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ABSTRACT 

  In this paper, we present a new three-dimensional 
(3-D) video capturing system to provide realistic 
broadcasting services by integrating multiple 
high-definition (HD) camera arrays and one 
standard-definition (SD) depth camera. In the 
proposed hybrid camera system, we first create the 
initial disparity for each HD cameras by applying 3-D 
warping operation on the depth map acquired by the 
depth camera. Then, the final disparity for each HD 
camera is obtained by a stereo matching algorithm 
with the initial disparity. Experimental results show 
that the 3-D video generated by the hybrid camera 
system provides reliable depth information for 3-D 
realistic broadcasting services. Besides, the 
proposed system minimizes the inherent problems 
of conventional depth cameras, such as limitation of 
measuring distance for depth information and 
generation of low-resolution depth maps. 
 

INTRODUCTION 
  As the three-dimensional (3-D) video becomes 
attractive in a variety of multimedia applications, it 
is essential to get accurate depth information for 
future 3-D applications. Recently, ISO/IEC 
JTC1/SC29/WG11 Moving Picture Experts Group 
(MPEG) has been also recognized the importance 
of multiview video and depth information, which are 
often referred as a multiview video-plus-depth, for 
free-viewpoint TV (FTV) or 3DTV [1] [2]. However, 
traditional depth estimation methods, such as 
stereo matching, are limited to estimate accurate 
depth map due to the failure of correspondence 
point matching on the textureless and occluded 
regions. 

In general, depth estimation methods can be 
categorized into two major classes: active range 
sensors [3] and passive range sensors [4]. Passive 
depth sensors estimate depth information indirectly 
from 2-D images captured by two or more cameras. 
On the other hand, active depth sensors obtain 
depth information from the natural scenes directly 
using physical sensors. However, these kinds of 
TOF depth cameras have some built-in problems: 
low resolution, noisy, and poorly calibrated. 

Recently, fusion methods that combines 
multiview camera and a TOF depth camera have 
been introduced [5]. These fusion camera systems 

generate enhanced depth maps by applying a 
stereo matching algorithm to multiview image with 
depth information captured by the TOF depth 
camera. However, the previous hybrid camera 
systems have produced low-resolution depth maps 
and focused on generating depth maps for static 
scenes. Since most 3-D applications are expected 
to use high-resolution videos, it is necessary to 
create a high-quality multiview video-plus-depth for 
dynamic scenes. 

To generate multiview depth map, we propose a 
new hybrid camera system constructed by one 
depth camera and multiple video cameras. The 
proposed system provides multiview high-definition 
(HD) depth map using depth information acquired 
from the standard-definition (SD) depth camera as 
a supplement. The main contribution of this work is 
that we provide a practical solution to create a 
high-resolution multiview video-plus-depth using 
multiple video cameras and a depth camera. In 
addition, the proposed system reduces the 
inherent problems of generating depth maps from 
the currently available depth camera system. 

 
HYBRID CAMERA SYSTEM 

   The proposed hybrid camera system consists of 
six cameras; one depth camera, Z−CamTM, and 
five HD cameras. There is one clock generator 
sending a synchronization signal constantly. This 
signal is distributed to all personal computers. 
Figure 1 shows main components of our hybrid 
camera system. 

We obtain test sequences with 1-D parallel 
camera arrangement from the hybrid camera 
system. Input videos consist of seven 
synchronized images; five HD images from the 
multiview camera, one SD color image and its 
corresponding depth map from the depth camera. 
Since the measureable depth range of Z−CamTM is 
up to seven meters, depth accuracy is not 
guaranteed in the practical environments. The 
depth range becomes bigger as the quality of 
depth map becomes lower. To obtain a more 
accurate depth map from the depth camera, we 
reduce the depth range by capturing foreground 
and background, respectively. We capture a color 
image and its depth map for background in 
advance. 



 

Before obtaining synchronized multiview image 
from the hybrid camera system, we calibrate each 
camera using checkerboard patterns 
independently. There are two coordinate systems: 
depth camera coordinate system and HD camera 
coordinate system. Therefore, we register two 
camera coordinate systems using their relative 
camera information.  

To use the initial disparity information for each 
HD camera, we perform a 3-D warping operation 
using camera parameters and depth information 
acquired from the depth camera. Pixel intensities 
of the warped data are then used as the initial 
disparity for each view.  

In multiview camera, all HD images are rectified 
and color-segmented. The initial disparities 
generated from the depth camera are assigned 
into the corresponding segments. We separate 
each HD image into three different regions to 
detect occluded and disoccluded regions: 
background, foreground, and unknown regions. 
The disparity of each segment is independently 
estimated by a color segmentation-based stereo 
matching algorithm. 

