
JOINT CODING OF MULTI-VIEW VIDEO AND CORRESPONDING DEPTH MAP

Sang-Tae Na, Kwan-Jung Oh, and Yo-Sung Ho

Gwangju Institute of Science and Technology (GIST)
1 Oryong-dong Buk-gu, 500-712, Gwangju, Korea

ABSTRACT

In this paper, we propose a joint coding scheme for both
multi-view video and its corresponding depth map. After we
synthesize a virtual image for the target view using adjacent
view images and their depth information, we apply a view
interpolation prediction (VIP) method for both multi-view
video coding and its depth data coding. In order to improve
the synthesized virtual view, we also propose a hole filling
method that can compensate for empty regions caused by
the 3D warping operation. With the proposed algorithm, we
have obtained approximately 0.65 dB of the PSNR gain on
average for the multi-view depth data, and 0.17 dB of the
PSNR gain for the multi-view video data, compared to
JMVM 1.0.

Index Terms— Multi-view video, Depth data, 3D warping,
Hole filling, View interpolation prediction.

1. INTRODUCTION

In most traditional multimedia systems, we can see images
and videos at only one pre-determined viewpoint. However,
multi-view video systems enable us to choose an arbitrary
viewpoint and to feel more natural and photo-realistic three-
dimensional (3D) effects. The multi-view video system can
be applied to free-viewpoint television (FTV) and 3DTV.
FTV enables users to choose an unrestricted viewpoint that is
captured by multiple cameras or generated using depth data.
Users can enjoy more realistic 3D scenes generated from
conventional 2D video and its depth data [1]. In those systems,
we need depth data as well as multi-view video. However, the
more cameras are employed, the more coding bits for multi-
view video and depth data are needed. Therefore, it is
necessary to develop efficient coding methods to compress
both multi-view video and its depth data.

Among various video compression schemes, the latest
H.264/AVC outperforms previous coding standards, such as
MPEG-2 and MPEG-4 Visual. In 2001, a new activity was
launched in MPEG by Ad-Hoc Group (AHG) on 3D audio
and visual (3DAV) to investigate additional video coding
tools for multi-view video. In October 2004, they conducted
a comparison test between the simulcast H.264/AVC coding
method and a new coding method that allows inter-view
prediction. It was reported that multi-view video coding

tools gave better results than the simulcast video coding
approach based on H.264/AVC [2]. Consequently, a joint
multi-view video coding model (JMVM) based on the joint
scalable video coding model (JSVM) [3] was proposed, and
a reference software was also designed for multi-view video
coding (MVC) in October 2006. Furthermore, in April 2007,
a multi-view video-plus-depth (MVD) format was proposed
to be investigated for future video systems, such as 3DTV
and FTV [4].

Although independent coding of multi-view video and
depth data has been studied for a while, joint coding of both
multi-view video and its depth data is a new approach. In
this paper, we propose a joint coding method of multi-view
video and its corresponding depth data. After we apply the
view interpolation prediction (VIP) scheme [5] to encode
multi-view depth data using only available depth date itself,
we apply the VIP scheme for multi-view video coding using
multi-view video and reconstructed depth information.

2. CODING OF MULTI-VIEW DEPTH DATA

Depth data can be represented in a sampled video format
where each sample value indicates the distance between the
camera and each object point. One of the advantages of
representing depth data in the video format is that we can
apply video coding methods directly to compress depth data.
In this paper, we treat the depth data as a video sequence.
Since multi-view depth consists of multiple depth sequences
of the same scene, there exists high correlation among
neighboring depth data. Thus, we can develop a coding
method based on JMVM for multi-view depth data.

 (a) Depth image (b) Texture image

Figure 1. View Synthesis by 3D Warping.

