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In a multiview video system, interactivity is important 
for users and should be considered in the design of 
multiview video coding (MVC). In this paper, we present 
an interactivity evaluation model for MVC schemes by 
using both weighted random graph and Markov 
approaches. The main factors that affect both the 
interactivity and rate-distortion (RD) performances of 
MVC schemes are analyzed and discussed in detail. By 
taking these factors into consideration, a new MVC 
scheme is proposed for high interactivity and RD gains. 
Experimental results show that the proposed scheme has a 
significant interactivity gain with little coding loss, 
compared to the state-of-the-art benchmark. As an 
extension to RD performance analysis, the interactivity 
evaluation model can be used as a design tool of 
alternative schemes for a future interactive multiview 
video system. 
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I. Introduction 

The three-dimensional television (3DTV) system is an open, 
flexible, and modular immersive TV system. It is backwards-
compatible to the conventional 2D digital television and able to 
support a wide range of different 2D and 3D displays [1], [2]. 
The interactivity and flexibility of the 3DTV system allows for 
the immersive viewing of large panoramic images and videos, 
and supports high resolution with brilliant quality of depth 
perception. In the 3DTV system, a scene is captured by a 
multiple baseline camera setup, from which the amount of 
video data is increased proportionally with the number of 
cameras. 

Multiview video coding (MVC) has emerged as a new field 
to find solutions to encode multiview video signals by using 
the state-of-the-art video codec [3]. Various schemes 
combining temporal and interview predictions have been 
proposed where frames are not only predicted from the 
temporally neighboring frames but also from the 
corresponding frames in adjacent views. Several approaches 
are based on predictive coding from reference pictures and, 
therefore, are closely related to classic video coding, but take 
advantage of multiple views of the same scene, such as the 
compression techniques in [4]-[6]. In such a way, MVC allows 
a very flexible design of temporal and interview prediction 
dependencies. Different designs of this open architecture lead 
to considerably different coding performances. The Joint Video 
Team (JVT) has adopted the MVC-hierarchical B-picture 
(HBP) prediction structure presented in [4] as the non-
normative structure for the joint multiview video model 
(JMVM) [7]. 

In the literature, comparison between different prediction 
structures only focused on rate-distortion (RD) performance. In 
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this work, we argue that using solely RD performance ignores 
important differences between structures when considering 
their implementations. Our motivation for this work is to 
address interactivity by providing a general framework for 
which an analysis can be developed in a systematic manner. 
The analysis in MVC schemes and real-time human-computer 
interaction are both important before developing any future 
interactive multiview video system (IMVS) [8], [9]. In [3], it 
was noted that both low latency and high coding performance 
are highly desirable for MVC schemes. In other words, the 
functionality of video cassette recording (VCR) enabling quick 
and user friendly browsing of multimedia contents is highly 
desirable in video applications. However, the functionality of 
free temporal browsing and interview skimming of multiview 
video contents, which is described as interactivity of MVS [1], 
is much higher and complex than the traditional VCR 
functionality in single-view video. Experiments have shown 
that more reasonable prediction dependencies in MVC 
schemes may result in higher coding performance but will 
increase the workload for real-time interaction [10]. 

Research on random accessibility is the first step for 
interactivity analysis. The user can access any single frame in 
temporal and view-wise directions when watching a multiview 
video program, and resource consumption for this accessing is 
considered as random accessibility of the IMVS [11]. In this 
case, frame random access is a mutually independent event and 
can be treated as a non-Markov procedure. Therefore, random 
accessibility was measured in the classical possibility space in 
previous works [10], [12]. On the other hand, using physical 
access time is another approach in measuring random 
accessibility [3]. Actually, interaction between a client and the 
IMVS is a continuous action that is formed by a series of frame 
accessing. Which frame will be accessed next is mainly 
dependent on the frame being accessed currently. Thus, 
interaction is essentially a Markov procedure, and it is not an 
appropriate way to measure the interactivity by single frame 
random accessibility in a non-Markov manner. 

