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Abstract 

 
In this paper, we propose U-VR Simulator which 

seamlessly connects entities in real and virtual environments. 
Using the U-VR Simulator, smart home environments can be 
simulated and new virtual entities can be linked to existing 
real entities. The U-VR Simulator simultaneously monitors 
and simulates entities in real and virtual environments by 
exploiting a context-aware architecture. The proposed 
approach is fast in debugging and cost-effective in 
developing new entities. The approach allows application 
developers to rapidly develop U-VR applications and extend 
the applications to relevant domains. 1  
 
1. Introduction 
 

Simulations of ubiquitous computing environments have 
investigated potential scenarios in terms of sensors, services, 
and environments [1]. Placements of these entities (e.g. 
sensors, actuators, services) in a smart home environment, as 
an example of ubiquitous computing environments, are 
intertwined. Thus, to simultaneously test these entities in a 
real environment typically requires a great deal of time and 
effort. It is expensive to test the entities in the real 
environment, with various sensors, actuators, and a huge 
number of contexts [2]. Moreover, exhaustively deploying all 
usable entities is difficult whenever a given framework or 
infrastructure is being tested. Thus, adding or extending 
entities in a real smart home environment is not easy because 
of the predefined structure and high financial cost [3]. 

The simulation of entities in a virtual environment can 
reduce the financial cost, but it is hard to maintain real 
operations of the system, such as real-time debugging, 
reactions, and system behavior [1–2]. Although simulating 
entities in both real and virtual environments is complicated, 
each case has some advantages. The simulation in a real 
environment can have more realistic and accurate testing, 
and the simulation in a virtual environment is relatively more 
cost-effective. Accordingly, testing in both environments 
which have benefits of individual environments is 
considerable. To this end, a ubiquitous virtual reality (U-VR) 
                                                           
1 This research was supported by the CTI development project of 
KOCCA, MCST in S.Korea. 

environment [4] enables computing both in real and virtual 
environments, such that simulations of entities prepare the 
development of specialized applications. The benefits of 
combining a virtual simulator with a real U-VR system are 
having advantages of both environments which include real 
time measurement of physical objects, realistic and 
systematic testing by physical objects, and additionally time 
saving and cost-effective evaluation by simulated objects. 

As a representative example of U-VR environment, we 
surveyed simulators in a number of smart homes. Recently, 
research related to smart home simulators has dramatically 
advanced; related works include UbiREAL [2], 
eHomeSimulator [3], TATUS [5], UBIWISE [6], CASS [7], 
CAST [8], and C@SA [9]. However, these studies only 
considered newly designed entities, but did not effectively 
utilize given real infrastructure. These works did not support 
the bidirectional control between established real entities and 
newly-added virtual entities. Mixing both entities is 
important to completely link real and virtual environments. 
Accordingly we could analyze that we need an approach for 
possible bidirectional combinations of real and virtual 
entities.  

To resolve this problem, we propose the U-VR Simulator 
which seamlessly connects entities in real and virtual 
environments by exploiting context, based on the concept of 
ubiquitous virtual reality. Using the U-VR Simulator, a smart 
home environment can be simulated and new virtual entities 
such as sensors, actuators, and services can be integrated to 
existing real entities. The U-VR Simulator simultaneously 
monitors and simulates entities in real and virtual 
environments by exploiting a context-aware architecture 
which makes entities distribute to both environments. Also, 
the proposed simulator simultaneously controls real and 
virtual entities in both real and virtual environments in real 
time.  

The proposed approach is fast in debugging and cost-
effective in developing new entities because the simulator 
effectively utilizes both existing and simulated devices. In 
addition, our approach has advantages such as the reduction 
of source code and rapid prototyping by combined real and 
virtual environment debugging tests. Additionally, our 
approach allows application developers to rapidly develop U-
VR applications and extend the applications to relevant 
domains. 
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2. U-VR Simulator 2.2. 3D Smart Home Simulator 
  

The U-VR Simulator has a 3D graphical interface for a 
smart home environment to dynamically operate both real 
and virtual smart home environments by a developer. All 
entities in the U-VR Simulator cooperate based on UCAM, 
and realistically generate various contexts. Also, the entities 
in a virtual smart home of the simulator are connected to 
counterpart entities in the real smart home environment and 
the U-VR Simulator allows developers to add and deploy 
new entities. 

2.1. Context-aware Architecture 
 

To operate our simulator in a heterogeneous environment, 
we utilized UCAM (Unified Context-aware Application 
Model) [10] as a context-aware architecture. UCAM consists 
of a UCAM Sensor, a logical sensor for linking physical 
sensors, and a UCAM Service which manages contexts. Thus, 
UCAM can manage social relationships among humans, real 
objects, and virtual objects; for a seamless connection of 
these entities we developed a modified version of UCAM, 
and applied it to our U-VR Simulator. We modified a 
communication part of UCAM to link real and virtual 
environments. 

