo-Sung Ho

Department of Information and Communications
Gwangju Institute of Science and Technology (GIST)

1 Oryong-Dong, Buk-Gu, Gwangju, 500-712, Korea
Phone: (+82) 062-970-2258 Fax: (+82) 062-970-3164 E-mail: {kshkim, hoyo}@gist.ac.kr

Keywords: H.264/AVC, Fast mode decision, Algorithm optimization.

Abstract - The H.264 standard achieves higher compression
efficiency than previous video coding standards with the rate-
distortion optimized (RDO) method for mode decision. The
outstanding coding performance of H.264, however, comes at
the cost of significantly increased complexity. In this paper,
we present algorithm-level optimization methods: input pa-
rameter selection, fast inter-mode decision, and efficient com-
bination of motion estimation and mode decision. Simulation
results show that our optimized H.264 encoder achieves real-
time encoding for Video Graphics Array (VGA) and eXtended
Graphics Array (XGA) on a commercial personal computer
without introducing serious quality degradations.

1. INTRODUCTION

The H.264 standard was developed through the Joint
Video Team (JVT) from the ITU-T Video Coding Experts
Group and the ISO/IEC Moving Picture Experts Group
(MPEG) standardization. H.264 is one of the most exciting
developments in video coding [1].

H.264 improves the rate distortion performance by ex-
ploiting advanced video coding technologies, such as vari-
able block size motion estimation, multiple reference pre-
diction, spatial prediction in intra coding, context based
variable length coding (CAVLC) and context-based adap-
tive binary arithmetic coding (CABAC). Test results of
H.264/AVC show that it significantly outperforms existing
video coding standards in both peak signal-to-noise ratio
(PSNR) and subjective visual quality [2].

To achieve high coding efficiency, we use the Lagrangian
rate-distortion optimization (RDO) technique in
H.264/AVC and decide the best coding mode for each
macroblock. In order to choose the best coding mode, we
calculate the rate-distortion (RD) cost of every possible
mode and select the mode of the minimum RD cost. This
process is repeatedly carried out for all the possible modes
for every macroblock. This type of brute force-searching
algorithm is far more demanding the computational com-
plexity than any other video coding algorithm. However,
the outstanding coding performance of H.264 comes with
the cost of significantly higher complexity, making it too
difficult to be applied widely. Therefore, computational
complexity reduction is important to perform real-time en-
coding software on a personal computer.

In this paper, we present our algorithm-level optimization
including input parameter selection and fast inter mode de-

cision, and efficient combining technique between motion
estimation and mode decision. We also apply code-level
optimization techniques of memory rearrangement and sin-
gle-instruction-multiple-data (SIMD) instruction sets.

2. COMPLEXITY ANALYSYS OF H.264/AVC

Fig. 1 shows the high-level execution-time analysis of the
H.264 JM9.5 reference encoder [3]. In the experiment, In-
tel® VTune™ Performance Analyzer20 [4] is used as the
profiling tool to evaluate the software performance and ob-
tain the complexity profile of the reference and optimized
encoders. We have also tested the FOREMAN sequence
(300 frames, CIF format, IPPPPP… frame structure) on an
Intel Pentium-4 3.0GHz PC with 512 MB memory under
the Microsoft Windows XP.

As shown in Fig. 1, the most time-consuming modules of
H.264 encoder are mode decision and motion estimation
including interpolation. Therefore, by optimizing these
modules in the top priority, we develop an efficient H.264
encoder that is capable of working in real-time with high
coding efficiency.

Fig. 1. Complexity analysis of H.264/AVC

3. ALGORITHM-LEVEL OPTIMIZATION

In this Section, we present three efficient fast encoding
techniques for real-time encoder. Firstly, we introduce an
efficient input parameter selection method by comparing
the RD performance and complexity according to activa-
tion of each input parameter. Secondly, we propose an effi-
cient fast inter mode decision (EFMD) method using the
early skip mode decision and an efficient mode comparison
method. Based on EFMD, we propose an efficient com-
bined motion estimation and mode decision (ECMEMD).
In ECMEMD, we change the general structure of motion

978-961-248-029-5/07 © 2007 UM FERI 2007 IWSSIP & EC-SIPMCS, Slovenia131

estimation process in H.264 reference software and pro-
pose a new fast mode decision method.

