
Y.-M.R. Huang et al. (Eds.): PCM 2008, LNCS 5353, pp. 138–147, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Deblocking Filter Algorithm with Low Complexity
for H.264 Video Coding

Jung-Ah Choi and Yo-Sung Ho

Gwangju Institute of Science and Technology (GIST)
261 Cheomdan-gwagiro, Buk-gu, Gwangju, 500-712, Korea

{jachoi,hoyo}@gist.ac.kr

Abstract. In H.264, block-based discrete cosine transform (DCT) and block-
based motion compensated prediction are used to reduce both spatial and tem-
poral redundancies. Due to the block-based coding, discontinuities at block
boundaries, referred to blocking artifacts are created. To reduce these blocking
artifacts, H.264 employs a deblocking filter. However, it causes a significant
amount of complexity; therefore, the deblocking filter occupies one-third of the
computational complexity of the decoder. In this paper, we propose a deblock-
ing filtering algorithm with low complexity. Using boundary strength (BS) of
the first Line-of-Pixel (LOP), we determine BS of successive LOP in advance.
Then, we apply deblocking filters including newly designed filters. Experimen-
tal results show that the proposed algorithm provides an average computations
reduction of 73.45 % in the BS decision. In the filter implementation, it reduces
an average 57.52 % of additions, 100 % of multiplications, and 5.66 % of shift
operations compared to the deblocking filter in H.264 with comparable objec-
tive quality.

Keywords: H.264, Deblocking Filter.

1 Introduction

The H.264 video coding standard was developed through the Joint Video Team (JVT)
from the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Ex-
perts Group (MPEG) standardization. H.264 is the most advanced development for
video coding [1].

H.264 provides better coding efficiency compared with the previous standards,
such as MPEG-4 and H.263, due to various techniques. The remarkable techniques of
H.264 include variable block motion compensation, multiple reference images, 1/4-
pixel motion vector accuracy, and in-loop deblocking filter. Among these various
techniques, the in-loop deblocking filter has a significant impact on the perception
quality of video [2] [3].

Deblocking filter plays an important role in today’s video and image coding appli-
cations. Since today’s video coding uses block DCT-based coding techniques, it
brings about visible blocking artifacts. Blocking artifacts can be defined by disconti-
nuities occurred at each block boundary.

 Deblocking Filter Algorithm with Low Complexity for H.264 Video Coding 139

In the typical block-based coding, it is necessary to decrease such blocking arti-
facts at the boundaries of the macroblock. In H.264, the deblocking filter is applied in
both encoder and decoder.

For each filter operations, eight pixels (P3, P2, P1, P0, Q0, Q1, Q2, Q3) on both
side of the boundary are inputted to deblocking filter, and some of the 8 pixels are
modified after filtering according to boundary strength (BS) and other thresholds.
eight pixels in one line of block can be grouped as Line-of-Pixel (LOP), as shown in
Fig. 1. In the deblocking filter in H.264, we check BS in every LOP of the macrob-
lock. Then, the filter smoothes block edges, improving the appearance of decoded
frames.

However, the deblocking filter has a drawback that is large computational com-
plexity. Especially, the deblocking process can consume about 30 - 35 % of the de-
coding computations [4]. Also, filter equations are too complex, although it gives
good filtering results.

At the decoder, the complexity problem is most important, because the complexity
at the decoder is directly related to users. For deploying on a commercial scale, the
decoder complexity is major problem. The deblocking filter is one of the main parts,
which causes the decoder complexity. Therefore, if we create a simple and efficient
deblocking filter, it is profitable to solve the complexity problem.

In this paper, we propose a new deblocking filtering algorithm to reduce the com-
putational complexity of the entire process. The H.264 deblocking filter plays a lot of
computations to determine BS at each LOP. Also, the filter equations for high BS are
too complex. In the proposed algorithm, using BS of the first LOP (BSFLOP) of each
block boundary, we determine BS of successive LOP (BSSLOP) in advance. Then, we
apply deblocking filters including newly designed filters with low computational
complexity for high BS.

