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Abstract— A depth map is an essential data for high-quality 

3D video services, but resolutions of the depth maps captured by 
commercially available depth cameras are smaller than those of 
the corresponding color images due to technical limitations. In 
this paper, we propose a new interpolation method for the depth 
map, considering discontinuity information of the corresponding 
color image. We define a Markov random field model for a 
segmented color image and a low-resolution depth map. We fill 
holes in the depth map, and match boundaries between the color 
image and the depth map. Experimental results show our 
method enhances the resolution of the depth map significantly. 

 

I. INTRODUCTION 

The 3D movie ‘Avatar’ is the biggest box office hit in history, 
and other 3D movies such as ‘Alice in wonder world’ and 
‘Cloudy with a chance of meatballs’ are following the flow of 
the box office hit. As 3D movies become a long-term box 
office success, interest on 3D video services rapidly increases.  

The current 3D videos provide 3D feeling based on 
binocular depth cues, thus stereoscopic images captured with 
two cameras are widely used for 3D video generation. 
Recently, Moving Picture Experts Group (MPEG) has 
initiated a work aimed specifically toward free viewpoint 
system for viewing natural video, allowing the user to 
interactively control the viewpoint and to generate new views 
of various positions from dynamic scenes [1].   

 

 
Fig. 1. Hybrid camera systems consisting of color and depth cameras 

 
In order to acquire the views to allow high quality 

rendering of the scenes from any angle, the geometric 
information of the scene, called the depth map, is essential. 
Although it is commonly estimated by the stereo matching 
algorithm, its accuracy is not guaranteed for various scenes. 
To get accurate depth maps, the hybrid camera system has 
been proposed [2]. Figure 1 shows the hybrid camera systems 
of Realistic Broadcasting Research Center (RBRC), and they 

consist of color cameras and depth cameras which 
simultaneously capture the color image and the corresponding 
depth map. 

The hybrid camera system has the advantage, but it also has 
the problem that the resolution of depth maps captured by 
depth cameras is smaller than that of the corresponding color 
images due to technical limitations of the depth cameras. 
Figure 2 shows the resolution difference between the color 
image and the depth map of the hybrid camera system.  

 

 
Fig. 2. Resolution difference between the color image and the depth map 
 
Since the quality of depth maps is very important for 

image-based rendering, low-resolution depth maps should be 
enhanced. To solve this problem, various approaches have 
been proposed. In the beginning of the research, very simple 
approaches were exploited such as bilinear, nearest-neighbor, 
and bicubic interpolation methods [3]. Although these 
algorithms provide reliable results, their results include lots of 
errors around boundaries. It is because they interpolate depth 
values without the consideration of color discontinuities.  

On the other hand, Diebel et al. proposed an interpolation 
method using the Markov random field (MRF) and designed 
the adaptive weighting function according to the color image 
gradient [4]. They proposed the depth smoothness prior using 
the weighting factor reflecting color differences. Yang et al. 
presented the new post-processing step using the bilateral 
filter [5]. This method iteratively refines the input low-
resolution depth map, in terms of both its spatial resolution 
and depth precision. Both algorithms show the better results 
than the results of the previous simple algorithms, but they 
also do not consider the severe boundary mismatch problem 
between color images and depth maps. 

In this paper, to enhance low-resolution depth maps with 
considering the boundary mismatch problem, we employ the 
color image segmentation and design a new posterior model 
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based on the MRF model. 

II. MRF-BASED DEPTH INTERPOLATION USING  
COLOR SEGMENTATION 

We propose a new interpolation method for the low-resolution 
depth map to effectively enhance the resolution. At first, the 
low-resolution depth is warped onto the position of the color 
image, and the color image is divided into small segments. 
Based on these two inputs, we design a new MRF model with 
considering color image discontinuities and the boundary 
mismatch problem. The solution is globally optimized with 
the graph cut algorithm. 
 

A. 3D Warping 
In the hybrid camera system, color images and depth maps are 
captured at the same time but at different positions. To get the 
depth map on the same position of the corresponding color 
image, we warped the depth map by the 3D warping 
technique [6].  

