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ABSTRACT 

In this paper, we propose a joint coding scheme for both 
multi-view video and its corresponding depth map. After we 
synthesize a virtual image for the target view using adjacent 
view images and their depth information, we apply a view 
interpolation prediction (VIP) method for both multi-view 
video coding and its depth data coding. In order to improve 
the synthesized virtual view, we also propose a hole filling 
method that can compensate for empty regions caused by 
the 3D warping operation. With the proposed algorithm, we 
have obtained approximately 0.65 dB of the PSNR gain on 
average for the multi-view depth data, and 0.17 dB of the 
PSNR gain for the multi-view video data, compared to 
JMVM 1.0. 

Index Terms— Multi-view video, Depth data, 3D warping, 
Hole filling, View interpolation prediction.

1. INTRODUCTION 

In most traditional multimedia systems, we can see images 
and videos at only one pre-determined viewpoint. However, 
multi-view video systems enable us to choose an arbitrary 
viewpoint and to feel more natural and photo-realistic three-
dimensional (3D) effects. The multi-view video system can 
be applied to free-viewpoint television (FTV) and 3DTV. 
FTV enables users to choose an unrestricted viewpoint that is 
captured by multiple cameras or generated using depth data. 
Users can enjoy more realistic 3D scenes generated from 
conventional 2D video and its depth data [1]. In those systems, 
we need depth data as well as multi-view video. However, the 
more cameras are employed, the more coding bits for multi-
view video and depth data are needed. Therefore, it is 
necessary to develop efficient coding methods to compress 
both multi-view video and its depth data. 

Among various video compression schemes, the latest 
H.264/AVC outperforms previous coding standards, such as 
MPEG-2 and MPEG-4 Visual. In 2001, a new activity was 
launched in MPEG by Ad-Hoc Group (AHG) on 3D audio 
and visual (3DAV) to investigate additional video coding 
tools for multi-view video. In October 2004, they conducted 
a comparison test between the simulcast H.264/AVC coding 
method and a new coding method that allows inter-view 
prediction. It was reported that multi-view video coding 

tools gave better results than the simulcast video coding 
approach based on H.264/AVC [2]. Consequently, a joint 
multi-view video coding model (JMVM) based on the joint 
scalable video coding model (JSVM) [3] was proposed, and 
a reference software was also designed for multi-view video 
coding (MVC) in October 2006. Furthermore, in April 2007, 
a multi-view video-plus-depth (MVD) format was proposed 
to be investigated for future video systems, such as 3DTV 
and FTV [4]. 

Although independent coding of multi-view video and 
depth data has been studied for a while, joint coding of both 
multi-view video and its depth data is a new approach. In 
this paper, we propose a joint coding method of multi-view 
video and its corresponding depth data. After we apply the 
view interpolation prediction (VIP) scheme [5] to encode 
multi-view depth data using only available depth date itself, 
we apply the VIP scheme for multi-view video coding using 
multi-view video and reconstructed depth information.  

2. CODING OF MULTI-VIEW DEPTH DATA 

Depth data can be represented in a sampled video format 
where each sample value indicates the distance between the 
camera and each object point. One of the advantages of 
representing depth data in the video format is that we can 
apply video coding methods directly to compress depth data. 
In this paper, we treat the depth data as a video sequence. 
Since multi-view depth consists of multiple depth sequences 
of the same scene, there exists high correlation among 
neighboring depth data. Thus, we can develop a coding 
method based on JMVM for multi-view depth data. 

             (a) Depth image                            (b) Texture image 

Figure 1. View Synthesis by 3D Warping. 
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Furthermore, we can borrow the idea of view synthesis 
prediction [6] to exploit the characteristics of depth data. We 
synthesize a virtual depth data for the current view using the 
3D warping operation before we encode the actual depth 
data of the current view. Then, we use the synthesized depth 
data as an additional reference. In this special situation, the 
same depth data are used as depth information as well as a 
reference data for the 3D warping operation. Therefore, only 
camera parameters need to be sent as side information for 
depth data coding. However, as shown in Fig. 1, we need a 
reference texture image and its depth information in addition 
to camera parameters for texture image coding. 