② ③ ④

⑤

⑥

⑦

⑧

①

P Block Q Block

P3 P2 P1 P0 Q0 Q1 Q2 Q3

Line-of-Pixel (LOP)

(a) Vertical Boundaries (b) Horizontal Boundaries

Fig. 1. Sequential Order of Vertical and Horizontal Boundaries in a Macroblock

2 Overview of Deblocking Filter in H.264

In this section, we briefly describe a deblocking filter in H.264. In H.264, the de-
blocking filter is used to decrease blocking artifact at block boundaries. The filtering
is done first from left to right vertically and then from top to bottom on the horizontal
boundaries. Fig. 1 represents vertical and horizontal boundaries in one macroblock.
Each square stands for a block of 4×4 pixels.

140 J.-A. Choi and Y.-S. Ho

In order to apply a filter to each macroblock, we use filtered pixels at the top and
on the left of the current macroblock. Luminance and chrominance components are
separately processed. In H.264, the deblocking filtering process consists of three
operations: BS decision to determine the filter strength, mode decision to select the
suitable filter, and filter implementation [5].

The deblocking filter in H.264 achieves substantial objective and subjective quality
improvements. However, the H.264 deblocking filter has a drawback that the compu-
tational complexity of the process is too high. In the BS decision, we check several
conditions in every LOP to determine the suitable BS. In the filter implementation,
the number of operations: additions, multiplications, and shift operations in filter
equations are too much. These are main factors of the computational complexity.
Therefore, a new deblocking filtering algorithm with low complexity is required.

3 Low Complex Deblocking Filter Algorithm

3.1 Fast BS Decision

BS decision in H.264 examines each LOP in the macroblock. It checks several condi-
tions for determining a suitable BS. However, in many cases, pixels in the same
boundaries have similar amount of blocking artifacts; therefore, they might have simi-
lar BS. Thus, we can assume that BSFLOP is equal to BSSLOP in the horizontal or vertical
boundary. To confirm the assumption, we checked BSSLOP for each BSFLOP value.

Table 1 shows the statistical results of BSSLOP distribution for various sequences and
various quantization parameters (QP). We use ten test sequences (Foreman, Hall
Monitor, Mother and Daughter, Container, Coastguard, Stefan, News, Table Tennis,
Salesman, and Carphone) with 100 frames. The coding structure is IPPP…P.

Table 1. BSSLOP distribution for various sequences (%)

Conditions BSSLOP = 0 BSSLOP = 1 BSSLOP = 2 BSSLOP = 3 BSSLOP = 4
BSFLOP = 0 97.02 0.82 2.16 0 0
BSFLOP = 1 6.92 88.79 4.29 0 0
BSFLOP = 2 38.60 7.95 53.45 0 0
BSFLOP = 3 0 0 0 100 0
BSFLOP = 4 0 0 0 0 100

From the experiment, we can observe that for BS equal to zero, three, and four, our
assumption is reasonable; however, for BS equal to one and two, it is not sufficient
value to unify BS into one value. Hence, if BSFLOP is zero, three, or four, we can easily
determine BSSLOP without any computations. In the conventional BS decision, de-
blocking filter checks three conditionals for BS equal to zero and two conditionals for
BS equal to three or four. Moreover, it is performed at each LOP. Therefore, if we
determine BS using above BSSLOP distribution, we can reduce many conditionals for
BS decision. In the proposed algorithm, when BSFLOP is equal to zero, we determine
BSSLOP is zero. Also, when BSFLOP is equal to three and four, we set BSSLOP as three and
four, respectively.

 Deblocking Filter Algorithm with Low Complexity for H.264 Video Coding 141

3.2 Deblocking Filter with Low Complexity

The deblocking filter in H.264 has only two filtering modes: normal mode and special
mode. If BS is from one to three, normal mode is selected. Otherwise, special mode is
chosen as a filtering mode. However, characteristics of BS equal to 1 or 2 and BS
equal to 3 is not same. Thus, we need to separate these two cases. Another drawback
of the H.264 deblocking filter is an amount of complexity of filtering. Despite of good
performance, cost of computational complexity is too much. Hence, we need to pro-
pose a simple deblocking filter. In the proposed algorithm we design two deblocking
filters with low complexity for high BS.

d

P3 P2 P1 P0 Q0 Q1 Q2 Q3

Fig. 2. Block Boundary after Decoding

One dimensional view of block boundaries before and after deblocking filtering is
shown in Fig. 2 and 3. This kind of filtering requires less amount of computation
compared to N-tap low pass filtering in the conventional deblocking filter. The pro-
posed algorithm requires very simple control mechanism for applying filtering in
comparison to other well-known algorithms.

