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Generation of ROl Enhanced Depth Maps Using
Stereoscopic Cameras and a Depth Camera
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Abstract—In this paper, we propose a new scheme to generate
region-of-interest (ROI) enhanced depth maps combining one
low-resolution depth camera with high-resolution stereoscopic
cameras. Basically, the hybrid camera system produces four
synchronized images at each frame: left and right images from the
stereoscopic cameras, a color image and its associated depth map
from the depth camera. In the hybrid camera system, after esti-
mating initial depth information for the left image using a stereo
matching algorithm, we project depths obtained from the depth
camera onto ROI of the left image using three-dimensional (3-D)
image warping. Then, the warped depths are linearly interpolated
to fill depth holes occurred in ROI. Finally, we merge the ROI
depths with background ones extracted from the initial depth in-
formation to generate the ROI enhanced depth map. Experimental
results show that the proposed depth acquisition system provides
more accurate depth information for ROI than previous stereo
matching algorithms. Besides, the proposed scheme minimizes
inherent problems of the current depth camera, such as limitation
of its measuring distance and production of low-resolution depth
maps.

Index Terms—Depth camera, depth map generation, ROI en-
hanced depth map, stereo matching.

. INTRODUCTION

HREE-DIMENSIONAL (3-D) video has been recog-

nized as one of the essential parts for next-generation
visual media. As one of the 3-D video representations, it is
widely accepted that a monoscopic color video enriched with
depth maps [1], which is often called as video-plus-depth,
provides the groundwork for the envisaging 3-D applications
due to backwards-compatibility to current 2-D digital systems
and easy adaptability to a wide range different 2-D and 3-D
displays. In general, we utilize depth-image-based rendering
(DIBR) techniques to synthesize virtual views of a scene from
video-plus-depth [2]. Recently, the ISO/IEC JTC1/SC29/WG11
Moving Picture Experts Group (MPEG) has also been inter-
ested in multi-view video with depth (MVD) [3] that is closely
related to free-viewpoint TV (FTV) [4] and 3-D TV [5] to
present more natural and realistic viewing experiences in the
true dimension.
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With respect to the current 3-D TV research activities, it is
very important for us to estimate accurate depth information
from natural scenes. In the field of computer vision and image
processing, state-of-the-art depth estimation methods have been
proposed to generate reliable depth maps [6]. However, accurate
measurement of depth information from real scenes still remains
problematic.

In general, we can classify depth estimation methods into two
categories: active depth sensing and passive depth sensing. Pas-
sive depth sensing calculates depth information indirectly from
2-D images captured by two or more video cameras. Exam-
ples of passive depth sensing include shape from stereo [7], [8],
shape from silhouette [9], and shape from focus [10]. The indi-
rect method can provide depth information of far objects with a
high resolution, while its accuracy is relatively lower than active
depth sensing.

On the other hand, active depth sensing usually employs
physical sensors, such as laser sensors, infrared ray (IR)
sensors, or light pattern sensors, to directly obtain depth in-
formation from natural scenes. Structured light patterns [11]
and time-of-flight depth cameras [12] are included in the direct
method. Active depth sensing can only generate depths of
nearby objects in a lower resolution, but it can produce more
accurate depths in a shorter time than passive depth sensing.

Especially, although active range depth cameras, such as
Z-Cam, developed by 3DV Systems, Ltd. [13] or NHK Axi-vi-
sion HDTV camera [14], can be only applied to capture indoor
scenes, we can directly obtain depth maps in real time. A
depth camera integrates a high-speed pulsed IR light source
with a conventional broadcast TV camera to get color images
and their associated per-pixel depth maps from real scenes
simultaneously. However, even though the depth camera can
produce accurate depth maps directly, there are some inherent
technical problems in the current depth camera system.

The first problem is that a depth map generated by the current
depth camera usually includes optical noise. Optical noise usu-
ally occurs as a result of differences in reflectivity of IR sensors
according to color variation in objects. The second problem is
that the measuring distance of the current depth camera to cap-
ture depth information is limited. In practice, the depth mea-
suring distance of the current depth camera is approximately
from 1m to 4m. As a result, we cannot obtain depth informa-
tion from far objects. The last problem is that the current depth
camera can only produce low-resolution depth maps. The image
resolution of depth maps acquired by Z-Cam is 720 x 486 max-
imally.

One possible way to solve the problem of the current depth
cameras is to upgrade them or develop a new depth camera.
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However, due to many challenges in real-time distance mea-
suring systems, upgrading and improvements of depth cameras
are very slow and expensive.