 

Figure 1. The proposed hybrid camera system 
 

GENERATION OF MULTIVIEW DEPTH MAP 
In the hybrid camera system, the intrinsic and 

extrinsic camera parameter of each camera are 
different, since we merge two different types of 
cameras. Therefore, it is essential to find out 
relative camera information about the camera set 
using a camera calibration algorithm.  

Basically, the camera calibration is executed with 
pattern images acquired from the hybrid camera. 
we employ the well-known camera calibration 
algorithm provided by Caltech to estimate intrinsic 
and extrinsic parameters of each camera [11]. 
Since the hybrid camera is composed of six 
cameras, we carry out the camera calibration as 
many as the number of cameras independently. 

Image rectification is a process that makes 
epipolar lines of two images captured at different 
position parallel each other. Vertical coordinates of 
all image points of two images become identical 
and there remain the horizontal disparities 

only. For multiview image rectification, the 
horizontal axis of each camera is parallel to the 

baseline and the principal axis of each camera is 
perpendicular to the baseline For rectifing 
multiview image at the same time, we calculate the 
common baseline considering all camera positions 
and apply the rectifying transformation defined by 
camera rotations and camera intrinsic parameters. 
Then, rectified images have uniform horizontal 
disparities and no vertical mismatches between 

adjacent views [12]. 
We employ both down-sampling and linear 

interpolation operations to reduce optical noises in 
the depth map. After we apply mean filtering on the 
depth map, the depth data enhancement algorithm 
executes down-sampling on the mean-filtered 
depth map. We then perform bilateral filtering on 
the downsampled depth map. Finally, we recover 
the depth map using a linear interpolation method. 

We regard depth information acquired from the 
depth camera as initial disparity information for the 
multiview camera. For matching the depth 
information with its corresponding color value in 
the multiview image, we perform camera 
calibration for the multiview camera and the depth 
camera independently. To calculate the relative 
positions between the depth camera and the 
multiview camera, we move the depth camera to 
the origin of the world coordinate by 

 
RԢ୭୰୧ ൌ RୱRିଵୱ ൌ I            (1) 
tԢ୭୰୧ ൌ tୱ െ tୱ ൌ 0            (2) 

 
Then, we determine the new multiview camera 

position based on that of the depth camera by Eq. 
(3) and Eq. (4). We multiply the rotation matrix Rhn 
of the multiview camera by the inverse matrix R s

 −1 
of the rotation matrix Rs of the depth camera. t′hn is 
the translational difference between thn and ts. 

 
RԢ୦୬ ൌ R୦୬Rିଵ୦୬            (3) 
tԢ୦୬ ൌ t୦୬ െ tୱ.            (4) 

 
The 3-D warping matrix to move pixels from the 

SD depth camera to the HD multiview camera is 
given by 

p୦୬ ൌ PԢ୦୬Pୱିଵpୱ            (5) 
 
where phn is the image coordinate in the 

multiview image corresponding to the ps, and the 
depth information D(phnx, phny) of phn is followed by 

 
D୦୬൫p୦୬୶, p୦୬୷൯ ൌ ሺt୦୬ െ tୱሻ  Dୱሺpୱ, pୱ୷ሻ   (6) 

 
The 3-D warped depth information is used to the 

initial depth information of the multiview image. To 
generate the initial disparity map, we apply the 3-D 
warping in Eq. (7) on the color and depth map from 
the depth camera. In the 3-D warping operation, 
we project the color and depth data to the world 
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coordinate, and then reproject the warped 3-D data 
into each HD camera. Figure 2 shows the 3-D 
warping results of the foreground and background, 
respectively. 

 

Figure 2. 3D warped depth map 
 
For the stereo matching operation, we first 

calculate the average disparity value in each 
segment. Then, in order to refine its disparity more 
accurately, we examine the small neighboring area 
around the initial disparity. The segments of each 
image are obtained by a mean-shift color 
segmentation algorithm [13]. Since we have 
separate initial depth maps for foreground and 
background, we perform the stereo matching 
operation on each segmented region 
independently. 