2468978-1-4244-1764-3/08/$25.00 ©2008 IEEE ICIP 2008

Furthermore, we can borrow the idea of view synthesis
prediction [6] to exploit the characteristics of depth data. We
synthesize a virtual depth data for the current view using the
3D warping operation before we encode the actual depth
data of the current view. Then, we use the synthesized depth
data as an additional reference. In this special situation, the
same depth data are used as depth information as well as a
reference data for the 3D warping operation. Therefore, only
camera parameters need to be sent as side information for
depth data coding. However, as shown in Fig. 1, we need a
reference texture image and its depth information in addition
to camera parameters for texture image coding.

2.1. 3D warping operation

We apply a 3D warping operation to the synthesized views.
A perspective projection matrix for 3D warping can be
represented by

tRAPM | . (1)

where A, R, and t are camera parameters and denote the
intrinsic matrix, rotation matrix, and translation vector,
respectively. Eq. (2) is the projection equation which consists
of depth data and Eq. (1). Eq. (2) can be transformed into Eq.
(3). By Eq. (3), we can project pixel positions from the image
coordinate to the 3D world coordinate.

)1,,,(~|)1,,(zyxPtRADyxP WCref

111

 (2)

 (3) tRDyxPARzyxP refWC)1,,(),,(

where D denotes the depth information, P is a homogenous
coordinate in the reference image coordinate system or the
pixel position in the 3D world coordinate, and P~ indicates a
homogenous coordinate in the 3D world coordinate system.
After the projection, the pixel positions in the 3D world
coordinate are mapped to positions in a desired target image
by Eq. (4), which is the inverse form of Eq. (3).

)),,(()1,,(1 tRzyxPRAyxP WCtarget (4)

Finally, we can find the corresponding pixel positions in
the target image to the pixel positions in the reference image.
We then obtain the synthesized image by sharing the pixel
values between the pixel positions in the reference image
and in the target image.

2.2. Hole filling and compensating

Figure 2 illustrates the 3D warping process at a pixel level.
As shown in Fig. 2, during the 3D warping operation, none
or more than one pixel positions in the reference view can
be projected into one pixel position in the target view due to
occlusion and disocclusion situations. Occlusion regions are
defined as areas that exist at the reference view, but cannot
be visible at the target view. On the other hand, disocclusion

Figure 2. Hole Generation during 3D Warping.

regions are the areas that cannot be seen at the reference
view, but exist at the target view.

In occlusion regions, since more than one pixel positions
in the reference view are projected into one position in the
target view, pixel values are overlapped and foreground
regions can be mixed up with background regions. However,
since we are dealing with depth data, we can easily resolve
the problem. Among the pixel values in the overlapped pixel
position, the largest value represents the most foreground
object. Therefore, we can solve the occlusion problem by
choosing the largest value among all candidate values.

In disocclusion regions of the target view, none of pixel
position is projected. Thus, those regions are remained as
initial values and indicated as empty holes. In order to fill
those holes, we mainly divide the problem into two cases: (1)
the case when there is only one directional reference view,
such as P-view, and (2) the case when both directional
reference views are available, such as B-view.

For the case of P-view, we should fill the holes from the
synthesized view itself because there is no other available
information. In this case, most holes are generated in the
regions that are hidden by foreground regions in the
reference view, but are visible in the target view. Thus, we
can assume that they are mostly in the background regions.
We scan the synthesized view to distinguish background
regions from foreground regions. If depth values on the left
side of the holes are larger than the values on the right side,
holes are on the right side of foreground; otherwise, holes
are on the left side of foreground.

Since the depth data in the video format does not have
any texture information, but it contains only simple distance
information, depth values are very similar to one another.
Thus, we can fill the holes effectively using depth values
from background regions, and again this process is quite
well-defined when we are dealing with depth data.

Figure 3. Hole Compensation in B-view.

2469

For the case of B-view, the hole filling process is more
obvious. When the reference view is located on the left,
holes are generated on the left side of foreground regions in
the synthesized view; otherwise, they are on the right side.
Thus, as shown in Fig. 3, we can compensate the holes using
the correct information from both synthesized views.

