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ABSTRACT 

Generation of three-dimensional (3D) scenes from two-
dimensional (2D) images is an important step for a successful 
introduction to 3D multimedia services. Among the relevant 
problems, depth estimation from a single-view image is probably 
the most difficult and challenging task. In this paper, we propose 
a new depth estimation method using object classification based 
on the Bayesian learning algorithm. Using training data of six 
attributes, we categorize objects in the single-view image into 
four different types. According to the type, we assign a relative 
depth value to each object and generate a simple 3D model. 
Experimental results show that the proposed method estimates 
depth information properly and generates a good 3D model. 

Index Terms — 2D-to-3D conversion, Depth estimation, 
Monocular depth cues, 3D scene generation, Single-view image 

1. INTRODUCTION 

Although two-dimensional (2D) images are successfully 
exploited in various multimedia services nowadays, interest on 
three-dimensional (3D) images is increasing rapidly and 3D 
image processing techniques are attracting more attention. The 
3D image processing technology includes a wide range of 
different operations from 3D scene acquisition to 3D display. 
Among them, 3D contents generation is one of the most essential 
parts for the 3D image service.  

In order to capture a 3D scene, we need special equipments, 
such as stereo or multi-view cameras and a depth camera [1]. 
Even if 3D image contents have been produced and become 
available, the amount of 3D contents is not enough to satisfy the 
user demand yet. On the other hand, there are abundant 2D 
image contents captured by conventional single-view cameras. 
Hence, generation of 3D scenes from 2D contents can be an 
alternative solution to overcome the current discrepancy and fill 
up the lack of 3D image contents.  

However, it is not straightforward to generate a 3D scene 
from a single-view image since we lost some 3D information 
when capturing a real scene with a single-view camera. The 3D 
information includes the distance information between objects in 
the 2D image and the camera. The distance information of each 
pixel in the 2D image from the camera is called as the depth 
value, and the matrix of depth values for all the pixels in the 2D 
image is called as the depth map of the image.  

Since accuracy of the depth map strongly affects the quality 
of the generated 3D scene, depth estimation plays an important 
role in 2D-to-3D conversion. In general, it is very challenging to 
obtain an accurate depth map from a single-view image. If we 
have multi-view images captured by two or more cameras, we 
can estimate the depth map using stereo matching algorithms. 
However, it is much more difficult to estimate a depth map from 

a single-view image because there is no additional information, 
such as camera parameters and disparity information. Therefore, 
we can only estimate relative depth values by analyzing 
monocular depth cues in the single-view image. 

Recently, there are several proposals to estimate the depth 
map from the single-view image. S. Batiato et al. generated a 
depth map in the following steps: generation of gradient planes, 
depth gradient assignment, consistency verification of detected 
region, and final depth map generation [2]. J. Ko et al. proposed 
an automatic conversion method based on the degree of focus of 
segmented regions and generated a stereoscopic image [3]. They 
utilized higher-order statistics to check the degree of focus. S. A. 
Valencia et al. presented a depth estimation method by 
measuring focus cues, which consists of a local spatial frequency 
measurement using multi-resolution wavelet analysis and 
Lipschitz regularity estimation of significant edges [4]. Tam et al. 
found that the most critical depth information tends to be 
concentrated at object boundaries and image edges [5]. They 
generated the depth map in a single-view image using the Sobel 
edge detector. Chang et al. explored the motion by a frame 
difference method, and used the K-means algorithm to realize 
color segmentation; thus, the depth map was acquired from both 
time and spatial information [6]. Derek Hoiem et al. proposed 
the learning method to generate 3D models [11]. Their model is 
made up of texture-mapped planar billboards based on several 
labels. 

However, previous works simply assigned depth values to 
all the pixels in the image using the same algorithm without 
considering different object types. Since images contain various 
types of objects, we propose a new depth estimation method 
considering object types in the single-view image. Our main 
contribution is that we define four different object types and six 
effective attributes to describe object units, and classify each 
object using the Bayesian classifier based on the training data. 
According to the object type, we assign relative depth values in 
different ways. 

2. MONOCULAR DEPTH CUES 

Depth perception arises from a variety of depth cues, and the 
depth cues are typically classified into two types according to the 
number of required eyes. Binocular depth cues that require input 
from both eyes include stereopsis and convergence. Monocular 
depth cues require an input from one eye. Only monocular depth 
cues exist in a single-view image and they make people perceive 
depth in 2D images.  

There are various types of monocular depth cues. When 
there are two objects of the same size, we can measure the 
relative distance from their relative sizes. The object which 
subtends the larger visual angle appears closer. When an 
observer moves, the apparent relative motion of several 
stationary objects against the background gives hints about their 
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relative distance. If information about the direction and velocity 
of movement is known, motion parallax can provide absolute 
depth information. Occlusion of objects by others is also a clue 
which provides information about relative distance. This 
information only allows the observer to know a ranking of 
relative nearness.  

Among the monocular depth cues, linear perspective is one 
of the very powerful cues. Lines that are parallel in the 3D world 
appear to get closer together as they recede in the distance. The 
fact helps us figure out the distance between two objects. It also 
induces relative size, motion parallax, and text gradient. In this 
paper, we focus on linear perspective to estimate a depth map 
from a single-view image. 