1) Filter for BS equal to 1 or 2: If BS value is less than 2 (BS = 1 or 2), we apply
normal mode filter for low BS in the deblocking filter in H.264 [6]:

0Δ+0='0 PP (1)

0Δ0='0 �QQ (2)

where 3>>)4+)11(+)00(4(=Δ0 QPPQ ��
.

2) Filter for BS equal to 3: We describe strong mode filtering for luminance. This
algorithm is a modification to the algorithm proposed by Ramkishor [7]. The filtering
process is shown in Fig. 3 (a).

First, we calculate the size of discontinuity, d. In this mode, four pixels around the
block boundary are filtered. Thus, we can predict that a smoothing line is the connec-
tion of P2 and Q2. In order to match pixel values with the predicted smoothing line,
we can calculate pixel values as

Δ)1>>(+0='0 �dPP (3)

)1>>Δ(+)2>>(+1='1 dPP (4)

Δ+)1>>(0='0 dQQ �
 (5)

)1>>Δ()2>>(1='1 �� dQQ (6)

142 J.-A. Choi and Y.-S. Ho

The amount of modification that will be applied to each of the edge samples is ob-
tained as

5/=Δ d (7)

The algorithm is applied to all blocks.

(a) Filter for BS equal to 3

(b) Filter for BS equal to 4

Fig. 3. Block Boundary after Deblocking Filtering

3) Filter for BS equal to 4: In strong mode filter, only four pixels around the block
boundary are filtered. This filter operation avoids blurring the regions with high spa-
tial details, but restricts the filter effect for regions with strong blocking artifact. The
strength of filtering can be improved if the filter length becomes long. In case of BS
equal to 4, the smoothing line is changed to the connection of P3 and Q3. In addition
to the result of strong mode filter, we modify two more pixels as

)2>>Δ(+)3>>(+2='2 dPP (8)

)2>>Δ()3>>(2='2 �� dQQ (9)

and the △ value is changed as

7/=Δ d (10)

One dimensional view of block boundaries after deblocking filtering is shown in
Fig. 3 (b). This kind of filtering requires less amount of computation compared to N-
tap low pass filtering in the conventional deblocking filter. Table 2 shows the number
of operations for one LOP filtering. Since we design filters for BS equal to 3 and 4,

 Deblocking Filter Algorithm with Low Complexity for H.264 Video Coding 143

Table 2. The Number of Operations during One Filtering (BS = 3 and 4)

JM 11.0 Proposed Filter Operations
BS = 3 BS = 4 BS = 3 BS = 4

Additions 20 28 8 12
Multiplications 4 10 0 0
Shift Operations 6 6 4 5

we compare the number of operations in these BS values. As seen in Table 3, the
proposed algorithm reduces the number of operations much. Note that in the filter
equation of the proposed algorithm, there is no multiplication. The proposed algo-
rithm requires very simple control mechanism for applying filtering in comparison to
other well-known algorithms.

3.3 Procedure of the Proposed Algorithm

Figure 4 shows the flowchart of the proposed deblocking filter algorithm. First, we
apply the fast BS decision, and determine BS equal to zero, three, and four without
any computations. According to determined BS, we select suitable filter. For high BS
such as BS equal to 3 and 4, we apply newly designed deblocking filter. For low BS,
we apply the conventional filter.

Fig. 4. Flowchart of the Proposed Algorithm

4 Simulation Results

The proposed deblocking algorithm is implemented on JM 11.0 [8]. We have tested
four QCIF (176×144) video sequences (Foreman, Stefan, Coastguard, and Hall Moni-
tor). For each sequence, 100 frames are encoded. The frame rate is 30 fps. CAVLC is
adopted as the entropy coding method. Experiments were conducted for four quanti-
zation parameters: QP = 28, 32, 36, and 40.

144 J.-A. Choi and Y.-S. Ho

To evaluate the complexity of the algorithm, we calculate the number of opera-
tions NOP using following equation.

