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Abstract. We give an overview of a framework within which Ambi-
ent Intelligence (AmI) applications could be realised. We start from
available sensors/actuators producing and consuming numerical data at
high frequencies and available logic-based knowledge representation and
reasoning systems using expressive logical languages. We argue that a
constraint-based partial-order reasoning system for six aspects of con-
text can be used as a central component that helps to bridge the gap
between information from sensors and logic-based reasoning. Our work
is motivated by, and oriented towards, cognitive representation and pro-
cessing mechanisms.

1 Introduction

Ambient intelligence (AmI) has been suggested as a key application scenario for
artificial intelligence techniques. In AmI scenarios (such as those compiled by
Ducatel et al., 2001) smart devices – sensors, actuators, and information services
– cooperate to provide services to users that make sense in a given situation and
environment. Intelligent agent programs (see Wooldridge, 1999, for an overview)
installed on such devices and connected by a network infrastructure can form
coalitions, which together achieve (sub-)goals derived from user profiles or user-
defined scripts.

A central component of such a spatially distributed intelligent system is a
context model, i.e. a representation of the situation and environment that is at
least partially shared among components. In particular, such a representation has
to provide information of how the contexts of different components are related
to each other and to the current physical context. This task can be formulated
in terms of constraints on the relations between contexts.

Starting from the context model of Jang et al. (2005), we investigated a rep-
resentation based on six parameters of context (for brevitiy called the 5W1H
parameters): the context of an interacting coalition of agents in this model is
fully described if we know who interacts when and where with what why and
how, that is, if we know the users, time, place, objects, events/actions, and the
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states/conditions of an interaction. Following the analysis of Benerecetti et al.
(2000), we assume that contexts correspond to portions of the world, which
are perceived with a certain level of detail, and from a certain perspective. Ac-
cordingly, relations between contexts can be of three different types: mereologic,
part-of relations (in a wide sense Bittner et al., 2004), approximation relations
(particularly granularity, Schmidtke and Woo, 2007), and perspectival relations
(such as cardinal directions in geographic space, Schmidtke, 2001).

In previous work (Hong et al., 2007), we introduced a logical language with
mereologic relations for four of these six parameters, namely classes of users
(who-domain) and classes of objects (what) with respective taxonomic relations,
on the one hand, and temporal and spatial extents with mereologic relations,
on the other hand. In Schmidtke et al. (2008), we extended the language to
cover all six parameters, so that knowledge about states and events can also be
represented. We characterised the six relations as partial orders. Consequently,
a system for reasoning over such constraints on contexts can make use of partial
order reasoning, which can be implemented in an efficient way using graph-
based representations. In this paper, we show how such a reasoning system can
be embedded into a cognitively motivated three-layered agent architecture (Lee
et al., 2007) and we outline how AmI applications can be developed in this
framework.

The paper has two main parts. In the first part (Sect. 2), we shortly introduce
our cognitively motivated system architecture for AmI environments. We sketch
how information from sensors is interpreted and translated into constraints on
relations between sensor contexts and more abstract contexts; and we outline
how this knowledge can be used to trigger or adapt behaviour of actuators and
services, in order to reach sub-goals given from a planner or user-defined script.
The second part (Sect. 3) gives details about the language and discusses how
it can be used for representing knowledge about contexts. We sketch in how
far our conceptualisation of context fulfils requirements from cognitive theories
and qualitative reasoning. After discussing the architecture and language, we
illustrate how AmI applications can be developed and integrated with a simple
example (Sect. 4).

2 System Architecture

We developed a cognitively motivated layered multi-agent framework (Lee et al.,
2007) to realise the requirements outlined above. We regard human cognition as
the ideal model for AmI. In particular, we try to address the problem of how
to bridge the gap between sensory data and logic-based representations with a
cognitively motivated approach.

2.1 Processing Contextual Information

Agents in our model represent separate cognitive facilities of an intelligent sys-
tem, which can be a single smart object or a whole smart environment composed



of many individual sub-systems. We assume three types of agents corresponding
to layers of representational abstraction found in human cognition. Following the
analysis of Gärdenfors (2005), we distinguish between three types of information
processing and action of an intelligent system in its environment:

– In the case of transduction, behaviour is generated directly in response to
perceptual input. Internal representations are not necessary. An example for
this type of behaviour in animals is phototaxis.