3.1 Selection of each coding option

H.264 reference software provides many coding options
to achieve the higher coding efficiency. In order to design
the efficient real-time encoding software, we do not need to
use all the coding options but select several efficient op-
tions. In order to estimate the efficiency of each coding op-
tion, removing each option one by one, we compare the
coding efficiency and encoding time.

A group of experiments were carried out on the six CIF
(352×288) sequences: FOREMAN, COASTGUARD,
CARPHONE, CONTAINER, FOOTBALL, and AKIYO.
In order to evaluate the encoding time of each option, the
following calculation of time difference (ΔTime) is defined
by

(%)100
_

__Re
×

−
=Δ

OptionFull

OptionFullOptionmoved

T

TT
Time (1)

where TFull_Option represents the total encoding time for us-
ing all options listed in Table 1. PSNR and bit-rate differ-
ences are calculated according to the numerical averages
between the RD-curves derived from full option and the
removed option, respectively. In Table 1, we represent the
results for difference in PSNR and bitrate for each option.
Using Table 1, we can estimate the efficiency of each cod-
ing option. From Table 1, we can observed that intra pre-
diction mode in the inter frame

Removed Option ΔPSNR (dB) ΔBits (%) ΔTime

Intra 16×16, 4×4 - 0.07 1.23 - 53.48
Sub-pixel ME - 0.39 35.7 - 16.28

Hadamard - 0.05 -0.2 - 5.46
Inter 16×8, 8×16 - 0.03 4.66 - 9.84

Inter 8×8 - 0.03 0.94 - 1.1
Inter 4×8, 8×4, 4×4 - 0.08 2.46 - 13.64

Table 1. Differences in PSNR and bitrate between full option
and each removed option (QP=26, 28, 30, 36)

3.2 Fast inter mode decision

We propose an efficient fast mode decision algorithm
(EFIMD) using the early skip mode decision and an effi-
cient mode comparison method. The flowchart of the
EFIMD is depicted in Fig. 2.

The SKIP mode refers to the 16x16 mode where neither
motion vector nor residual information is encoded. Hence,
it has the lowest complexity in the mode decision process
since no motion search is required.

The proposed EFMD can be mainly divided into three
steps. In the first step, we find the motion vector of the
SKIP mode and calculate RD cost to determine whether the
best macroblock mode is the SKIP mode or not. If one of
the previously encoded neighboring blocks is determined
to be the SKIP mode and SKIP cost of the corresponding
block is less than the given threshold, we determine the
best mode of corresponding block is the SKIP mode. In the
second step, we calculate RD costs for 16×16 and 8×8

modes. If Jmode(16×16) is less than Jmode(16×16), the best mode
is determined as 16×16 mode. Otherwise, we go to the
third step and find the best mode among 16×8, 8×16 and
8×8 modes.

Fig. 2. Motion estimation structure in reference software

3.3 Combined mode decision and motion estimation

In this section, we jointly optimize the mode decision and
motion estimation processes. The motion estimation proc-
ess can be divided into two parts: Integer-Pel and Frac-
tional-Pel motion estimation. In particular, Fractional–Pel
(half-pel and quarter-pel) ME requires a large amount of
complexity because it requires an interpolation process
separately from motion search. For example, half-pixels
and quarter-pixels are interpolated by applying the 6-tap
FIR filter and bilinear filter, respectively. Hence, it requires
much amount of computational complexity to find motion
vector from integer pixel accuracy to quarter pixel accu-
racy at a time.

Therefore, we decompose the motion estimation process
into three independent stages, such as integer pixel, half
pixel, and quarter pixel estimation. Combining these three
motion estimation stages with a fast mode decision method
including early SKIP mode decision, we propose a new ef-
ficient combined motion estimation and mode decision
(ECMEMD) scheme. Fig. 3 shows the flowchart of the
proposed fast mode decision algorithm.