3. OBJECT CLASSIFICATION 

In our approach, the types of input images are limited, because 
we estimate a depth map based on the linear perspective depth 
cue. The input constraint is that an input image should contain 
the vanishing point and be an outdoor scene. Before object 
classification, the vanishing point of an input image is detected 
by extracting edge components and finding the most overlapped 
point of their extended lines [10]. Only straight lines extracted 
by Hough transform are considered as candidates. 

Then, the input image is divided into segments by the mean 
shift algorithm [9] as shown in Fig. 1(b). This process induces an 
effect that the boundaries of each object become distinctive. 
Segments are merged into object units with the grow-cut 
algorithm which is the manual image segmentation algorithm [7] 
as shown in Fig. 1(c). These objects will be used as basic units 
for the proposed algorithm. 

 

 
(a) Original input image       (b) Segmented image 

 
(c) Merged segments 

Figure 1. Input image and segmentation results 
 

3.1 Object Type 

A real photograph can contain various objects, such as a building, 
a human, a car, and so on. Conventional depth estimation 
algorithms do not consider object types and handle them with the 
same method. However, it is unsuitable because it disregards 
object’s own properties. In this paper, we divide objects into four 
types: SKY, GROUND, PLANE, and CUBIC. As you easily 
know through the names, the SKY and the GROUND types 
actually mean the sky and the ground in the world. The PLANE 
type stands for the object facing the perpendicular direction to 
the camera ray, and has a constant depth value. Examples of the 
PLANE type are a human, a tree, and so on. The CUBIC type is 
regarded as the object having the different depth values 
according to the distance from the vanishing point, and includes 
a building, a wall, and so on. Examples of each type are shown 
in Fig. 2.  

 

 
Figure 2. Examples of object types: 

 SKY, GROUND, PLANE, and CUBIC 
 

3.2 Attributes 

Before object classification, we describe features of the object 
types. Six attributes are defined and will be used as the criteria 
of classification. Table 1 lists the attributes and their elements. 
The proposed algorithm automatically describes whole objects in 
an image with these six attributes. In this section, we introduce 
each attribute and how each element is selected in detail. 

 
Table 1. Attributes and their elements 

notation attribute elements 

a1 Horizon <contact, include, none> 
a2 Vanishing Point <include, none> 
a3 Vertical Line <include, none> 
a4 Boundary <top, bottom, left, right, none> 
a5 Complexity <HH, HL, LH, LL> 
a6 Object Size <HH, HL, LH, LL> 
 
The horizon attribute a1 describes the relation between the 

horizontal line and an object. The horizon acts an important role 
to distinguish the SKY and GROUND types from other types. 
The object including the horizon has a very low probability that 
it is the SKY or GROUND types. This attribute consists of three 
elements, “none”, “contact”, and “include”. Figure 3 illustrates 
each element. 

 

 
Figure 3. Form of intersection and selected element 

for Horizon attribute 
 
The next attribute a2 describes the relation between the line 

passing through the vanishing point and an object. The attribute 
helps to classify CUBIC objects from PLANE objects. CUBIC 
objects have a high probability that the extended lines of their 
edges pass through the vanishing point, but PLANE objects do 
not. If at least one extended line passes through the vanishing 
point, the “include” element is selected, else the “none” element 
is selected. 

The third attribute a3 is the vertical line. Because CUBIC 
objects frequently include the line passing the vanishing point 
and the vertical line at the same time, the inclusion relationship 
of the vertical line provides excellent cues to distinguish the 
CUBIC object from other objects. In order to select a proper 
element, we check whether the edges include any vertical lines 



or not. If at least one vertical line is included in the object the 
“include” element is selected, else the “none” element is selected. 

The information, which objects contact with the image 
border, gives the classifier important cues. For example, the 
SKY object has a high probability that the object contacts with 
the top border of the image, and may not contact with the bottom 
border. Although there can be more than one border contacted 
with the object, we discard other borders except one border 
contacting with the object in the largest area. The “none” 
element is for the object which does not contacts with any image 
border.  

Texture complexity a5 represents how much high frequency 
textures are included in the object. Generally the sky contains 
the low frequency texture. For calculating texture complexity, 
the average of difference between the original texture and the 
low-pass filtered texture is calculated by Eq. (1). 
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where p(x,y) is the original objects, No is the number of the 
pixels in the object, and g(x,y) is the two-dimensional Gaussian 
filer. In Eq. (1), the operator, *, is convolution, and the 
summation is calculated for only pixels in the object. According 
to the degree of complexity, we divide elements into four levels, 
High-High (HH), High-Low (HL), Low-High (LH), and Low-
Low (LL). 

The final attribute a6 relates to object size. The percentage 
of object size can be cues for classification. It has same elements 
of level with the texture complexity attribute a5. 

In order to generate training data, we manually classify 
object types in several images. The training data for fifty objects 
were gathered, and it is used to classify new objects in an input 
image. 