– Cued representations are mental representations of objects or events that
are perceptually directly accessible in the current context, or triggered by
some recent situation. Using inference, e.g., categorisation, over these repre-
sentations, an intelligent system can react to the situation.

– Detached representations are independent from the current context. Imagi-
nation about an object that does not exist or situations that have not, or not
yet, happened are examples of inference over these representations. Planning
requires detached thinking.

We identify these layers of abstraction with critical time frames of tasks in a
dynamically changing computing environment.

Corresponding to transduction, the layer of continuous responsiveness is
bound to the time frame of visual continuity, for which we assumed a maxi-
mal delay of 40ms. Sensors and actuators should react without any perceivable
delay.

The layer of immediate reaction, on the other hand, is bound by the time
frame of learnt reactions to change in an environment. Inference over represen-
tations cued by perceptual input are necessary to react to a situation. We chose
a threshold of one second maximal delay for this layer. In the case of an obstacle
appearing suddenly on a road, for instance, a driver would within one second
be able to generate a more or less adequate reaction, such as breaking, steering,
or a learnt sequence of these actions. Likewise in verbal communication, human
beings usually require some response from a dialogue partner within the time
frame of a second, even if it is just a nod or ‘hmm’ for signalling demand for
a larger time frame. Our efforts were concentrated on realising this layer. In
our implementation, the current context as retrieved from the responsive layer
is sorted into a hierarchy of abstract contexts according to the constraints that
can be derived from sensor readings.

The third layer is the layer of pro-activity. Intelligent actions in a changing
but predictable world require computational processes of higher complexity. For
reasoning and planning about anticipated situations, detached representations
are necessary. Typical AI problems, which require expressive logic formalisms or
planning are computed on this layer. In our current system, we do not implement
this layer. We consider plans to be given to the system in terms of condition-
action pairs and a partial ordering, for which the second layer provides reasoning
support.

Figure 1 illustrates the three types of agents. In this example, a group of five
agents is organised as a coalition for solving a certain problem: three responsive
agents (smart sensors and actuators) are connected to a reactive component that



analyses sensor inputs and triggers accurate responses of actuator components;
the analysed representation of the current context is also given on to a pro-active
component, which generates a higher-level representation of the current context
that can be used to modify the behaviour of the reactive component in case of
unforeseen difficulties.

active 
sensor

sensor

reactive 
comp

actuator

pro-
active 
comp

Fig. 1. Simple example for a coalition of five agents.

2.2 Representations on the Three Layers

The representations used on each layer have to differ so as to support the indi-
vidual tasks within the required time frame and flexibility. Table 1 summarises
the differences in perspective assumed for the three layers and illustrates the
differences in representations for the example of spatial information.

Table 1. Representation and processing of contextual knowledge on the three layers.
The example shows how spatial information could be handled on the three layers.

Layer Representation Processing Example

Responsive
numeric, basic data
types

procedural,
non-symbolic

loc = (35.226◦N126.842◦E),
at precision ±0.001◦

Reactive
context-oriented,
qualitative relations

graph-based,
constraint-based

[currC1 vwhere Gwangju] ∧
[Gwangju vwhere SKorea]

Pro-active logic-based
logic-based
reasoning

∀x : city(x) → ∃t :
trainCon(t) ∧ reach(t, x)

On the layer of responsiveness, computation is performed directly on the
mainly numerical input from sensors. This allows for especially fast processing,
as required for algorithms at the sensor interface. The result of analysis can be
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Fig. 2. The current context as retrieved from sensors can be sorted into a graph-based
representation in which vm-constraints can be read from the edges. The statement
[currC1 vwhere Gwangju]∧[Gwangju vwhere SKorea], from Tab. 1 can be retrieved from
the above graph. Rounded rectangles represent agents, which are notified whenever
their node in the graph is activated.

transferred directly to an actuator, or it can be transformed into a representation
of constraints describing the current context. These constraints are distributed
to recipient agents on the reactive layer.