)8(×××= FBSLOPMBFrOP NNNNN �
 (11)

 4=3=0= ++= BSBSBSFBS NNNN (12)

where NFr is the number of encoded frames, NMB is the number of macroblocks in one
frame, NLOP is the number of LOP in one boundary, and NFBS is the number of con-
ducted fast BS decisions in one macroblock. Since JM 11.0 does not use fast BS deci-
sion, NFBS is zero. However, in the proposed method, BS of many LOPs is determined
by fast BS decision, and we can reduce actual BS selection operations. In the pro-
posed algorithm, NFBS is calculated by addition of the number of BS equal to 0, 3, and
4. Table 3 shows the computational complexity comparison in BS decision. They are
relative to results by the H.264 standard. The number of reduced NOP is calculated
using following equation.

(%)100×
)(

)()(
=Δ

referenceN

referenceNproposedN
N

OP

OPOP
OP

�

 (13)

Table 3. Computational Complexity Comparison of BS Decision

Test
Sequence

QP H.264 Proposed ∆NOP (%)

28 1267200 732705 -42.18
32 1267200 481560 -62.00
36 1267200 322740 -74.53

Coastguard

40 1267200 241095 -80.97
28 1267200 366960 -71.04
32 1267200 272055 -78.53
36 1267200 219420 -82.68

Foreman

40 1267200 188085 -85.16
28 1267200 366960 -82.65
32 1267200 272055 -85.43
36 1267200 219420 -87.61

News

40 1267200 188085 -89.01
28 1267200 366960 -44.37
32 1267200 272055 -60.65
36 1267200 219420 -70.97

Stefan

40 1267200 188085 -77.34

In Table 4, average complexity comparison between the H.264 deblocking filter
and the proposed deblocking filter is represented. We checked the number of addi-
tions, multiplications, and shift operations. It is easy to observe that the proposed
deblocking filter needs small operations than that of H.264.

 Deblocking Filter Algorithm with Low Complexity for H.264 Video Coding 145

Table 4. Computational Complexity Comparison of Filter Implementation

Test
Sequence

Operations H.264 Proposed ∆NOP (%)

Additions 332272 141392 -57.45
Multiplications 113112 0 -100

Coast-
guard

Shifts 74232 70696 -4.76
Additions 208800 87488 -58.10
Multiplications 63584 0 -100 Foreman
Shifts 50736 43744 -13.78
Additions 149136 63728 -57.27
Multiplications 52232 0 -100 News
Shifts 32520 31864 -2.02
Additions 198432 84784 -57.27
Multiplications 69448 0 -100 Stefan
Shifts 43296 42392 -2.09

To evaluate the objective quality of the decoded videos, we used the average peak
signal-to-noise ratio (PSNR) and average bit rate. It must be noted that positive values
indicate increments, and negative values indicate decrements.

)()()(=Δ dBreferencePSNRproposedPSNRPSNR �
 (14)

(%)100×
)(

)()(
=Δ

referenceBitrate

referenceBitrateproposedBitrate
Bitrate

�

 (15)

Table 5. Performance Comparion

H.264 Proposed Test
Sequence

QP PSNR
(dB)

Bitrate
(kbps)

PSNR
(dB)

Bitrate
(kbps)

 ∆PSNR
(dB)

∆Bitrate
(%)

28 34.20 311.18 34.20 310.66 0 -0.17
32 31.17 155.62 31.19 155.42 0.02 -0.13
36 28.67 77.60 28.67 78.07 0 0.61

Coastguard

40 26.43 41.14 26.45 41.62 0.02 1.17
28 36.50 122.32 36.52 123.43 0.02 0.91
32 33.80 74.01 33.82 74.44 0.02 0.58
36 31.19 46.34 31.19 46.24 0 -0.22

Foreman

40 28.38 28.23 28.41 28.39 0.03 0.57
28 36.81 72.15 36.81 72.22 0 0.10
32 33.74 43.47 33.73 43.63 -0.01 0.37
36 30.81 25.74 30.81 25.91 0 0.66

News

40 30.78 25.13 30.78 25.21 0 0.32
28 34.51 408.06 34.50 407.36 -0.01 -0.17
32 30.95 221.95 30.97 221.63 0.02 -0.14
36 27.81 119.01 27.81 118.95 0 -0.05

Stefan

40 24.86 65.65 24.87 65.43 0.01 -0.34

146 J.-A. Choi and Y.-S. Ho

From Tables 3 to 5, we can observe that the proposed method provides significant
complexity saving at the cost of negligible loss in PSNR values and a small increment
in bit rate. Fig. 5 illustrates rate-distortion (R-D) curves for each test sequence. From
Fig. 10, we note that the proposed method provides a similar R-D performance to the
H.264 standard.