Since each segment has smooth changes of 
colors, we assume that each segment has one 
disparity value. In order to determine the initial 
disparity of each segment with the 3-D warped 
depth information, the initial depth values are 
converted into initial disparities by 

 
d୦୬൫p୦୬୶, p୦୬୷൯ ൌ K୦୬B D୦୬ሺp୦୬୶, p୦୬୷ሻ⁄     (7) 

 
where dhn(phnx, phny) is the converted disparities 

from the position (phnx, phny) of the initial depth map 
Dhn(phnx, phny), B is the distance between cameras, 
and Khx is the focal length of the camera. We 
calculate the average value of depth values 
included in color segment si to get the initial 
disparity dsi for each color segment by 

 
dሺୱ୧ሻ ൌ ∑d୨Aሺs୧ሻ nሺAሺs୧ሻሻ⁄           (8) 

 
where n(A(si)) is the number of pixels of each 

segment and ∑d(A(si)) is the sum of disparity 
value of each segment in the initial depth map. As 
shown in Fig. 5, since there are so many hole in 
the initial depth map, we only consider the existing 
disparity values in each segment. The stereo 
matching algorithm based on color segmentation 
finds the corresponding color segments using the 
initial disparity value in the left side and right side 
images. For determining the valid disparity for each 
segment, we calculate the sum of absolute 
difference (SAD) values in small search range. 
Corresponding pixels from each segment are 
compared and their differences summed. The 

lower the SAD the better the match and so the 
candidate segment with the minimum SAD should 
be chosen.  

In general, the quality of the initial disparity map 
is coarse in the boundary of foreground objects 
due to occluded regions. To solve this inherent 
problem, we extract occlusion and disocclusion 
regions from the multiview image by searching 
boundary segments of foreground. These regions 
are as unknown regions. 

 

Figure 3. Refined initial disparity map 
 
Figure 3(a) shows a segmented image of 

foreground, background, and unknown regions. In 
order to correct disparities of the unknown regions, 
we calculate SAD with the initial disparity of the 
segment in the foreground, and recalculate SAD 
with the initial disparity of the segment in the 
background. We regard one of two disparities as 
the disparity of the segment in the unknown region 
by comparing their SAD values and choosing the 
smaller one. Figure 3(b) presents the refined 
disparity map after solving the occlusion problem 
using a region separation. 

After obtaining the initial disparity map for each 
view image, we refine the disparity map using 
belief propagation (BP) [22]. Figure 8 shows the 
result of disparity map refinement. As shown in Fig. 
4(a), there are some mismeasured disparity in the 
black circle. After disparity map refinement using 
BP with consideration of the initial disparity 
generated from the depth camera data, we can 
notice that the disparity errors are minimized as 
shown in Fig. 4(b). 

 

Figure 4. Refined initial disparity map 
 

EXPERIMENTAL RESULT 
To generate the multiview depth map, we have 

constructed a hybrid camera system with five HD 
cameras and one Z−CamTM as the depth camera. 
The measuring distance for depth information of 
the Z−CamTM is from 1.75m to 6.05m. The baseline 
distances among five HD cameras are 20cm. We 

(a)                                                               (b)



 

have tested with the ‘newspaper’ sequence 
captured by the proposed hybrid camera system.  

Figure 5 shows the results of the final multiview 
3-D video using the proposed method. In this 
experiment, we have generated depth maps using 
our method. From our experiments, we can 
observe that the depth map obtained by the 
proposed method is more reliable than those of the 
previous stereo matching algorithms. 

 

Figure 5. Generated 3-D video for the ‘newspaper’ 

 
We obtain test sequences with 1-D parallel 

camera arrangement from the hybrid camera 
system. Input videos consist of seven 
synchronized images; five HD images from the 
multiview camera, one SD color image and its 
corresponding depth map from the depth camera. 
Since the measureable depth range of Z−CamTM is 
up to seven meters, depth accuracy is not 
guaranteed in the practical environments. The 
depth range becomes bigger as the quality of 
depth map becomes lower. To obtain a more 
accurate depth map from the depth camera, we 
reduce the depth range by capturing foreground 
and background, respectively. We capture a color 
image and its depth map for background in 
advance. 

 

Figure 6. Result of interview images 
 

To evaluate the subjective quality of the proposed 
method, we construct the 3-D scene with the 
generated depth map. Figure 3 shows the results of 
3-D scene construction for the third view of the 
‘newspaper’ images. We use hierarchical 
decomposition of depth maps for 3-D scene 
construction [6]. We also generate intermediate 
views using the generated depth map. Figure 6 
show the results of the generated intermediate view 

images. As shown in Fig. 7, the generated 3-D 
scenes and intermediate views have continuous 
results like natural scene and video. 
 

Figure 7. Results of 3D scene reconstruction 
  

CONCLUSION 
In this paper, we have presented a new approach to 
generate multi-view 3-D video using a hybrid 
camera system. We have used depth information 
acquired by a depth camera to generate the initial 
disparity maps by 3-D warping and generated the 
final disparity maps using a segmentation-based 
stereo matching algorithm. Experimental results 
have shown that our scheme have produced more 
reliable depth maps compared with previous 
methods. We have generated high-resolution 
multiview depth map and natural intermediate views 
from our system. Therefore, our proposed system 
could be useful for various 3-D multimedia 
applications. 
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