2.1. 3D warping operation 

We apply a 3D warping operation to the synthesized views. 
A perspective projection matrix for 3D warping can be 
represented by  

tRAPM | .                                  (1) 

where A, R, and t are camera parameters and denote the 
intrinsic matrix, rotation matrix, and translation vector, 
respectively. Eq. (2) is the projection equation which consists 
of depth data and Eq. (1). Eq. (2) can be transformed into Eq. 
(3). By Eq. (3), we can project pixel positions from the image 
coordinate to the 3D world coordinate.  
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where D denotes the depth information, P is a homogenous 
coordinate in the reference image coordinate system or the 
pixel position in the 3D world coordinate, and P~ indicates a 
homogenous coordinate in the 3D world coordinate system. 
After the projection, the pixel positions in the 3D world 
coordinate are mapped to positions in a desired target image 
by Eq. (4), which is the inverse form of Eq. (3). 
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Finally, we can find the corresponding pixel positions in 
the target image to the pixel positions in the reference image. 
We then obtain the synthesized image by sharing the pixel 
values between the pixel positions in the reference image 
and in the target image. 

2.2. Hole filling and compensating 

Figure 2 illustrates the 3D warping process at a pixel level. 
As shown in Fig. 2, during the 3D warping operation, none 
or more than one pixel positions in the reference view can 
be projected into one pixel position in the target view due to 
occlusion and disocclusion situations. Occlusion regions are 
defined as areas that exist at the reference view, but cannot 
be visible at the target view. On the other hand, disocclusion 

Figure 2. Hole Generation during 3D Warping. 

regions are the areas that cannot be seen at the reference 
view, but exist at the target view. 

In occlusion regions, since more than one pixel positions 
in the reference view are projected into one position in the 
target view, pixel values are overlapped and foreground 
regions can be mixed up with background regions. However, 
since we are dealing with depth data, we can easily resolve 
the problem. Among the pixel values in the overlapped pixel 
position, the largest value represents the most foreground 
object. Therefore, we can solve the occlusion problem by 
choosing the largest value among all candidate values.  

In disocclusion regions of the target view, none of pixel 
position is projected. Thus, those regions are remained as 
initial values and indicated as empty holes. In order to fill 
those holes, we mainly divide the problem into two cases: (1) 
the case when there is only one directional reference view, 
such as P-view, and (2) the case when both directional 
reference views are available, such as B-view. 

For the case of P-view, we should fill the holes from the 
synthesized view itself because there is no other available 
information. In this case, most holes are generated in the 
regions that are hidden by foreground regions in the 
reference view, but are visible in the target view. Thus, we 
can assume that they are mostly in the background regions. 
We scan the synthesized view to distinguish background 
regions from foreground regions. If depth values on the left 
side of the holes are larger than the values on the right side, 
holes are on the right side of foreground; otherwise, holes 
are on the left side of foreground.  

Since the depth data in the video format does not have 
any texture information, but it contains only simple distance 
information, depth values are very similar to one another. 
Thus, we can fill the holes effectively using depth values 
from background regions, and again this process is quite 
well-defined when we are dealing with depth data. 

Figure 3. Hole Compensation in B-view. 
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For the case of B-view, the hole filling process is more 
obvious. When the reference view is located on the left, 
holes are generated on the left side of foreground regions in 
the synthesized view; otherwise, they are on the right side. 
Thus, as shown in Fig. 3, we can compensate the holes using 
the correct information from both synthesized views. 

Furthermore, relatively small holes can be generated due 
to inaccurate camera parameters and depth data. For those 
holes, we can apply simple median filtering. Besides, holes 
existing around edge regions are filled by adjacent pixel 
values that are the nearest nonzero values from the holes.  

2.3. Encoding process 

After the hole filling process, we obtain a synthesized depth 
image. When we encode P- or B-view, we can consider the 
synthesized image as additional information and apply the 
VIP coding method [5]. Figure 4 shows a coding procedure. 

Figure 4. Encoding Process. 

3. MULTI-VIEW VIDEO DATA CODING USING 
RECONSTRUCTED DEPTH DATA 

For multi-view texture video coding, we can apply a similar 
coding method employed in multi-view depth video coding, 
provided that multi-view depth data are available. In order 
to synthesize a virtual texture image for the current view, we 
also apply the 3D warping operation that was explained 
before. During the view synthesis process, holes can be 
generated because of the same reasons as discussed before. 

 For multi-view texture images, we apply similar hole 
filling and compensation methods with multi-view depth 
data. However, when only one reference image is available, 
we use the corresponding depth data in the hole filling 
process. Figure 5 illustrates the synthesized image of the 
first frame from View-2, the corresponding depth image, the 
enlarged image of the dotted square area, and the overlapped 
image, clockwise. As shown in Fig. 5, we examine whether 
holes are generated in foreground or background regions 
using the corresponding depth data of the current view. Thus, 
we fill holes more precisely and results usually look better 
when background regions are planar. Furthermore, depth 
data are used to distinguish foreground regions from 
background regions in occlusion regions. 