10

15

20

25

30

35

40

45

50

0 100 200 300 400

P
SN

R

Bit rate

Proposed

H.264
0

5

10

15

20

25

30

35

40

0 50 100 150

P
SN

R
Bit rate

Proposed

H.264

(a) Coastguard (b) Foreman

10

15

20

25

30

35

40

20 30 40 50 60 70 80

P
SN

R

Bit rate

Proposed

H.264
0

5

10

15

20

25

30

35

40

0 100 200 300 400 500

P
SN

R

Bit rate

Proposed

H.264

(c) News (d) Stefan

Fig. 5. Rate-distortion Curves

 (a) JM 11.0 (b) Proposed algorithm

Fig. 6. Decoded quality comparison of deblocking filter for the Foreman sequence

Figure 6 represents the decoded images using JM 11.0 and the proposed method,
respectively. The experiment was conducted with QP equal to 40. Even though a few
amplitude edges are blurred, the proposed approach shows similar decoding results as
the JM 11.0 deblocking filer. Therefore, we verified that the proposed deblocking
filter is much better than the H.264 deblocking filter in terms of computational com-
plexity without any major quality degradation.

 Deblocking Filter Algorithm with Low Complexity for H.264 Video Coding 147

5 Conclusions

In this paper, a deblocking filtering algorithm with low complexity was presented. To
reduce the unnecessary BS decision, we used BSFLOP. Since LOP in the same block
boundary has similar characteristics, amount of blocking artifacts in this region is also
similar and they have similar BS. Thus, using BSFLOP, we can determine BSSLOP with-
out any computations. Then, we apply deblocking filters at each boundary according
to the selected BS. For BS equal to 3 and 4, we apply newly designed filters, which is
much simpler than the conventional filter. Experimental results showed that the
proposed deblocking filtering algorithm reduces the significant computational com-
plexity during BS decision and filter implementation, with a slight PSNR drop and a
negligible bitrate increase. About 73.45 % of computations for BS decision is reduced
and 57.52 % of additions, 100 % of multiplications, and 5.66 % of shift operations are
reduced, compared with the H.264 standard.

Acknowledgements

This work was supported in part by ITRC through RBRC at GIST (IITA-2008-
C1090-0801-0017).

References

1. Joint Video Team of ITU-T and ISO/IEC JTC 1, Draft ITU-T Recommendation and Final
Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC
14496-10 AVC), Doc. JVT-G050 (March 2003)

2. Chang, S.C., Peng, W.H., Wang, S.H., Chiang, T.: A Platform Based Bus-interleaved Ar-
chitecture for De-blocking Filter in H.264/MPEG-4 AVC. IEEE Transactions on Consumer
Electronics 51, 249–255 (2005)

3. Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhalmmer,
T., Wedi, T.: Video Coding with H.264/AVC: tools, performance, and complexity. IEEE
Circuits and Systems Magazine 4 (2004)

4. Lou, J., Jagmohan, A., He, D., Lu, L., Sun, M.: Statistical Analysis based H.264 high profile
deblocking speed up. In: IEEE International Symposium on Circuits and Systems, pp.
3143–3146 (May 2007)

5. Richardson, I.E.G.: H.264 and MPEG-4 Video Compression_Video Coding for Next-
generation Multimedia. Wiley, Chichester (2003)

6. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video
coding standard. IEEE Transactions on Circuits and Systems for Video Technology 13(7),
560–576 (2003)

7. Ramkishor, K., Karandikar, P.: A simple and efficient deblocking algorithm for low bit-rate
video coding. In: IEEE Inernational Symposium on Consumer Electronics (December 2000)

8. JVT Reference Software Version 11.0,
 http://iphome.hhi.de//suehring/tml/download/jm_old/jm11.0.zip

	Deblocking Filter Algorithm with Low Complexity for H.264 Video Coding
	Introduction
	Overview of Deblocking Filter in H.264
	Low Complex Deblocking Filter Algorithm
	Fast BS Decision
	Deblocking Filter with Low Complexity
	Procedure of the Proposed Algorithm

	Simulation Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

