
U-VR Simulator: Linking Real and Virtual Environments based on
Context-Awareness

Yoosoo Oh, Changgu Kang, and Woontack Woo
GIST U-VR Lab.

{yoh, ckang, wwoo}@gist.ac.kr

Abstract

In this paper, we propose U-VR Simulator which

seamlessly connects entities in real and virtual environments.
Using the U-VR Simulator, smart home environments can be
simulated and new virtual entities can be linked to existing
real entities. The U-VR Simulator simultaneously monitors
and simulates entities in real and virtual environments by
exploiting a context-aware architecture. The proposed
approach is fast in debugging and cost-effective in
developing new entities. The approach allows application
developers to rapidly develop U-VR applications and extend
the applications to relevant domains. 1

1. Introduction

Simulations of ubiquitous computing environments have
investigated potential scenarios in terms of sensors, services,
and environments [1]. Placements of these entities (e.g.
sensors, actuators, services) in a smart home environment, as
an example of ubiquitous computing environments, are
intertwined. Thus, to simultaneously test these entities in a
real environment typically requires a great deal of time and
effort. It is expensive to test the entities in the real
environment, with various sensors, actuators, and a huge
number of contexts [2]. Moreover, exhaustively deploying all
usable entities is difficult whenever a given framework or
infrastructure is being tested. Thus, adding or extending
entities in a real smart home environment is not easy because
of the predefined structure and high financial cost [3].

The simulation of entities in a virtual environment can
reduce the financial cost, but it is hard to maintain real
operations of the system, such as real-time debugging,
reactions, and system behavior [1–2]. Although simulating
entities in both real and virtual environments is complicated,
each case has some advantages. The simulation in a real
environment can have more realistic and accurate testing,
and the simulation in a virtual environment is relatively more
cost-effective. Accordingly, testing in both environments
which have benefits of individual environments is
considerable. To this end, a ubiquitous virtual reality (U-VR)

1 This research was supported by the CTI development project of
KOCCA, MCST in S.Korea.

environment [4] enables computing both in real and virtual
environments, such that simulations of entities prepare the
development of specialized applications. The benefits of
combining a virtual simulator with a real U-VR system are
having advantages of both environments which include real
time measurement of physical objects, realistic and
systematic testing by physical objects, and additionally time
saving and cost-effective evaluation by simulated objects.

As a representative example of U-VR environment, we
surveyed simulators in a number of smart homes. Recently,
research related to smart home simulators has dramatically
advanced; related works include UbiREAL [2],
eHomeSimulator [3], TATUS [5], UBIWISE [6], CASS [7],
CAST [8], and C@SA [9]. However, these studies only
considered newly designed entities, but did not effectively
utilize given real infrastructure. These works did not support
the bidirectional control between established real entities and
newly-added virtual entities. Mixing both entities is
important to completely link real and virtual environments.
Accordingly we could analyze that we need an approach for
possible bidirectional combinations of real and virtual
entities.

To resolve this problem, we propose the U-VR Simulator
which seamlessly connects entities in real and virtual
environments by exploiting context, based on the concept of
ubiquitous virtual reality. Using the U-VR Simulator, a smart
home environment can be simulated and new virtual entities
such as sensors, actuators, and services can be integrated to
existing real entities. The U-VR Simulator simultaneously
monitors and simulates entities in real and virtual
environments by exploiting a context-aware architecture
which makes entities distribute to both environments. Also,
the proposed simulator simultaneously controls real and
virtual entities in both real and virtual environments in real
time.

The proposed approach is fast in debugging and cost-
effective in developing new entities because the simulator
effectively utilizes both existing and simulated devices. In
addition, our approach has advantages such as the reduction
of source code and rapid prototyping by combined real and
virtual environment debugging tests. Additionally, our
approach allows application developers to rapidly develop U-
VR applications and extend the applications to relevant
domains.