 

 

The U-VR Simulator links real-real, real-virtual, and 
virtual-virtual environments. To support this linking 
functionality, the modified UCAM provides seamless 
connection between heterogeneous environments through 
context exchanges which are observed among UCAM 
mounted real and virtual entities. In other words, the U-VR 
Simulator connects a real environment with a virtual 
environment by being aware of context flows managed by 
UCAM. Figure 1 shows the context flow of real and virtual 
environments in the U-VR Simulator. In the figure, the solid 
arrows indicate the context flow, and all entities (e.g., 
real/virtual services, real/virtual sensors) can dynamically 
communicate with one another through this context exchange.  
The dashed arrows indicate service status between real and 
virtual services, and sensing information between real and 
virtual sensors. 

Furthermore, by enabling real-time communication in 
both environments, we can verify the operation of various 
entities and spontaneously simulate real environments and 
other environments to be implemented. Unlike previous 
works, our simulator simulates new entities by exploiting 
established hardware and software frameworks; hence, our 
simulator harmonizes the implementation of new and 
existing entities. Since our simulator utilizes the modified 
UCAM for developers, our simulator reduces the 
development time required for new entities. 

Figure 2. The implemented U-VR Simulator architecture.  
 
The U-VR Simulator also has a UCAM Interface to 

ensure context awareness and an Environment Configurator 
to manage the 3D virtual environment. Figure 2 shows the 
implemented U-VR Simulator architecture. Here, the 
Environment Configurator configures the simulation 
environment which contains virtual services (including 
virtual actuators and avatars) and virtual sensors. The UCAM 
Interface interfaces with UCAM as a communication channel 
on a network and communicates with the Environment 
Configurator. The Repository records sensory data and 
simulator behavior, and real sensory data are automatically 
gathered and converted to contexts. The virtual sensor is 
integrated with a UCAM Sensor, and the virtual service is 
integrated with a UCAM Service. Also, the virtual service 
controls not only simulated services but virtual actuators and 
avatars. 

 

 

The virtual sensor has two functionalities which are 
automatic manipulation for operating as the mirrored sensor 
by itself and manual manipulation for manually controlling 
the detection. Using the gathered data in the Repository, the 
virtual sensor learns characteristics and behaviors of the real 
sensor. For analysis, recorded simulator behavior data in the 
Repository is commonly used when a developer tests a smart 
home with no real devices; when a developer tests a real 
smart home, significant costs are incurred and complex 

Figure 1. Context flow of real and virtual environments in 
the U-VR Simulator.  

 

53



procedures are required because of the physical entities. 
Through the recorded system behavior, we can accurately 
and efficiently simulate the smart home. 

The virtual service has functionalities such as control, 
visualization, monitoring, and simulation. The Object/Avatar 
Control module controls all entities in a virtual smart home, 
and also manages a 3D user interface for controlling each 
entity (avatar, object, sensor, and service). The 3D 
Visualization module displays the visual effects of the virtual 
entities; through visual animations, this module represents 
how entities behave based on contexts. The Context 
Monitoring module monitors context flow in real time such 
that the system behavior is also tracked to find inconsistency 
in processing contexts. The Simulation module constitutes 
the environment, and registers sensors, services, and avatar 
behavior. This module simulates the addition of new entities 
or the modification of existing entities in a real smart home. 
Using the simulation functionality, we can virtually simulate 
and test the smart home without using physical devices. Also 
developers can easily utilize our simulator by interfacing 
with UCAM. 

 
3. Evaluation 
 
3.1. Implementation 
 

To verify the effectiveness of our simulator, we 
constructed a smart home based on the U-VR Simulator. We 
had previously implemented our simulator as a 2D version, 
built in Macromedia Flash 9 [Figure 3(b)] by modeling a real 
smart home [Figure 3(a)]. To enhance the visual effects and 
entity deployment we moved from a 2D to a 3D Simulator 
[Figure 3(c)]. Our 3D Simulator was developed on 
OpenSceneGraph [11] and 3D Studio MAX 9 [12]. 
Additionally, we developed our simulator on Visual Studio 
2005(C++) based on cal3d [13] and the osgcal library [14]. 

 

 
(a) Real Smart Home (b) 2D Simulator 

(c) 3D Virtual Home (d) Implemented Sensors 
Figure 3. Environments implemented in the U-VR Simulator. 