As an alternative, a fusion method that combines multiple
video cameras and a depth camera has been introduced recently
[15]. The hybrid camera system provided enhanced depth
maps estimated by applying a stereo matching algorithm onto
multi-view image with depth information captured by the depth
camera. However, the depth acquisition system cannot produce
high-resolution depth maps, because it completely depends on
the low-resolution depth camera. In addition, hybrid camera sets
integrating a time-of-flight depth camera and a high-resolution
video camera have been presented to generate high-resolution
range images [16], [17]. However, these previous works have
mainly focused on a static 3-D scene reconstruction with the
refined depth information acquired from the two-camera setup.

In this paper, we propose a new scheme to generate high-res-
olution depth maps by combining high-resolution stereoscopic
cameras and a current low-resolution depth camera. With the
hybrid camera system, we generate region-of-interest (ROI) en-
hanced depth maps by regarding the depth information obtained
by the depth camera as the depth information of ROI in the left
image obtained by the left camera of stereoscopic cameras.

Our main contribution is to develop a high-resolution scene
depth generation scheme using the features of passive depth
sensing and depth camera technology. Since matching failures
on textureless or occluded regions, main unsolved problems in
passive depth sensing, are more serious near to or in ROI than
background, it is very difficult to get accurate ROI depths. In
this work, a depth camera is used as a supplement to get ac-
curate depth information for ROLI. In addition, we provide an
explicit solution to calculate the relative camera information in
the hybrid camera system composed of different types of cam-
eras. On one hand, the proposed hybrid camera system provides
a practical solution to handle in-built problems of the current
depth camera.

The next section will introduce the construction of the pro-
posed hybrid camera system, and then briefly explain the overall
framework to generate ROI enhanced depth maps. Section 1l
will present algorithmic solutions for the estimation of depth
maps from the images captured by the hybrid camera set. Ex-
perimental results will be shown in Section V. Finally, we will
make the conclusion in Section V.

Il. THE PROPOSED HYBRID CAMERA SYSTEM

A. Construction of Hybrid Camera System

The hybrid camera system consists of high-resolution stereo-
scopic cameras and a low-resolution depth camera, as shown in
Fig. 1. In addition, each camera in the hybrid camera system is
connected to a personal computer equipped with a video cap-
turing board. Besides, a clock generator is linked to the camera
set to provide synchronization signals constantly. In this paper,
we generate the depth map at the left camera using the hybrid
camera set. Basically, we capture four synchronized 2-D images
in each frame with the proposed hybrid camera set: left and right

Sync. Generator

Fig. 1. Hybrid camera system.

images from the stereoscopic cameras, and a color image and its
associated depth map from the depth camera.

B. Overall Framework

Fig. 2 describes the overall framework of the proposed ROI
enhanced depth map generation. In order to clearly explain the
methodology of the proposed scheme, we define image termi-
nologies used in this paper in advance. In the defined image
terminologies, a color image and a depth map naturally have
the same resolution as the depth camera. On the other hand, the
other images have the same resolution as the stereoscopic cam-
eras.

 Left image is an image captured by the left camera.

 Right image is an image captured by the right camera.

» Color image is an image captured by the depth camera.

» Depth map is a depth map captured by the depth camera.

* Initial disparity map is a disparity map generated by a

stereo matching algorithm with the left and right images.

* Initial ROI disparity map is a disparity map generated by

a 3-D image warping operation with the depth map.

» ROI disparity map is a disparity map generated by a hole-

filling algorithm with the initial ROI disparity map.

» ROI enhanced disparity map is the final disparity map.

» ROI enhanced depth map is the final depth map.

At the preprocessing stage, we calculate their relative camera
information to the position of the depth camera, and reduce op-
tical noise in the depth map using a depth data enhancing tech-
nique. In addition, the left and right images are rectified and
color-segmented. Then, we apply a stereo matching algorithm
on the rectified left and right images to obtain an initial disparity
map of the left image.

Thereafter, in order to generate the initial ROI disparity map,
we carry out 3-D image warping to move the depths captured
by the depth camera into the world coordinate, and then repro-
ject the warped depths onto the left camera. Next, depth holes
in the initial ROI disparity map are removed by a hole-filling
algorithm to generate an ROI disparity map.

Then, we create the ROI enhanced disparity map by merging
the initial disparity map generated by stereo matching with the
ROI disparity map. Finally, an ROl enhanced depth map is ob-
tained with the final disparity map via a disparity to depth con-
version.
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Fig. 2. Overall framework of the proposed depth map generation.