On the reactive layer, information about parameters of the current context
from different sources is integrated into a graph-based representation of the
current state of the world around an agent (an example is shown in Fig. 2).
Knowledge about the current context can be represented by activating nodes
in the graph to which the current context is related. For long term storage, a
new node representing the current context can be added to the graph by linking
it to related nodes. Nodes in the graph represent previous contexts, knowledge
about contexts given in application ontologies, and knowledge about contexts
described in user profiles and scripts. In addition, nodes can be connected to
agents. Activating such a node results in a description about the current context
being sent to the agent.

Each edge of the graph corresponds to one of six specific relations, so that all
information encoded in the graph can easily be translated into a logic-based for-
mat, which can be sent to recipients on the pro-active layer for further analysis.
The identified situation can thus activate the next action to be executed from
a given action plan, which in turn can automatically trigger or update actua-
tors (see Sect. 4 for an example). A similar mechanism of spreading activation
along edges with a specific semantics has been used by Kokinov (1999) to model
a broad range of phenomena of context-dependency in human cognition. Our



variant for AmI differs mainly in two respects: first, the types of relations are
restricted to the six partial ordering relations, so that the resulting graph for
each relation is a directed acyclic graph; and second, nodes can be connected to
arbitrary types of agents, so that arbitrary types of external applications can be
triggered.

For the pro-active layer, logic-based knowledge representation systems can
be used. The input from the reactive layer is sufficiently abstract, so as to be
accessible to higher-level reasoning. Reasoning tasks necessary for AmI systems,
such as planning or diagnosis, can thus be decoupled from the reactive systems.
Information about the current context can be de-contextualised, in order to
receive a more objective and far-reaching representation about ongoing and past
processes. The behaviour of a reactive component can be generated or modified
by a planner on the pro-active layer. Agents on the reactive layer can execute
plans, given as partially ordered sequences of actions in the why-graph. However,
the planning task itself can have a high complexity and might in general require
more than one second, that is, more than the time frame of the reactive layer
permits. Planning itself therefore belongs to the pro-active layer.

3 Representations of Context on the Reactive Layer

The reactive layer has been the focus of our research for three reasons. First,
the time frame of one second demands a specialised fast reasoning mechanism
for all domains of parameters of context. Second, the symbol grounding problem
has to be handled on this layer, between the sensory input and the logic-based
representations on the one hand, and between underspecified logic-based plans
and the concrete parameters required by actuators, on the other hand. The third
reason for highlighting the special role of the reactive layer, is that the notion
of context is established and dealt with mainly on this layer. Agents on the
responsive layer produce/consume absolute values, and agents on the pro-active
layer de-contextualise the information they obtain. The cued representations, in
contrast, are representations activated by, and relative to, the current physical
context.

Crucial to realising this layer is an appropriate representation and reasoning
mechanism that can handle the non-symbolic contextual information format of
sensors/actuators as well as logic-based representations that can be processed on
the pro-active layer. As sketched above, we assume that numeric values retrieved
from sensors can be interpreted as basic constraints on the current context of the
device. The context representation is based on partial ordering relations between
six specific aspects of a context. With this approach we follow a similar strat-
egy as in logics of indexicals (Forbes, 1989), which use a fixed, finite number of
parameters. However, we represent time and location not with point-like time-
stamps and coordinate locations but with a qualitative representation based on
time intervals and spatial regions, respectively. In this manner, we can repre-
sent the relation between partial contexts as a containment relation and we can



allow for coarse location and time, such as “this country” and “this week” in
combination with fine grained notions, such as “this room” and “this moment.”

The relation of containment has been studied in theories of mereology. Prop-
erties stated in mereologic theories form the basic ontology of our framework,
without implying that we only deal with part-whole structures in the narrow
sense of spatial or temporal part-whole relations. We specify six partial order-
ing relations (vwho,vwhat,vwhen,vwhere,vwhy,vhow) relating between the six
parameters that fully describe a context c in this approach.

The characterisation follows ideas in other approaches that combine knowl-
edge about spatial relations with temporal knowledge or knowledge about con-
cepts (Eschenbach, 2004; Donnelly, 2004; Bittner et al., 2004). However, we
added reasoning about two other partial ordering relations for the domains of
states and tasks: reasoning about conditions and states which we consider to
be constrained by an implication relation (how -domain), and reasoning about
tasks, actions and events in partially ordered causal structures (why-domain).