For multi-view texture video coding, we use the same 
coding procedure as discussed in Section 2.3.  

Figure 5. Hole Filling using Depth Data, ‘Breakdancers’. 

4. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed algorithm, we 
have implemented the proposed method based on JMVM 1.0 
reference software [3]. For the test sequence, we have used 8 
views and 46 frames of ‘Breakdancers’ and ‘Ballet’ video, 
and depth data sequences in XGA (1024 768) format 
provided by Microsoft Research [7].  

After we encoded multi-view depth data, we utilized the 
reconstructed depth data for multi-view texture video coding 
with the same QP value. We selected two different search 
ranges (SR) to show that our proposed method is more 
effective when the search range is small because pixel values 
in the synthesized view are collocated with pixel values of the 
current view. Table 1 to Table 6 list PSNR vales and bit rates. 

In this experiment, we did not include camera parameters 
in calculation of multi-view depth data coding. Moreover, 
coding bits for camera parameters and depth data are not 
considered for multi-view texture video data coding. 

Table 1: Results for multi-view depth, SR 96. (Breakdancers) 

JMVM 1.0 Proposed Gain 

QP PSNR
(dB) 

Bitrate 
(kbps) 

PNSR 
(dB) 

Bitrate 
(kbps) 

 PSNR
(dB) 

Bitrate
(%) 

22 46.68 586.60 46.99 539.71 

+0.73 -13.66
27 43.34 320.02 43.67 295.72 

32 40.27 166.15 40.61 153.31 

37 37.36 87.93 37.77 82.83 

Table 2: Results for multi-view depth, SR 96. (Ballet) 

JMVM 1.0 Proposed Gain 

QP PSNR
(dB) 

Bitrate 
(kbps) 

PNSR 
(dB) 

Bitrate 
(kbps) 

 PSNR
(dB) 

Bitrate
(%) 

22 47.28 521.60 47.55 494.02 

+0.57 -9.47 
27 43.98 312.91 44.33 299.63 

32 40.51 172.38 40.90 167.92 

37 37.39 92.55 37.80 90.76 
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Table 6: Results for multi-view video, SR 8. (Ballet) 

Figure 6. Rate distortion curves for multi-view depth, SR 96. 

JMVM 1.0 Proposed Gain 

QP PSNR
(dB) 

Bitrate 
(kbps) 

PNSR 
(dB) 

Bitrate 
(kbps) 

 PSNR
(dB) 

Bitrate
(%) 

22 42.19 433.81 42.18 416.94 

+0.28 -7.58 
27 40.85 223.98 40.82 210.42 

32 38.88 129.74 38.85 118.56 

37 36.39 79.14 36.42 69.66 

From the above results, we note that coding efficiency 
varies according to the number of scenes that contain large 
holes and complexity of the texture in the video data. 

Figure 7. Rate distortion curves for multi-view depth, SR 96. 

5. CONCLUSIONS 

In this paper, we have proposed an efficient coding method 
for both multi-view video and its depth data using virtual 
view synthesis. In order to synthesize a virtual image for the 
current view, we have employed the 3D warping operation. 
During the process of synthesizing a virtual image, holes are 
generated due to the occlusion and disocclusion situations. 
Those holes are filled by considering the characteristics of 
depth data. We have also applied the VIP coding scheme to 
encode both multi-view video and its depth data. In the VIP 
scheme, the synthesized image was used as an additional 
reference frame and new coding modes were added. By 
experiments, we have shown that the proposed scheme 
outperforms JMVM 1.0 by 0.17 dB and 0.65 dB in PSNR 
for the multi-view video and its depth data, respectively. 

Table 3: Results for multi-view video, SR 96.  (Breakdancers) 

JMVM 1.0 Proposed Gain 

QP PSNR 
(dB) 

Bitrate 
(kbps) 

PNSR 
(dB) 

Bitrate 
(kbps) 

 PSNR
(dB) 

Bitrate
(%) 

22 40.01 979.29 40.00 942.00 

+0.12 -4.75 
27 38.78 419.74 38.75 401.01 

32 37.17 218.84 37.12 205.12 

37 35.08 127.63 35.07 116.39 
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