Furthermore, relatively small holes can be generated due
to inaccurate camera parameters and depth data. For those
holes, we can apply simple median filtering. Besides, holes
existing around edge regions are filled by adjacent pixel
values that are the nearest nonzero values from the holes.

2.3. Encoding process

After the hole filling process, we obtain a synthesized depth
image. When we encode P- or B-view, we can consider the
synthesized image as additional information and apply the
VIP coding method [5]. Figure 4 shows a coding procedure.

Figure 4. Encoding Process.

3. MULTI-VIEW VIDEO DATA CODING USING
RECONSTRUCTED DEPTH DATA

For multi-view texture video coding, we can apply a similar
coding method employed in multi-view depth video coding,
provided that multi-view depth data are available. In order
to synthesize a virtual texture image for the current view, we
also apply the 3D warping operation that was explained
before. During the view synthesis process, holes can be
generated because of the same reasons as discussed before.

 For multi-view texture images, we apply similar hole
filling and compensation methods with multi-view depth
data. However, when only one reference image is available,
we use the corresponding depth data in the hole filling
process. Figure 5 illustrates the synthesized image of the
first frame from View-2, the corresponding depth image, the
enlarged image of the dotted square area, and the overlapped
image, clockwise. As shown in Fig. 5, we examine whether
holes are generated in foreground or background regions
using the corresponding depth data of the current view. Thus,
we fill holes more precisely and results usually look better
when background regions are planar. Furthermore, depth
data are used to distinguish foreground regions from
background regions in occlusion regions.

For multi-view texture video coding, we use the same
coding procedure as discussed in Section 2.3.

Figure 5. Hole Filling using Depth Data, ‘Breakdancers’.

4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm, we
have implemented the proposed method based on JMVM 1.0
reference software [3]. For the test sequence, we have used 8
views and 46 frames of ‘Breakdancers’ and ‘Ballet’ video,
and depth data sequences in XGA (1024 768) format
provided by Microsoft Research [7].

After we encoded multi-view depth data, we utilized the
reconstructed depth data for multi-view texture video coding
with the same QP value. We selected two different search
ranges (SR) to show that our proposed method is more
effective when the search range is small because pixel values
in the synthesized view are collocated with pixel values of the
current view. Table 1 to Table 6 list PSNR vales and bit rates.

In this experiment, we did not include camera parameters
in calculation of multi-view depth data coding. Moreover,
coding bits for camera parameters and depth data are not
considered for multi-view texture video data coding.

Table 1: Results for multi-view depth, SR 96. (Breakdancers)

JMVM 1.0 Proposed Gain

QP PSNR
(dB)

Bitrate
(kbps)

PNSR
(dB)

Bitrate
(kbps)

 PSNR
(dB)

Bitrate
(%)

22 46.68 586.60 46.99 539.71

+0.73 -13.66
27 43.34 320.02 43.67 295.72

32 40.27 166.15 40.61 153.31

37 37.36 87.93 37.77 82.83

Table 2: Results for multi-view depth, SR 96. (Ballet)

JMVM 1.0 Proposed Gain

QP PSNR
(dB)

Bitrate
(kbps)

PNSR
(dB)

Bitrate
(kbps)

 PSNR
(dB)

Bitrate
(%)

22 47.28 521.60 47.55 494.02

+0.57 -9.47
27 43.98 312.91 44.33 299.63

32 40.51 172.38 40.90 167.92

37 37.39 92.55 37.80 90.76

2470

Table 6: Results for multi-view video, SR 8. (Ballet)

Figure 6. Rate distortion curves for multi-view depth, SR 96.

JMVM 1.0 Proposed Gain

QP PSNR
(dB)

Bitrate
(kbps)

PNSR
(dB)

Bitrate
(kbps)

 PSNR
(dB)

Bitrate
(%)

22 42.19 433.81 42.18 416.94

+0.28 -7.58
27 40.85 223.98 40.82 210.42

32 38.88 129.74 38.85 118.56

37 36.39 79.14 36.42 69.66

From the above results, we note that coding efficiency
varies according to the number of scenes that contain large
holes and complexity of the texture in the video data.