3.1 Logical Formalism

The logical language consists of the recursively defined context terms, represent-
ing contexts, constraints over context terms for relating contexts, and formulae
for combining such descriptions. The set of context terms is defined as the small-
est set over a set of atomic context terms that fulfils:

1. All atomic context terms and the special symbols > (called: the maximal
context) and ⊥ (the impossible context) are context terms.

2. If c and d are context terms then −c (complement), (c t d) (summation),
and (c u d) (intersection) are also context terms.

A context term is called context literal if it is an atomic context term or the
complement of an atomic context term. A context formula is formed from two
context terms with one of six sub-context relations:

1. If c and d are context terms, then [c vwho d], [c vwhat d], [c vwhen d],
[c vwhere d], [c vwhy d], and [c vhow d] are atomic formulae.

2. If φ is a formula, then ¬φ also is a formula.
3. If φ and ψ are formulae, then (φ ∨ ψ) and (φ ∧ ψ) are formulae.

Table 2 summarises the intended interpretations for the atomic formulae.
We introduce further relations as abbreviations of formulae. Here, and in the

following we make use of schemata to abbreviate definitions: m denotes one of



Table 2. Syntax and reading of sub-context relations.

Syntax Reading

[c vwho d] c is a social sub-context of d

[c vwhat d] c is a conceptual sub-context of d

[c vwhen d] c is a temporal sub-context of d

[c vwhere d] c is a spatial sub-context of d

[c vhow d] c is a conditional sub-context of d

[c vwhy d] c is a task sub-context of d

the six parameters of context, i.e. who, what, when, where, why , or how .1

[c v d] def⇔ [c vwho d] ∧ [c vwhat d] ∧ [c vwhen d] (D1)
∧ [c vwhere d] ∧ [c vwhy d] ∧ [c vhow d]

[c©m d] def⇔ ¬[c u d vm ⊥] (D2)

[c© d] def⇔ ¬[c u d v ⊥] (D3)

[c =m d] def⇔ [c vm d] ∧ [d vm c] (D4)

For two arbitrary context terms, c is a called a sub-context of d (v) if it is socially,
conceptually, temporally, spatially, and with respect to conditions, and tasks a
sub-context of d (D1). Two contexts overlap with respect to the parameter m if
their intersection is an m-sub-context (D2). The contexts c and d overlap if they
have a common sub-context in any domain (D3), that is, if they overlap with
respect to any one domain. Finally, (D4) defines that c and d are equal with
respect to domain m if they are m-sub-contexts of each other.

Before we illustrate particular aspects of the six domains and illustrate the
intended meaning for the 21 relations (the general v, ©, together with iden-
tity =, and the six variants of vm, ©m, and =m), we shortly list some basic
properties of partial ordering relations, which form the foundation for the se-
mantics of the logical language (see Schmidtke et al., 2008, for a specification of
the semantics based on Kripke frames). The below statements hold for arbitrary
context terms x, x′, x1 independently from their meaning. We do not attempt an
axiomatisation in this paper but refer to the wealth of known results from re-
search on the properties of mereologic relations (cf. particularly Donnelly, 2004;
Link, 1983).

For each of the relations vm, we state that vm be reflexive (1) and transitive
(2). Antisymmetry does not hold for vm since two contexts that are identical
with respect to one parameter may disagree with respect to another param-
eter. However, the relations =m, which hold between contexts that agree on
the parameter m, are equivalence relations, i.e reflexive (3), transitive (4), and

1 For brevity, we also consider the additional logical conjunctives → and ↔ to be
defined as usual, and introduce rules for saving brackets. The following precedence
of logical connectives is assumed ¬,∧,∨,→,↔.



symmetric (5).

[x vm x] (1)
[x1 vm x2] ∧ [x2 vm x3]→ [x1 vm x3] (2)

[x =m x] (3)
[x1 =m x2] ∧ [x2 =m x3]→ [x1 =m x3] (4)

[x1 =m x2]→ [x2 =m x1] (5)

The overlap relations©m are reflexive for non-empty contexts (6) and symmetric
(7) for any context term.