In Fig. 3, Jmode_I (M) and Jmode_H (M) represent RD costs cal-
culated by using integer-pel motion vector and half-pel mo-
tion vector in a given mode M, respectively. The proposed
ECMEMD is divided into four steps. In the first step, we
determine the SKIP condition as the same way in EFMD in
Fig.2. In the second stage, we find integer-pel motion vec-
tor and calculate the RD costs from the motion vectors. If
Jmode_I(16×16) is less than Jmode_I(8×8), the best mode is deter-
mined as the 16×16 mode and we further fulfill the motion
estimation process to find sub-pixel (half-pixel and quarter-
pixel) motion vector. Otherwise, go to the next step and we
select the best mode from the Jmode_H(16×8), Jmode_H(8×16), and
Jmode_H(8×8).

132

Fig. 3. Flow chart of the proposed ECMEMD

In order to optimize C code, we also apply several SIMD
instruction sets used in [6]. Sum of absolute differences
(SAD) and sum of squared differences (SSD), Integer
transform, and inverse integer transform are implemented
using a set of SIMD matrix operations. For detail informa-
tion of Code-level optimization techniques using SIMD in-
struction sets, we recommend to refer [6].

4. EXPERIMENTAL RESULTS

We have performed our optimized encoder on a Pentium-
4 3.0GHz personal computer equipped with 512 MB main
memory and the Windows XP OS. The runtime complexity
is profiled using the Intel® VTune 20 performance ana-
lyzer. Six CIF (352×288) sequences of 300 frames, includ-
ing FOREMAN, COASTGUARD, CARPHONE, CON-
TAINER, FOOTBALL, and AKIYO are tested. Table 2
shows the simulation conditions.

Reference Software JM 9.5

GOP Structure IPPPPP…

Frame Rate 30

Entropy Coding CAVLC

Quantization Parameter 26, 28, 30, and 36

Search Range 16

Number of Reference Frame 1

RD Optimization on

Table 2. Simulation conditions

In our experiments, four different levels of optimized H.264
encoders (JM, JM_sel, EFMD, and ECMEMD) are compared
with runtime and coding performance. “JM” encoder repre-
sents the same as original JM 9.5 and all input options indi-
cated in Table 2 are used. “JM_sel” encoder is the same as
JM but disable several input options, such as Hadamard,
Inter (4×8, 8×4, 4×4), intra prediction in the inter macrob-

lock. In EFMD and ECMEMD, input parameters are set as
the same as JM_sel and code-level optimization is also
added.

In Table 3 and Table 4, we represent the runtime com-
parison for four different H.264 encoders. According to
simulation results, the encoding speed of the JM is only
about 0.47 CIF fps. With the help of controlling several in-
put parameter, JM_sel achieves a speed-up factor of 3.5,
leading to the speed of about 1.64 CIF fps. With the pro-
posed fast inter mode decision and code-level optimization
methods, EFMD and ECMEMD are further enhanced to
achieve up to 75 CIF and 161 CIF fps, respectively.

Sequence JM JM_sel EFMD ECMEMD

FOREMAN 645.92 192.57 4.031 1.875
COASTGUARD 769.05 210.87 5.008 2.266

CARPHONE 573.86 176.41 3.789 1.684
CONTAINER 555.01 174.63 3.503 1.607
FOOTBALL 820.70 223.27 5.350 2.500

AKIYO 473.73 124.51 2.692 1.235
Average 639.71 183.71 4.062 1.861

Table 3. Runtime comparison (QP=28)

Sequence JM JM_sel EFMD ECMEMD

FOREMAN 570.52 188.87 3.711 1.734

COASTGUARD 679.56 210.87 4.523 2.094

CARPHONE 505.96 171.53 3.403 1.547
CONTAINER 482.85 170.21 3.159 1.483
FOOTBALL 705.20 218.52 5.033 2.344

AKIYO 388.46 121.36 2.631 1.205
Average 555.43 180.06 3.743 1.735

Table 4. Runtime comparison (QP=30)

In Table 5 and Table 6, we represent PSNR and bitrate
difference from “JM.” For sequences without intensive mo-
tions, the optimized encoder yields very close coding per-
formance as compared to the non-optimized JM encoder.
For sequences with relatively large motions, the optimized
encoder introduces about 0.6 dB degradation for the same
bit rate. From Simulation results, we confirm that our pro-
posed optimization H.264 encoders (EFMD and
ECMEMD) can achieve a significant speed-up without in-
troducing serious quality degradation.