 
We then implemented context-aware services with the 

smart sensors in a real smart home [Figure 3(a)] and its 
mirrored environment, a virtual smart home [Figure 3(c)], 
which is the reflected environment of a real smart home. We 

implemented real (TV, Lamp, Window, and Table) and 
virtual (TV, Lamp, Window, Table, Air Conditioner, Picture 
Frame, and Avatar) smart services. Similarly, we 
implemented real (profile, activity, illuminance, temperature, 
and physiological signal) and virtual (profile, illuminance, 
temperature, and location) smart sensors.  

 

(a) Real-Virtual Lamps (b) Real-Virtual TV 

(c) Real-Virtual Window (d) Real-Virtual Human 
Figure 4. Implemented Services in the U-VR Simulator. 
 
The message data format which is used to communicate 

between real and virtual environments is expressed by the 
obtained context.  For instance, the message format from a 
virtual simulator to a real smart home environment can be 
represented as  
“VirtualSensor:0/Name:Simulator/Illuminance:5/Temperatur
e:21/”. Head of the format is the identity of an entity and the 
rest presents the used entities with each value.  

The real sensors are developed as physical sensing 
devices based on UCAM Sensor, and the real services are 
also developed by physical devices based on UCAM Service. 
The simulated sensors are implemented according to physical 
aspects of the real sensor and programmed to an event-based 
object of a 3D simulator based on UCAM Sensor with sensor 
profile. The simulated services are similar to the simulated 
sensors. Figure 4 presents the implemented service entities. 
Action and response of the implemented services in a real 
environment are reflected to a virtual environment and vice 
versa. Figure 4(a) shows a real Lamp service and a virtual 
Lamp service as an example of our implementation; both 
Lamp services are interactively connected through contexts 
in the U-VR Simulator. Figure 4 (b) is real and virtual TV 
services, (c) shows real and virtual window as an information 
display, and (d) presents a human and a virtual avatar.  
 
3.2. Experiment 
 

An evaluation of the proposed simulator was conducted 
as follows. We experimented about the seamless connection 
and response of real and virtual entities in the proposed 
simulator. For the experimental setup, we used the following 
equipment: laptops for each entity (Windows Vista, Intel 
Core2 Duo 1.66GHz, 2GB RAM) and an illuminance sensor 
(Particle sensor [15]). Services integrate contexts from 
sensors in every 50 ms and sensors generate context in real 
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time. The experimented entities are a real lamp service, a 
virtual lamp service, a real illuminance sensor, and a virtual 
illuminance sensor.  

Firstly, we measured sensing time and service response 
time between real and virtual entities. The link between real 
and virtual entities are four cases of virtual illuminance 
sensor-virtual lamp service(A), virtual illuminance sensor-
real lamp service(B), real illuminance sensor-virtual lamp 
service(C), real illuminance sensor-real lamp service(D). The 
experiment measured time of 1000 responses in real-virtual 
lamp services covering about 1000 inputs in real-virtual 
illuminance sensors. For the accurate measurement without 
effect of network delay, we individually measured sensing 
time(t1) and service response time(t2), and calculated the 
average. Figure 5 shows the measurement result, and each 
case represents three average times for a virtual entity, a real 
entity, and their sum.  

 

 
Figure 5. Average Time Measurement. 

 
As the result in Figure 5, we could check that a total time 

of Case-A and Case-B was relatively small and a total time 
of Case-C and Case-D was relatively high. This result was 
the reason that sensing time(t1) of a real sensor is larger than 
one of a virtual sensor while service response time(t2) of all 
cases was not much different. In spite of different sensing 
time, total linking time(t1+t2) was about 65~116 ms which 
were very small time(cost). After all, we could know that the 
link process between real and virtual entities was fast. Also, 
we could check that our simulator operated consistently in 
four cases, because the sensing time of a real sensor was 
caused by physical sensor and then did not influence to our 
simulator’s performance. 

 
4. Conclusion 
 

In this paper, we developed the U-VR Simulator that can 
simulate a smart home environment by enabling the addition 
of new virtual entities to existing real entities. The U-VR 
Simulator seamlessly connects entities in real and virtual 
environments by exploiting a modified version of UCAM. 
Our proposed simulator allows a developer to easily check 
context flow by visualization and rapidly debug each entity 
when problems occur. Also, our simulator is cost-effective as 
it uses existing real devices and by simply deploying the 
entities.  

As a future work, we will expand our simulator to 
intelligently augment virtual entities into real environments. 

The current U-VR Simulator represents dual reality. In the 
near future, we will apply AR (augmented reality) 
technologies to our simulator and develop the simulator to 
overlay some entities on a real environment or a virtual 
environment by using a mobile phone. 
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