52

Bruce Thomas et al. (Eds.): IWUVR 2009, pp. 52-55, 2009.
ISBN 978-0-9806098-0-6

2. U-VR Simulator 2.2. 3D Smart Home Simulator

The U-VR Simulator has a 3D graphical interface for a
smart home environment to dynamically operate both real
and virtual smart home environments by a developer. All
entities in the U-VR Simulator cooperate based on UCAM,
and realistically generate various contexts. Also, the entities
in a virtual smart home of the simulator are connected to
counterpart entities in the real smart home environment and
the U-VR Simulator allows developers to add and deploy
new entities.

2.1. Context-aware Architecture

To operate our simulator in a heterogeneous environment,
we utilized UCAM (Unified Context-aware Application
Model) [10] as a context-aware architecture. UCAM consists
of a UCAM Sensor, a logical sensor for linking physical
sensors, and a UCAM Service which manages contexts. Thus,
UCAM can manage social relationships among humans, real
objects, and virtual objects; for a seamless connection of
these entities we developed a modified version of UCAM,
and applied it to our U-VR Simulator. We modified a
communication part of UCAM to link real and virtual
environments.

The U-VR Simulator links real-real, real-virtual, and
virtual-virtual environments. To support this linking
functionality, the modified UCAM provides seamless
connection between heterogeneous environments through
context exchanges which are observed among UCAM
mounted real and virtual entities. In other words, the U-VR
Simulator connects a real environment with a virtual
environment by being aware of context flows managed by
UCAM. Figure 1 shows the context flow of real and virtual
environments in the U-VR Simulator. In the figure, the solid
arrows indicate the context flow, and all entities (e.g.,
real/virtual services, real/virtual sensors) can dynamically
communicate with one another through this context exchange.
The dashed arrows indicate service status between real and
virtual services, and sensing information between real and
virtual sensors.

Furthermore, by enabling real-time communication in
both environments, we can verify the operation of various
entities and spontaneously simulate real environments and
other environments to be implemented. Unlike previous
works, our simulator simulates new entities by exploiting
established hardware and software frameworks; hence, our
simulator harmonizes the implementation of new and
existing entities. Since our simulator utilizes the modified
UCAM for developers, our simulator reduces the
development time required for new entities.

Figure 2. The implemented U-VR Simulator architecture.

The U-VR Simulator also has a UCAM Interface to

ensure context awareness and an Environment Configurator
to manage the 3D virtual environment. Figure 2 shows the
implemented U-VR Simulator architecture. Here, the
Environment Configurator configures the simulation
environment which contains virtual services (including
virtual actuators and avatars) and virtual sensors. The UCAM
Interface interfaces with UCAM as a communication channel
on a network and communicates with the Environment
Configurator. The Repository records sensory data and
simulator behavior, and real sensory data are automatically
gathered and converted to contexts. The virtual sensor is
integrated with a UCAM Sensor, and the virtual service is
integrated with a UCAM Service. Also, the virtual service
controls not only simulated services but virtual actuators and
avatars.

The virtual sensor has two functionalities which are
automatic manipulation for operating as the mirrored sensor
by itself and manual manipulation for manually controlling
the detection. Using the gathered data in the Repository, the
virtual sensor learns characteristics and behaviors of the real
sensor. For analysis, recorded simulator behavior data in the
Repository is commonly used when a developer tests a smart
home with no real devices; when a developer tests a real
smart home, significant costs are incurred and complex

Figure 1. Context flow of real and virtual environments in
the U-VR Simulator.

53

procedures are required because of the physical entities.
Through the recorded system behavior, we can accurately
and efficiently simulate the smart home.

The virtual service has functionalities such as control,
visualization, monitoring, and simulation. The Object/Avatar
Control module controls all entities in a virtual smart home,
and also manages a 3D user interface for controlling each
entity (avatar, object, sensor, and service). The 3D
Visualization module displays the visual effects of the virtual
entities; through visual animations, this module represents
how entities behave based on contexts. The Context
Monitoring module monitors context flow in real time such
that the system behavior is also tracked to find inconsistency
in processing contexts. The Simulation module constitutes
the environment, and registers sensors, services, and avatar
behavior. This module simulates the addition of new entities
or the modification of existing entities in a real smart home.
Using the simulation functionality, we can virtually simulate
and test the smart home without using physical devices. Also
developers can easily utilize our simulator by interfacing
with UCAM.