I1l. GENERATION OF ROl ENHANCED DEPTH MAP

A. Preprocessing

Since we are employing two different types of cameras to
construct the hybrid camera system, it is necessary to calcu-
late relative camera information using camera calibration [18].
In order to get relative camera information, we first carry out
the camera calibration algorithm three times. Hence, we can get
three projection matrices for the three cameras as (1)

P, = K [R|ts]
P =K; [Rl|tl]

P, :Kr[Rr|tr] (1)

where P; is the projection matrix of the depth camera gener-
ated by its camera intrinsic matrix K, rotation matrix R, and
transition matrix ¢,. The term P, and P. indicate the projection
matrices of the left and right cameras generated by their camera
intrinsic matrices K; and K., rotation matrices R; and R,., and
transition matrices ¢; and ¢.., respectively.

Then, the left and right images are rectified using an image
rectification algorithm [19]. Hence, the projection matrices P,
and P, of the left and right images are changed as (2)

P =K [Rilti]
P, =K} R, [t] 2
where K and K. are the changed camera intrinsic matrices for
the left and right cameras by image rectification, respectively.
The term Rj and R, are the changed rotation matrices for the
left and right cameras, respectively.

Thereafter, we convert the rotation matrix R, of the depth
camera into the identity matrix I by multiplying inverse rota-

(@)

Fig. 3. Depth data enhancement. (a) Before; (b) after.

(b)

tion matrix R;!. Thereafter, we convert the transition matrix ¢
of the depth camera into the zero matrix O by subtracting the
transition matrix ¢,. Hence, we can define the new relative pro-
jection matrices for the left and right cameras on the basis of the
depth camera as (3)

P = K| [RiR; |t — t,]
Pl =K, [R/R'[t, — t.] (3)

where P!, P/, and P! indicate the modified projection matrices
of the depth camera, the left camera, and the right camera, re-
spectively.

On one hand, it is necessary to reduce optical noise in the
depth map. To minimize the noise, we use a depth data en-
hancing algorithm [20] that combines downsampling, bilateral
filtering, and linear interpolation techniques. Fig. 3 shows the
improved depth map after removing optical noise.

B. Generation of Initial Disparity Map

In order to create the initial disparity map, a stereo matching
algorithm based on color segmentation is applied to the rectified
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(b)

Fig. 4. Initial disparity map generation. (a) Color segmentation; (b) Initial dis-
parity map.

left and right images. First, the rectified left and right images are
color-segmented using a graph-based image segmentation algo-
rithm [21]. In color segmentation, we carry out bilateral filtering
prior to color segmentation to create more consistent color seg-
ments by removing noises included in the rectified left and right
images. Fig. 4(a) shows the results of color segmentation for the
rectified left image.

In stereo matching, we determine the disparity of each seg-
ment in the left image by computing the sum of absolute dif-
ference (SAD) with its corresponding region in the right image.
Then, we refine the estimated disparity of each segment by con-
sidering disparities of its neighboring segments. Fig. 4(b) shows
the initial disparity map of the left image.

In this paper, since we mainly focus on enhancing the ROI
depths in the initial disparity map with the proposed hybrid
camera system, any kind of high-performance stereo matching
algorithm is acceptable to obtain the initial disparity map.

C. 3-D Image Warping

In order to generate the initial ROI disparity map, we use a
3-D image warping operation. In the step of 3-D image warping,
we move the depths acquired by the depth camera to the world
coordinate, and then reproject the warped 3-D data into the left
camera. When D (psa, psy) IS the depth information at the pixel
position (psz, psy) in the depth map, we can regard the pixel
Ds(Psas Psys Ds(Dsz, Dsy)) @S @ 3-D point. The corresponding
point p; of the left image is calculated by (4)

pl:le'Pslil'ps 4
where ﬁ’l’ and P;—l are the relative projection matrix of the left
camera and the inverse relative projection matrix of the depth
camera, respectively. Here, p;(pi.., iy, 1) has the corresponding
pixel position (pi.., pi,) of the pixel p, in the left image.

In addition, the depth information D, (pi., pi1y) of p; is calcu-
lated by (5)

Dl(plm;ply) - ’[lz + Ds(psm-,psy) (5)

where #,, indicates the third value of the relative transition ma-
trix of the left camera.

Fig. 5 shows the initial ROI disparity map. When we compare
the depth map with the initial ROI disparity map, we can notice
that the body region is extended to fit with the high-resolution
left image. We can also notice that holes occur in the initial ROI
disparity map due to the warping operation.

3-Dimage warping

T~

Depth map

Initial ROI disparity map

Fig. 5. Generation of initial ROI disparity map.