Sequence JM_sel EFMD ECMEMD

FOREMAN -0.18dB -0.31dB -0.54dB
COASTGUARD -0.15dB -0.28dB -0.37dB

CARPHONE -0.14dB -0.26dB -0.49dB
CONTAINER -0.12dB -0.25dB -0.30dB
FOOTBALL -0.19dB -0.34dB -0.65dB

AKIYO -0.09dB -0.12dB -0.15dB
Average -0.15dB -0.26dB -0.42dB

Table 5. PSNR Difference from “JM” (QP=28)

133

Sequence JM_sel EFMD ECMEMD

FOREMAN 1.4% 2.1% 4.2%
COASTGUARD 2.1% 3.2% 3.7%

CARPHONE 1.3% 2.3% 5.9%
CONTAINER 1.2% 1.3% 3.1%
FOOTBALL 1.7% 1.9% 4.3%

AKIYO 0.3% 0.6% 1.1%
Average 1.33% 1.9% 3.25%

Table 6. Bitrate Difference from “JM” (QP=28)

FOREMAN CIF 30Hz

30

31

32

33

34

35

36

37

38

39

100 200 300 400 500 600 700
bit-rate [kbit/s]

Y
-P

S
N

R
 [

d
B

]

JM_sel

JM_full

EFMD

ECMEMD

Fig. 7. Comparison of RD curves

In Table 7, we have tested a subset of the test sequences
in the MPEG Call for Proposals on multiview video coding
and the results of the number of encoding frames per sec-
ond are shown. Four VGA (640×480) sequences of 250
frames, including Ballroom, Race1, Flamenco2, and Exit
and two XGA (1024×768) sequences of 250 frames, in-
cluding Uli and Breakdancers are tested, respectively.

Sequence (Resolution) EFMD (fps) ECMEMD (fps)

Ballroom (640×480) 27.15 62.01
Race1 (640×480) 27.84 62.54

Flamenco2 (640×480) 25.75 58.72
exit (640×480) 31.05 71.43
Uli (1024×768) 10.05 21.22

Breakdancers (1024×768) 11.14 24.52

Table 7. The number of encoding frames per second (QP=30)

5. CONCLUSIONS

In this paper, we have proposed an efficient algorithm-
level optimization technique for real-time H.264 software
encoder. In order to optimize the H.264 reference software,
we propose a fast mode decision algorithm including early
SKIP mode decision and combined motion estimation and
mode decision. From simulation results, we verify that our
optimized H.264 encoder can compress the video se-
quences of eXtended Graphics Array (XGA: 1024×768)
format at the speed of 24fps without introducing serious
quality degradations.

ACKNOWLEDGEMENTS

This work was supported in part by MIC through RBRC at GIST
and in part by MOE through the BK21 project.

REFERENCES

[1] Joint Video Team of ITU-T and ISO/IEC JTC 1, Draft ITU-
T Recommendation and Final Draft International Standard
of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC
14496-10 AVC), Doc. JVT-G050, March 2003.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Trans. CSVT., vol.13, no. 7, pp. 560-576, July 2003.

[3] JVT reference software version 9.5, available online at:
http://iphome.hhi.de/suehring/tml/download/old_jm/.

[4] Intel Corp., “Intel® VTune™ Performance Analyzer.”
[5] Y.L. Lai, Y.Y. Tseng, C.W. Lin, Z. Zhou, and M.T. Sun,

"H.264 Encoder Speed-Up via Joint Algorithm/Code-Level
Optimization," in Proc. Visual Communication and Image
Processing (VCIP), July 2005.

[6] Available online at: http://forum.doom9.org/shothread.
php?t=89979.

134