¬[x v ⊥]→ [x©m x] (6)
[x1 ©m x2]→ [x2 ©m x1] (7)

With these properties stated, we can now illustrate their intended meaning with
respect to the six domains with examples of statements in the logical language.

3.2 Modelling Knowledge about Individual Domains

Similar to the relation of containment between collections axiomatised by Bit-
tner et al. (2004), the intended meaning for vwho,vwhat is group inclusion on
groups of agents and groups of objects, respectively. With this interpretation,
the properties stated above are intuitively plausible. An example for transitivity
of vwho, for instance, is given in (8): a group of users admin included in the
group of users staff is also included in any group that includes the latter, such
as notificationRecipient . Knowing that Bob is in the group of administrators, we
know that he will receive a notification (9).

[admin vwho staff ] ∧ [staff vwho notificationRecipient ]
→ [admin vwho notificationRecipient ]

(8)

[bob vwho admin]→ [bob vwho notificationRecipient ] (9)

In our mereologic framework, a single agent, such as bob, or a single object in
an interaction is always interpreted as a group of one agent or object. That
is, bob is not interpreted by a token corresponding to the user Bob but by the
singleton set containing this token. This may seem to be a counter-intuitive by-
effect of the mereologic axiomatisation. With respect to the cognitive motivation
of our approach however, we might remark that this property has been shown
by Link (1983) to have distinct advantages for the formal specification of nouns
in natural language semantics: singular and plural meanings of a noun can be
represented as having the same type with the mereologic, but not with a set-
theoretic characterisation.

For time and space, we also use a mereologic interpretation for the two rela-
tions vwhen,vwhere. A mereotopologic characterisation of spatial entities, which
starts from a mereologic basis, is discussed in detail by Casati and Varzi (1999).



For the domain of time, the discussion on interval-based calculi started by Allen
(1984) serves as a reference. However, our notion is not restricted to convex inter-
vals but covers arbitrary sums and intersections of intervals, such as generalised
intervals (Ligozat, 1998), and moments, i.e. intervals with no extension.

Using this concept we could for instance represent a context c21 in which
Allen and Beth are at Incheon Airport at January 1st in 2007.

[allen ©who c21] ∧ [beth ©who c21]
∧ [c21 vwhen [Jan 1, 2007]] ∧ [IncheonAirport ©where c21]

Allen and Beth are users of the system in the context of c21; c21 is at some time
during January 1st and overlaps the region of Incheon airport.

In the case of agents and objects, taxonomies can be created by summation
and intersection. It is important to note here, that we cannot construct arbitrary
taxonomies and partonomies of locations and times with the operation of sum-
ming locations and times, respectively. For instance, it makes sense to construct
a time morningGMT as the sum of all intervals between, e.g. 4 and 12 GMT.
Likewise, we can define times afternoonGMT (12–18), eveningGMT (18–22),
and nightGMT (22–4). The sum of these temporal entities, however, would be
the trivial interval covering the whole of time, but not the set of days.

From an AI point of view, the parameter of how corresponds to states that
hold in a certain context, whereas the parameter of why corresponds to events
that occur, and actions that are executed in the context. Causal dependencies can
be expressed by combining knowledge about states, events, and time. The con-
text term operators, sum, intersection, and complement, can be used to combine
states or events. The logical formalism thus provides in-built reasoning about
such combinations, for which classical AI approaches based on first-order logic
have to describe specific reification mechanisms (Galton, 2006). Our logical lan-
guage, being designed for representing knowledge on the reactive layer, thus can
support generating a description of the current context and triggering actions
according to expected situations. However, it does not have the expressiveness
and reasoning capabilities necessary to support reasoning about possible time
lines, for instance. For this task more expressive formalisms, and thus reasoning
on the pro-active layer, would be needed.