At first, we carry out the camera calibration to obtain 
camera parameters for both the color and depth cameras. The 
camera parameter describes the relationship between the 
camera and world coordinates. It consists of an intrinsic 
parameter A and two extrinsic parameters: rotation matrix R 
and translation vector t. With the parameters, we can project 
the depth map onto the any position. We put the depth values 
of the depth map into the world coordinates using (1). 
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where Xr represents the position in the real world coordinates 
for a pixel xr in the depth map, and dr(xr) has the return value 
of the corresponding depth value of xr. After this backward 
projection, we re-project it onto the position of the color 
image using (2). 
 

rtt XPx =                                        (2) 
 

where xt is the corresponding position of xr in the depth map 
and, it is projected by using the projective matrix Pt=A[R|t]. 
Repeating the backward and forward projection, all values of 
the depth map are mapped onto the color image position. 
However the 3D warping technique cannot guarantee that the 
position of the depth map is perfectly matched with the 
position of the color image. 

Figure 3 shows the structure after the 3D warping process. 
The gray nodes A and black nodes C mean warped depth 
values and color values, respectively. The white nodes B are 
the unknown depth values to be estimated. As can be seen in 
the figure, the warped depth values are very sparse and 
located at irregular positions. In addition, the depth values of 
node A are not accurate due to the boundary mismatch 
problem induced by the 3D warping process. Therefore, it is 
not straightforward to estimate proper depth values for B 
nodes. 

 

B. Color Image Segmentation 
Our approach co-aligns boundaries by considering the 
discontinuities of the color image. Although there is the 
previous approach that exploits gradient values of color image, 
it is not enough, especially for warped depth images. Thus we 
divide the color image into segments so that each segment has 
the similar color distribution [7]. 

The segments act like a criterion when we distinguish the 
valid depth value from its whole neighbors, and our MRF 
model is also based on the segments. 
 

 
Fig. 3. Structure after the 3D warping 

 

C. Markov Random Field Modeling 
The warped depth map generated in the previous section 
contains many holes and mismatched boundaries. To fill the 
holes and to match the boundaries, we propose a MRF model 
considering correlation between color images and depth maps. 
The MRF theory provides a convenient and consistent way of 
modeling context-dependent entities such as image pixels and 
correlated features [8].  

In the beginning, we compute the posterior distribution 
from the prior and the likelihood. According to the Bayes rule, 
the posterior probability can be computed by (3). 
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where P(Id) is the prior probability of the depth map Id, P(Ic, 
Dw|Id) is the conditional probability density function of the 
color image Ic and the warped depth map Dw, called the 
likelihood function of Id for fixed Ic and Dw. P(Ic, Dw) is the 
density of Ic and Dw, which is a constant when Ic and Dw are 
given. P(Id|Ic,Dw) is proportional to the joint distribution, and 
the Maximum a posterior estimate (MAP) is equivalently 
found by 
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The posterior term is proportional to the exponential 

function of the energy function U as (5). 
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Therefore, the MAP estimate is equivalently found by 
minimizing the energy function U as (7). 
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With this property, we design the posterior energy function 

by considering the properties of the segmented color images 
and warped depth values. The posterior energy function 
consists of two terms for the likelihood and prior probabilities 
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where i is the current position, and N(i) means the neighbors 
of i. d and dw are current and warped depth values, 
respectively. L stands for the position having a warped depth 
value. 

If there is no mismatched depth value, the depth 
interpolation can be simply achieved. In this case, the 
accurate depth values can be calculated by referring to only 
neighbors in the same segment. In practice, several 
mismatched depth values caused by the 3D warping process 
exist, as shown in Fig. 4. 

 

 
Fig. 4. Mismatched depth values near the boundary 

 

In order to reduce the effects of these values, we model the 
likelihood energy function f1 as (9). It penalizes the difference 
between warped depth values and current depth values, only 
when the position i has a warped depth node.  
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where T is the threshold value for depth difference, and w is 
the weighting factor for the small difference region. This 
value is set with the greater value than one, and it disturbs the 
mismatched depth values change slightly to minimize the 
prior energy. Figure 5 is the shape of the proposed likelihood 
energy function. The shape means the function gives less 
penalty to large difference values which are commonly 
induced by the boundary mismatch problem. 