3. Evaluation

3.1. Implementation

To verify the effectiveness of our simulator, we
constructed a smart home based on the U-VR Simulator. We
had previously implemented our simulator as a 2D version,
built in Macromedia Flash 9 [Figure 3(b)] by modeling a real
smart home [Figure 3(a)]. To enhance the visual effects and
entity deployment we moved from a 2D to a 3D Simulator
[Figure 3(c)]. Our 3D Simulator was developed on
OpenSceneGraph [11] and 3D Studio MAX 9 [12].
Additionally, we developed our simulator on Visual Studio
2005(C++) based on cal3d [13] and the osgcal library [14].

(a) Real Smart Home (b) 2D Simulator

(c) 3D Virtual Home (d) Implemented Sensors
Figure 3. Environments implemented in the U-VR Simulator.

We then implemented context-aware services with the

smart sensors in a real smart home [Figure 3(a)] and its
mirrored environment, a virtual smart home [Figure 3(c)],
which is the reflected environment of a real smart home. We

implemented real (TV, Lamp, Window, and Table) and
virtual (TV, Lamp, Window, Table, Air Conditioner, Picture
Frame, and Avatar) smart services. Similarly, we
implemented real (profile, activity, illuminance, temperature,
and physiological signal) and virtual (profile, illuminance,
temperature, and location) smart sensors.

(a) Real-Virtual Lamps (b) Real-Virtual TV

(c) Real-Virtual Window (d) Real-Virtual Human
Figure 4. Implemented Services in the U-VR Simulator.

The message data format which is used to communicate

between real and virtual environments is expressed by the
obtained context. For instance, the message format from a
virtual simulator to a real smart home environment can be
represented as
“VirtualSensor:0/Name:Simulator/Illuminance:5/Temperatur
e:21/”. Head of the format is the identity of an entity and the
rest presents the used entities with each value.

The real sensors are developed as physical sensing
devices based on UCAM Sensor, and the real services are
also developed by physical devices based on UCAM Service.
The simulated sensors are implemented according to physical
aspects of the real sensor and programmed to an event-based
object of a 3D simulator based on UCAM Sensor with sensor
profile. The simulated services are similar to the simulated
sensors. Figure 4 presents the implemented service entities.
Action and response of the implemented services in a real
environment are reflected to a virtual environment and vice
versa. Figure 4(a) shows a real Lamp service and a virtual
Lamp service as an example of our implementation; both
Lamp services are interactively connected through contexts
in the U-VR Simulator. Figure 4 (b) is real and virtual TV
services, (c) shows real and virtual window as an information
display, and (d) presents a human and a virtual avatar.

3.2. Experiment

An evaluation of the proposed simulator was conducted
as follows. We experimented about the seamless connection
and response of real and virtual entities in the proposed
simulator. For the experimental setup, we used the following
equipment: laptops for each entity (Windows Vista, Intel
Core2 Duo 1.66GHz, 2GB RAM) and an illuminance sensor
(Particle sensor [15]). Services integrate contexts from
sensors in every 50 ms and sensors generate context in real

54

time. The experimented entities are a real lamp service, a
virtual lamp service, a real illuminance sensor, and a virtual
illuminance sensor.

Firstly, we measured sensing time and service response
time between real and virtual entities. The link between real
and virtual entities are four cases of virtual illuminance
sensor-virtual lamp service(A), virtual illuminance sensor-
real lamp service(B), real illuminance sensor-virtual lamp
service(C), real illuminance sensor-real lamp service(D). The
experiment measured time of 1000 responses in real-virtual
lamp services covering about 1000 inputs in real-virtual
illuminance sensors. For the accurate measurement without
effect of network delay, we individually measured sensing
time(t1) and service response time(t2), and calculated the
average. Figure 5 shows the measurement result, and each
case represents three average times for a virtual entity, a real
entity, and their sum.