In concrete AmI applications, developers might use the how -part to repre-
sent status information, such as “on vacation,” or information about states of a
component, such as “playing music” in Fig. 2. Another type of states particu-
larly relevant to AmI applications is qualitative information about environment
parameters derived from quantitative sensory data. For instance, the state “cold
weather” might be defined as holding whenever a temperature sensor yields a
temperature below some threshold, such as “0◦C.” Agents that yield such qual-
itative statements should themselves take the context of the measurement in
account, so that the context-dependency of adjectives, such as “cold,” can be
reflected: A summer day in Rome, for instance, would have a higher threshold
for being called “cold” than a winter night in Moskau. The partial order struc-
ture underlying the why-component represents causal dependencies of events in



a context as given, for instance, in an action description (Brézillon, 2005) or
from a planner. User preferences could also be encoded in such task structures.

In the example of Fig. 2, the time and location sensors activated all nodes
that are ancestors of the node currC1 along the when and where edges. Also
the jukebox works as a sensor, notifying all related nodes about its current
state along the how -edge. The music selection reacts to the context currC1 by
activating all nodes above currC2. In the example of Fig. 2, tasks of the music
selection agent are thus handed on to the jukebox actuator along the edges of
the why-graph.

4 Example: Developing an AmI Application

The core components of the framework have been implemented. Classes for im-
plementing the reactive components of the architecture, described in Sect. 2.2,
and a knowledge base with a simple reasoning mechanism for the logical language
have been realised in Java. Several test applications using this core framework
are currently under development. The reasoning mechanism is implemented as
a tableau prover supported by six directed acyclic graphs, which represent the
partial ordering constraints between atomic context terms. The knowledge base
receives input in the form of profiles, in which components describe their basic
vocabulary and their own relation with respect to this vocabulary and other
components.

When a sensor produces a value, a reactive component S wrapped around
this sensor translates this value into a possibly complex context logic term c
using its vocabulary. It then notifies the knowledge base about c. The intended
meaning is that S activates c as a description of the current context as perceived
and analysed by S. The reasoning mechanism then determines where the sent
context term would be positioned in the directed acyclic graphs of the knowledge
base. All related nodes, that is, all nodes that would be ancestors or descendants
of a node corresponding to c are then notified about c by the knowledge base.
Using this procedure, the description of the current context as generated by S
is sent to all components to which it is relevant.

Figure 3 shows a screen shot of a graph drawing application being notified by
a time sensor. The application displays the graph of the vwhen-relation, as it is
represented in the knowledge base. It reacts to notifications by simply highlight-
ing the most specific nodes activated. We developed this application as a tool for
debugging. For being notified about terms related to the vocabulary of the time
sensor the graph actuator’s profile needs only a single line: [MySmartTimeSensor
pwhen MyGraphActuator]. Figure 4 shows the context knowledge loaded with
the time sensor.

Two classes were implemented for realising the time sensor and graph actu-
ator, respectively. The complete code for the time sensor is shown in Fig. 5. It
simply constructs a context term from integer values read from a time stamp.
The notification sent by the time sensor results in statements, which identifiy the
current time as being a time interval that can be described as the intersection



(a) (b)

Fig. 3. The graph actuator at two times: a) in idle state, b) after being notified of
the context term (y2008 sqand (dw6 sqand (dm15 sqand (h2 sqand (ampm1 sqand

(hd19 sqand (min49 sqand (sec50 sqand m4)))))))) (here sqand is the ASCII-
encoding for u).

[dw1 eqwhen Sunday]

[dw2 eqwhen Monday]

[dw3 eqwhen Tuesday]

[dw4 eqwhen Wednesday]

[dw5 eqwhen Thursday]

[dw6 eqwhen Friday]

[dw7 eqwhen Saturday]

[m0 eqwhen January]

[m1 eqwhen February]

[m2 eqwhen March]

[m3 eqwhen April]

[m4 eqwhen May]

[m5 eqwhen June]

[m6 eqwhen July]

[m7 eqwhen August]

[m8 eqwhen September]

[m9 eqwhen October]

[m10 eqwhen November]

[m11 eqwhen December]

[Workday pwhen MySmartTimeSensor]

[Weekend pwhen MySmartTimeSensor]

[Spring pwhen MySmartTimeSensor]

[Fall pwhen MySmartTimeSensor]

[Winter pwhen MySmartTimeSensor]

[Summer pwhen MySmartTimeSensor]

[Monday pwhen Workday]