(b)

(©) (d)

Fig. 6. ROI enhanced depth map generation. (a) Color segmentation set for
ROI; (b) ROI disparity map; (c) final disparity map; (d) final depth map.

D. Generation of ROl Enhanced Depth Map

ROI of the left image and the initial ROI disparity map do
not match correctly on the region of ROl boundaries. The main
reason of the mismatch is the differences in reflectivity of IR
sensors in the depth camera according to color values. Besides,
the incorrectness of the camera calibration result can be the
cause of the mismatch. In this paper, we solve the mismatch
problem with the color segmented left image and the initial ROl
disparity map.

In order to correctly detect ROI of the left image, we match
the color segmented left image with the initial ROI disparity
map. Then, we construct the color segment set for ROI from
color segments of the left image by (6)

Z‘f”(A(Si)) Z 0.5

R(s;) = { Lo =) ©)

0, otherwise

where R(s;) indicates whether the i*" color segment s; of the
color segmented left image is included in ROI of the left image
or not. When R(s;) is 1, the corresponding color segment is
included in the color segment set for ROI. The term of n(s;) is
the total count of pixels in s;, and n(A(s;)) is the total count
of pixels on the region of initial ROI disparity map A(s;) thatis
matched with the region of s;. Fig. 6(a) shows the color segment
set for ROI.

After ROI detection, we refine the initial ROI disparity map
from the color segment set. We get rid of outside pixels of ROI
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Fig. 7. Construction of the hybrid camera system.

from the initial ROI disparity map. As a result, we can get the
refined initial ROI disparity map. Then, we fill holes in the ROI
disparity map with the pixels generated by linearly interpolating
with their neighboring pixels [22]. The hole-filling algorithm is
performed as a unit of the color segment by (7)

HRE), =~ S 1RGO

i=0 j=0

where T(R(z,y))x is the interpolated pixel value at the (x,y)
position of the k" color segment in the refined initial ROI
disparity map R using the valid neighboring pixel value
I(R(i,7))x in the k" color segment. The term n is the
valid number of pixels within a W x W window. Since the
hole-filling algorithm is performed in a color segment, the valid
depth pixels in its neighboring segments will not affect to fill
the holes in the target color segment. Fig. 6(b) shows an ROI
disparity map generated by the color segment-based hole-filling
algorithm.

Next, we combine the initial disparity map with the ROI dis-
parity map to generate an ROI enhanced disparity map. The ROI
enhanced disparity map F' is created by replacing the depth in-
formation of ROI in the initial disparity map H with the depth
information of the ROI disparity map R by (8)

. I(H(z,7)), if I(R(2,7)) ==0
I(F(i,5)) = {IER((ij))))v g ot(heg“wgza ®

where I(F(i,4)), I(H(i,7),and I(R(i, 7)) are the depth values
at the (4,7) position in F, H, and R, respectively. Fig. 6(c)
shows an ROI enhanced disparity map.

Finally, disparity values in the ROI enhanced disparity map
are converted into their depth values using disparity to depth
conversion [23]. Fig. 6(d) shows the ROI enhanced depth map
generated by the hybrid camera system.

IV. EXPERIMENTAL RESULTS

In order to evaluate our scheme, we constructed a hybrid
camera system with two HD cameras as stereoscopic cameras
and one Z-Cam as the depth camera, as shown in Fig. 7. In our
experiment, the distance that we can measure as depth infor-
mation by Z-Cam is from 1.75 m to 2.15 m. The baseline dis-
tance between HD left and right cameras is 20 cm. Table | shows
camera specifications for the experiment.
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TABLE |
THE SPECIFICATIONS OF HYBRID CAMERA SYSTEM

Devices Specifications Details

Stereo cameras

(Canon XL-HI) NTSC or PAL (16:9 ratio, HD)

Output format

Measured

depth range 1.75mto 2.15m

Depth camera

(Z-Cam) Field of view

40 degrees

Output format NTSC or PAL (4:3 ratio, SD)

Sync. generator Output signal SD/HD sync. signals

With the hybrid camera set, we have captured BEAR and
ACTOR images as test data. The image resolution of left and
right images of the test data captured by two HD cameras was
1920 x 1080, while the image resolution of color images and
their depth maps captured by Z-Cam was 720 x 486. Fig. 8
shows the test images. Especially, since a big bear doll hugged
a small one in BEAR images, we would keep observation on
their estimated depths generated by various stereo matching al-
gorithms and the proposed method. ACTOR images are com-
posed of the 160 frames totally.