 
Fig.5. Shape of the proposed likelihood energy function 

 
The prior energy function f2 penalizes the violation of 

smoothness caused by the difference between a current depth 
value and neighbors. We use pair-site clique potentials for 
depth maps to be estimated. It only penalizes when depth 
values, di and dj, belong to the same segment as (10). 
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D. Optimization 
In general, minimizing the posterior energy function given 

in (8) is very difficult. Recently, several new algorithms for 
global optimization have been developed to efficiently solve 
the energy minimization problems. We exploit the graph cut 
algorithm [9] to approximate the global minimum of the 
proposed MRF model. 

Figure 6 shows the energy fluctuation according to the 
number of iteration. Before the optimization, the prior energy 
is very small, while the likelihood energy has the greater 
value. During the optimization, the likelihood energy 
becomes smaller while the prior energy becomes greater. It 
means that mismatched depth values near boundaries are 
corrected. It increases the likelihood energy but decreases the 
prior energy slightly. 

 

 
Fig. 6. Energy fluctuation during optimization 

III. EXPERIMENTAL RESULTS 

   
(a)                                     (b)                                   (c) 

Fig. 7. Experimental result: (a) input color image, (b) ground truth depth map, 
and (c) our result 

 
Figure 7 demonstrates the experimental result on a part of 

“Moebius” image provided by Middlebury. Fig. 7(a) is the 
original image, and Fig. 7(b) is the ground truth depth map. 
After down-sampling the ground truth depth map by the 
factor of 4, we applied our algorithm. As you can see Fig. 7(c), 
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the edge components of the depth map are successively 
preserved, and the small holes in the ground truth depth map 
are also filled with proper depth values. 

We also took the test with images captured by the hybrid 
camera system. Figure 8(a) shows the warped depth values on 
the color image. There exist mismatched depth values near 
boundaries. Figure 8(b) is the simple result that only fills the 
holes with neighboring depth values. As you can see, the edge 
components are blurred, and the boundaries are not matched. 
On the other hand, our result in Fig. 8(c) shows the clear and 
well-matched boundaries.  
 

 
(a)                                    (b)                                     (c) 

Fig. 8. (a) Warped depth values on the input color image, (b) interpolated 
depth map using neighboring values, and (c) our result 

 
Figure 9 and Fig. 10 show rendering results. Fig. 9(a) and 

Fig. 10(a) are input color images, and Fig. 9(b) and Fig. 10(b) 
are their corresponding depth maps. Fig. 9(c) and Fig. 10(c) 
demonstrate interpolated depth maps. Fig. 9(d) and Fig. 10(d) 
show 3D mesh models. Our algorithm successively enhances 
the depth map from low- to high-resolution, and matches the 
boundaries between the color image and depth map.  
 

 
Fig. 9. Rendering result of “dog” image: (a) color image, (b) original depth 

map, (c) enlarged depth map, and (d) 3D mesh model 
 

IV. CONCLUSIONS 

The 3D video service is attracting much attention, and the 
geometric information of scenes is very important to render 
3D scenes. Although accurate depth maps can be captured 
with the hybrid camera system, the depth map resolution is 
not sufficient due to technical limitations. In this paper, we 
have proposed the depth map interpolation method using 
color segmentation and the MRF model. To consider 
discontinuities of color images and the boundary mismatch 

problem, we have designed the prior and likelihood energy 
function. From the experimental results, we can confirm that 
our proposed algorithm enhances the resolution of depth maps 
and fills the hole caused by up-sampling with reliable depth 
values. It also solves the boundary mismatch problem induced 
by the inaccurate 3D warping process. With the interpolated 
depth map, we can successively generate 3D mesh model. 

 

 
Fig. 10. Rendering result of “dog & TV” image: (a) color image, (b) original 

depth map, (c) enlarged depth map, and (d) 3D mesh model 
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