[Tuesday pwhen Workday]

[Wednesday pwhen Workday]

[Thursday pwhen Workday]

[Friday pwhen Workday]

[Saturday pwhen Weekend]

[Sunday pwhen Weekend]

[March pwhen Spring]

[April pwhen Spring]

[May pwhen Spring]

[June pwhen Summer]

[July pwhen Summer]

[August pwhen Summer]

[September pwhen Fall]

[October pwhen Fall]

[November pwhen Fall]

[December pwhen Winter]

[January pwhen Winter]

[February pwhen Winter]

[Fall eqwhen Autumn]

Fig. 4. The profile file for the time sensor MySmartTimeSensor.clf (pwhen is the ASCII
encoding for vwhen, eqwhen stands for =when).



/** A sensor that notifies of the current time using Java’s

Calendar class. **/

public class SmartTimeSensor extends SmartSensor {

Calendar cal;

public SmartTimeSensor() {

super(ContextProcess.TimeFrame.REACTIVE);

this.cal = Calendar.getInstance();

}

/** Notifies about the time using Java’s Calendar class. **/

protected void doStep() {// called every second

cal.setTime(new Date());

if (cal.get(Calendar.SECOND)%10 == 0) {

String year = "(y"+cal.get(Calendar.YEAR)+" sqand ";

String dayofweek =

"(dw"+cal.get(Calendar.DAY_OF_WEEK)+" sqand ";

String dayofmonth =

"(dm"+cal.get(Calendar.DAY_OF_MONTH)+" sqand ";

String hour1 = "(h"+cal.get(Calendar.HOUR)+" sqand ";

String ampm = "(ampm"+cal.get(Calendar.AM_PM)+" sqand ";

String hourofday =

"(hd"+cal.get(Calendar.HOUR_OF_DAY)+" sqand ";

String minute = "(min"+cal.get(Calendar.MINUTE)+" sqand ";

String seconds = "(sec"+cal.get(Calendar.SECOND)+" sqand ";

String month = "m"+cal.get(Calendar.MONTH);

mem.notify(year+dayofweek+dayofmonth+hour1

+ampm+hourofday+minute+seconds+month+"))))))))");

}

}

/** This sensor does not react to any input. **/

public void onNotify(String str) {}

}

Fig. 5. The implementation of the time sensor class.

public static void main (String[] args) {

SimpleCKB ckb = new SimpleCKB();

SmartTimeSensor sim = new SmartTimeSensor();

sim.init(ckb,"profiles/MySmartTimeSensor.clf","MySmartTimeSensor");

xmpl.caedit.GraphActuator graph =

new xmpl.caedit.GraphActuator(T5W1H.WHEN);

graph.init(ckb,"profiles/MyGraphActuator2.clf","MyGraphActuator");

}

Fig. 6. Loading and starting the test application.



of several intervals represented in the when-hierachy in the knowledge base. The
graph actuator class correctly identified the most specific active nodes shown to
be dw5 (temporally equivalent to Thursday) and m4 (temporally equivalent to
May). It was notified because it is itself an ancestor node of activated nodes.

The main method of the test application (Fig. 6) initialises the knowledge
base (class SimpleCKB) and creates an instance of the time sensor. The profile
of the time sensor is loaded into the knowledge base and the sensor is associ-
ated with the node MySmartTimeSensor, the top-node of all terms mentioned
in the profile. The graph actuator is initialised to show the when-domain of the
knowledge base. Its simple profile places it above the time sensor’s node in the
when-hierarchy. It can visualise any other class if another profile is loaded.

5 Outlook and Conclusions

We gave an overview of a framework within which AmI applications can be re-
alised. We started from available sensors/actuators producing and consuming
numerical data at high frequencies and available logic-based knowledge repre-
sentation and reasoning systems using expressive logical languages. We argued
that a constrained-based partial-order reasoning system is a core component that
helps to bridge the gap between sensors and logic-based reasoning. Our work is
motivated by, and oriented towards, cognitively adequate representations and
processing mechanisms. The current framework is limited in that only partial
ordering relations are represented. In future works, we will focus on integrating
further types of relations, in particular, granularity relations and perspectival
relations.
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