Once we have test images, we have estimated ROl depths
at the HD left camera by applying the state-of-the-arts stereo
matching methods, which are SAD [24], belief propagation
[21], graph cuts [25], dynamic programming [26], scan-line
optimization [6], and Poznan algorithm [27], on the HD left
and right images. For background depths, we only used SAD
based on color segmentation in our experiment. The estimated
ROI depths and background depths were merged to generated
final depth maps. On one hand, we also made a ground truth
depth map for the left image of BEAR images by projecting the
depth data acquired by a 3-D scanning device [28] at the HD
left camera. Fig. 9(a) shows the ground truth depth map.

The generated depth maps on BEAR images using various
stereo matching algorithms and the proposed method are shown
in from Figs. 9(b)-9(h). In order to measure the performance
of our scheme objectively, a quantitative analysis based on the
ground truth comparison is used.

As the objective evaluation methodology, we used two
quality measures based on known ground truth data [6]:
root-mean squared (RMS) error R and the percentage of bad
matching pixels B 4. Here, bad matching means that the depth
value is different from the corresponding ground truth depth
value by more than one pixel value.

Table Il shows the result of RMS error Rg, the R differ-
ence between the stereo matching algorithms and the proposed
method Rp; ¢, the percentage of bad matching pixels B4, and
the B 4 difference between the stereo matching algorithms and
the proposed method Bp;y¢.

As shown in Table 11, when we compared the accuracy of ROI
depths generated by the proposed method with belief propaga-
tion, which was the best one among stereo matching algorithms,
the depth map produced by our hybrid camera system was more
accurate by approximately 2.1 for Rg and 11.2% for B 4 than
belief propagation for BEAR images.
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(b)

Fig. 8. Images captured by the hybrid camera system. (a) BEAR images; (b) ACTOR images.

Fig. 9. Comparative results on BEAR images. (a) Ground truth; (b) SAD; (c) belief propagation; (d) graph cuts; (e) dynamic programming; (f) scanline optimiza-

tion; (g) Poznan; (h) proposed method.

TABLE I
ROI DEPTH QUALITY EVALUATION
Methods Rg Rpiy By Bpig
SAD 60.5 +36.1 85.3% | +46.4%
Belief gropagation 26.5 +2.1 50.1% | +11.2%
Graph cuts 62.1 +37.7 83.3% +44.4%
Dyanaimc programimg 46.1 +21.7 76.7% +37.8%
Scanline optimization 67.7 +43.3 79.5% +40.6%
Poznan algorithm 1324 +108.0 93.5% | +54.6%
Proposed method 24.4 - 38.9% -

Fig. 10 shows the results of 3-D scene reconstruction on ROI
of BEAR images. After extracting ROI depths from each depth

map, we have made the 3-D scene on ROI using hierarchical
decomposition [29]. As shown in Fig. 10, when we subjectively
compare the scenes with the one generated with the ground truth
for BEAR images, the 3-D scene generated by the proposed
method more closely resembled the original scene than other
methods. Especially, the regions of the big bear doll’s leg and the
small bear doll designated by circles in the original scene were
much similar with ours. Hence, we subjectively notice that the
depth map obtained by the proposed scheme has more reliable
depth data than the full stereo matching methods.

Figs. 11 and 12 show the result of depth map generation
with the 1st and 70th frames of the ACTOR images. In addi-
tion, Fig. 13 shows the result of 3-D scene reconstruction on the
70th frame of the ACTOR images for belief propagation and
the proposed method. As shown in Fig. 13, ROI depths of the
ACTOR images were still smoother than ones generated by the
other methods. Hence, we could see that the regions represented
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Fig. 10. 3-D scene reconstruction on ROl of BEAR images. (a) Ground truth; (b) SAD; (c) belief propagation; (d) graph cuts; () dynamic programming; (f)

scanline optimization; (g) Poznan; (h) proposed method.

Fig. 11. Depth map generation on the 1st frame of ACTOR images. (a) Left image; (b) SAD; (c) belief propagation; (d) graph cuts; (e) dynamic programming;

() scanline optimization; (g) Poznan; (h) proposed method.

Fig. 12. Depth map generation on the 70th frame of ACTOR images. (a) Left image; (b) SAD; (c) belief propagation; (d) graph cuts; () dynamic programming;

() scanline optimization; (g) Poznan; (h) proposed method.

by the mismatched depths on ROl were notably reduced by the
proposed scheme.

Furthermore, although the image resolution of input depth
maps captured by Z-Cam was 720 x 486, the image resolu-

tion of the output depth maps generated by proposed method
was 1920 x 1080. Since we have projected the depth camera
data into the high-resolution left camera, the image resolution
of the ROI enhanced depth map was equal to the image reso-
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