 
3.3 Bayesian Classification 

For a new input image, we classify each object into the pre-
defined object type by analyzing its attributes. Although the 
approach using intuitive classification is possible, we use the 
approach based on the probability leaning method because 
images can contain various exceptions [8]. The Bayes theorem 
provides a way to calculate the probability of an object type 
based on its prior probability from the training data set. The 
Bayes theorem is the basis of Bayesian learning methods 
because it provides a way to calculate the posterior probability 
P(h|T), from the prior probability P(h), together with P(T) and 
the likelihood probability P(T|h), where T and h represent the 
object type and hypothesis, respectively. 

 

P(T)
P(T|h)P(h)P(h|T) =                (2) 

 
The Bayesian approach to classifying the new object is to 

assign the most probable target value, tMAP, given the attribute 
values <a1, a2,…, a6> describing the object. 
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The expression can be re-written using the Bayes theorem 

as Eq. (4). 
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Two terms in Eq. (4) can be estimated on the basis of the 
training data set. It is easy to estimate each of the P(tj) simply by 
counting the frequency with which each target value tj occurs in 
the training data. However, It is not possible to estimate the 
different P(a1, a2,…,a6|tj) terms in this fashion. Therefore, we 
need to see every instance in the instance space many times in 
order to obtain reliable estimates. The simplified assumption that 
the attribute values are conditionally independent given the 
target value is adopted in our approach. Under the assumption, 
the probability of observing the conjunction can be simplified to 
the product of the probabilities for the individual attributes as Eq. 
(5). It is called the naive Bayes classifier. 

 

                 (5) 

 
where tNB denotes the target value by the naive Bayes classifier. 
We select the object type having the highest probability with the 
attributes of the input object. 

4. DEPTH ASSIGNMENT 

4.1 Fundamental Depth Map 

After classification, we make a fundamental depth map used as a 
reference depth map during depth assignment. The fundamental 
depth map reflects the properties of the ground and the sky. Zero 
value is assigned to the upper area than the vanishing point, 
because the sky has infinite distance from the camera. In order to 
generate the fundamental depth map, depth values are assigned 
by Eq. (6). 
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In Eq. (6), y and VPy represent the current row position and 

the row position of the vanishing point, respectively. The height 
stands for the input image’s height. By applying this formula to 
whole rows, we can obtain the fundamental depth map. 

  
4.2 Depth Assignment for Objects 

According to the object type, we assign the proper depth values 
to classified objects by different ways. For PLANE objects, a 
constant depth value located at the bottom position of the object 
from the fundamental depth map is copied, and the object is 
filled with it, as shown in Fig. 4(a). 
 

  
(a) PLANE                    (b) CUBIC   

Figure 4. Depth assignment for PLANE and CUBIC objects 
 
Contrary to PLANE objects, the assignment for the CUBIC 

object is different, because the depth values of the CUBIC object 
have to become different according to the distance from the 
vanishing point. We copy the depth value from the fundamental 
depth map and fill the one column with it. By repeating this 
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process per each column, we obtain the distance
depth values from the vanishing point.  

However, when a CUBIC object is hidden by other objects, 
wrong depth values are assigned due to the wrong information of 
the bottom boundary of the CUBIC object. In order to overcome 
this problem, we define a depth guide line which 
line when we copy the depth value from the fundamental depth 
map as shown in Fig. 4(b). 

5. EXPEIMENTAL RESULTS

In order to show the performance of our proposed algorithm, we 
took tests with two outdoor photographs having the linear 
perspective cue. Figure 5(a) and Fig. 6(a) are the input images, 
and the images of (b) are the estimated depth map 
proposed algorithm. Whole objects in the images 
classified and are filled with appropriate depth values. 
input images and the depth maps, the 3D scenes are generated 
using 3D warping techniques as shown in Fig. 5(c) and Fig
From the results, we can know that the proposed algorithm 
estimates the similar depth from single-view images with ou
perception. 

 

 
(a) Input image              (b) Depth map 

(c) 3D scene 
Figure 5. Experimental results for 

 

 
(a) Input image                 (b) Depth map 

 

(c) 3D scene 
Figure 6. Experimental results for Red Building
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s having the linear 
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input images and the depth maps, the 3D scenes are generated 
using 3D warping techniques as shown in Fig. 5(c) and Fig. 6(c). 

we can know that the proposed algorithm 
view images with our 

 
(b) Depth map  

   

Figure 5. Experimental results for Rider image 

 
(a) Input image                 (b) Depth map  

 

Red Building image 

6. CONCLUSIONS

Because interest on 3D contents is increasing gradually
image processing techniques are attracting more attention. The 
3D scene generation from a single
technology for the 3D contents. Among its relevant problems, 
the depth estimation is the most significant and complicated task. 
In this paper, we proposed the depth estimati
single-view image using object classification based on the 
Bayesian learning. On the basis of 
attributes, objects in a single-view image were categorized into 
four types: SKY, GROUND, CUBIC, and PLANE. According to 
their types, relative depth values 
algorithm. Experimental results show that the proposed method 
estimates the depth maps which is similar to our perception
successfully generates the 3D scene 
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