Figure 5. Average Time Measurement.

As the result in Figure 5, we could check that a total time

of Case-A and Case-B was relatively small and a total time
of Case-C and Case-D was relatively high. This result was
the reason that sensing time(t1) of a real sensor is larger than
one of a virtual sensor while service response time(t2) of all
cases was not much different. In spite of different sensing
time, total linking time(t1+t2) was about 65~116 ms which
were very small time(cost). After all, we could know that the
link process between real and virtual entities was fast. Also,
we could check that our simulator operated consistently in
four cases, because the sensing time of a real sensor was
caused by physical sensor and then did not influence to our
simulator’s performance.

4. Conclusion

In this paper, we developed the U-VR Simulator that can
simulate a smart home environment by enabling the addition
of new virtual entities to existing real entities. The U-VR
Simulator seamlessly connects entities in real and virtual
environments by exploiting a modified version of UCAM.
Our proposed simulator allows a developer to easily check
context flow by visualization and rapidly debug each entity
when problems occur. Also, our simulator is cost-effective as
it uses existing real devices and by simply deploying the
entities.

As a future work, we will expand our simulator to
intelligently augment virtual entities into real environments.

The current U-VR Simulator represents dual reality. In the
near future, we will apply AR (augmented reality)
technologies to our simulator and develop the simulator to
overlay some entities on a real environment or a virtual
environment by using a mobile phone.

5. References

[1] V. Reynolds, V. Cahill, and A. Senart, “Requirements for
a ubiquitous computing simulation and emulation
environment”, ACM InterSense, 2006, vol. 138.

[2] H. Nishikawa, S. Yamamoto, M. Tamai, K. Nishigaki, T.
Kitani, N. Shibata, K. Yasumoto, and M. Ito, “UbiREAL:
Realistic Smartspace Simulator for Systematic Testing”,
UbiComp, LNCS4206, 2006, pp. 459–476.

[3] I. Armac and D. Retkowitz, “Simulation of Smart
Environments”, IEEE ICPS, 2007, pp. 322–331.

[4] Y. Lee, S. Oh, C. Shin, and W. Woo, “Recent Trends in
Ubiquitous Virtual Reality”, IEEE ISUVR, 2008, pp. 33–36.

[5] E. O'Neill, M. Klepal, D. Lewis, T. O'Donnell, D.
O'Sullivan, D. Pesch, “A testbed for evaluating human
interaction with ubiquitous computing environments”,
Tridentcom, 2005, pp. 60-69.

[6] J.J. Barton and V. Vijayarahgavan, “Ubiwise: A
Ubiquitous Wireless Infrastructure Simulation Environment”,
tech. report HPL2002-303, HP Labs, 2002.

[7] J. Park, M. Moon, S. Hwang, and K. Yeon, “CASS: A
Context-Aware Simulation System for Smart Home”, IEEE
SERA, 2007, pp. 461-467.

[8] I. Kim, H. Park, Y. Lee, S. Lee, H. Lee, and B. Noh,
“Design and Implementation of Context-Awareness
Simulation Toolkit for Context learning”, IEEE SUTC, 2006,
pp. 96-103.

[9] B. De Carolis, G. Cozzolongo, S. Pizzutilo, and V.L.
Plantamura, “Agent-Based Home Simulation and Control”,
ISMIS, LNCS3488, 2005, pp. 404-412.

[10] Y. Oh and W. Woo, “How to build a Context-aware
Architecture for Ubiquitous VR”, ISUVR, CEUR-WS, 2007,
pp. 032–033.

[11] OpenSceneGraph2.2, http://www.openscenegraph.org

[12] Autodesk 3D StudioMax9, http://usa.autodesk.com/adsk

[13] cal3d library, http://home.gna.org/cal3d

[14] osgcal library, http://osgcal.sourceforge.net

[15] Particle (TECO), http://particle.teco.edu/

55

	iwuvr09-proceeding 59.pdf
	iwuvr09-proceeding 60.pdf
	iwuvr09-proceeding 61.pdf
	iwuvr09-proceeding 62.pdf