Figure 7. Rate distortion curves for multi-view depth, SR 96.

5. CONCLUSIONS

In this paper, we have proposed an efficient coding method
for both multi-view video and its depth data using virtual
view synthesis. In order to synthesize a virtual image for the
current view, we have employed the 3D warping operation.
During the process of synthesizing a virtual image, holes are
generated due to the occlusion and disocclusion situations.
Those holes are filled by considering the characteristics of
depth data. We have also applied the VIP coding scheme to
encode both multi-view video and its depth data. In the VIP
scheme, the synthesized image was used as an additional
reference frame and new coding modes were added. By
experiments, we have shown that the proposed scheme
outperforms JMVM 1.0 by 0.17 dB and 0.65 dB in PSNR
for the multi-view video and its depth data, respectively.

Table 3: Results for multi-view video, SR 96. (Breakdancers)

JMVM 1.0 Proposed Gain

QP PSNR
(dB)

Bitrate
(kbps)

PNSR
(dB)

Bitrate
(kbps)

 PSNR
(dB)

Bitrate
(%)

22 40.01 979.29 40.00 942.00

+0.12 -4.75
27 38.78 419.74 38.75 401.01

32 37.17 218.84 37.12 205.12

37 35.08 127.63 35.07 116.39

ACKNOWLEDGMENT

This work was supported in part by ITRC through RBRC at
GIST (IITA-2008-C1090-0801-0017).

Table 4: Results for multi-view video data, SR 96. (Ballet)
REFERENCES

JMVM 1.0 Proposed Gain

QP PSNR
(dB)

Bitrate
(kbps)

PNSR
(dB)

Bitrate
(kbps)

 PSNR
(dB)

Bitrate
(%)

22 42.22 403.91 42.20 386.34

+0.21 -6.26
27 40.91 203.36 40.89 192.86

32 39.00 116.64 38.99 108.88

37 36.64 71.61 36.73 65.58

[1] A. Smolic, K. Mueller, P. Merkle, C. Fehn, P. Kauff, P. Eisert,
and T. Wiegand, “3D Video and Free Viewpoint Video –
Technologies, Applications and MPEG Standards,” Proc. of
ICME 2006, pp. 2161-2164, July 2006.

[2] ISO/IEC JTC1/SC29/WG11 N6720: Call for Evidence on
Multi-view Video Coding, October 2004.

[3] ISO/IEC MPEG & ITU-T VCEG JVT- 207: Joint Multiview
Video Model (JMVM), October 2006.

[4] ISO/IEC MPEG & ITU-T VCEG JVT-W100: Multi-view
Video plus Depth (MVD) Format for Advanced 3D Video
Systems, April 2007. Table 5: Results for multi-view video, SR 8. (Breakdancers)

[5] C. Lee, K.J. Oh, S. H. Kim, and Y.S. Ho, “An Efficient View
Interpolation Scheme and Coding Method for Multi-view
Video Coding,” Proc. of IWSSIP, pp. 107-110, June 2007.

JMVM 1.0 Proposed Gain

QP PSNR
(dB)

Bitrate
(kbps)

PNSR
(dB)

Bitrate
(kbps)

 PSNR
(dB)

Bitrate
(%)

22 40.00 1038.22 39.98 991.61

+0.22 -7.79
27 38.75 456.57 38.70 423.34

32 37.11 243.30 37.01 216.63

37 34.94 143.17 34.90 122.19

[6] S. Ince, E. Martinian, S. Yea, and A. Vetor, “Depth
Estimation for View Synthesis in Multiview Video Coding,”
Proc. of IEEE 3DTV Conference, May 2007.

[7] C.L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and R.
Szeliski, “High-qulity Video View Interpolation using a
Layered Representation,” Proc. of ACM SIGGRAPH, pp.
600-608, August 2004.

2471