In this paper, we develop an interactivity evaluation model 
for MVC schemes that allows us to compare different 
prediction structures in terms of interactivity. This model 
provides new tools for the analysis and design of multiview 
prediction structures. We use this model to study the impact on 
interactivity of the main elements of the multiview prediction 
structure. From these existing schemes, we are then able to 
derive alternative prediction structures, with much higher 
interactivity and comparable RD performance. We present 
examples where two structures have similar RD performance, 
but the proposed schemes achieve 37.11% and 59.89% higher 
interactivity. 

The rest of this paper is organized as follows. In section II, 

our interactivity evaluation model and some analytical results 
for MVC schemes are presented. In section III, we identify the 
effect of the interactivity evaluation model to the JMVM 
prediction structure. We also present our modifications of the 
JMVM structure to obtain new prediction structures with 
similar RD performance but significantly higher interactivity. 
In section IV, we present the experimental results to compare 
the JMVM prediction structures and our proposed schemes in 
terms of RD performance and interactivity. Finally, we 
conclude our work in section V. 

II. Interactivity Evaluation Model 

1. Interactivity Evaluation Model 

Interaction between a user and an IMVS is a Markov action 
in a period of time, and it is essentially different from the non-
Markov random access. In research on random accessibility, it 
is assumed that the user can access any single frame on 
temporal and view-wise directions in the procedure of program 
watching, and the resource consumption for this action is 
considered as random accessibility of the IMVS [11]. Random 
accessibility was theoretically measured by the number of 
decoded frames in classical possibility space in previous works 
regardless of the frame position [10], [12]. Some works applied 
physical decoding time to measure the interaction latency [3], 
but the output evaluation results will be hardware dependent 
and are in an after-effect manner. Theoretical research is 
usually applied to predict the accessibility performance. 
Although there will be a gap with the physical after-effect 
result, the theoretical prediction is meaningful to IMVS 
designers. However, these non-Markov approaches are not 
suitable for interactivity analysis. 

Given a specific MVC scheme (Fig. 1(a)), our interactivity 
evaluation model is based on generating a random graph G 
with weights (Fig. 1(b)). In this weighted random graph, each 
node corresponds to a frame in the MVC scheme. A virtual 
start point and end point is placed before and behind the graph 
(that is, scheme) for the convenience of stochastic analysis, 
respectively. Directed edges in the graph show the possible 
interaction path from current to the other frame in the 
procedure of watching. The weight labeled on edge is in the 
simplified form of (pstate i, fc), where pstate i (i=1, 2, 3) is the 
possibility of interaction state in set S={stay, left, right} 
indicating the user can stay in the current view or switch to the 
adjacent left or right neighbor view. The parameter fc is the 
frame cost that induced from the decoding time  

( )I I P P B B
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where fI, fP, and fBl is the number of I-, P-, and Bl-type frames  
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Fig. 1. (a) Multiview video coding sample scheme 1 and (b) 
weighted random graph model G for sample scheme 1. 
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involved for switching. wI, wP, and wBl is the weight for I-, P-, 
and Bl-type frame, respectively. l is the number of hierarchy 
levels for the B-type frame, and C is the average decoding time 
for one frame when all required references are ready in 
memory. We arrange substantial experiments in the experiment 
section for decoding delay measurement, and the results will 
show that the latency for one frame is limited in a very small 
range of milliseconds regardless of its frame type when all 
required references are ready. Therefore, we set wI=wP=wBl=1 
and let  fc= fI+fP+fBl, and simply label the weight as (pstate i, fc). 
The gap between physical and predicted decoding time will be 
very small in statistical manner. For example, the edge from 
S3T0 to S2T1 is labeled with (pleft, 7) meaning the user may 
switch from S3T0 to S2T1 with possibility pleft, and 7 frames 
will be decoded for this switching action including frame S2T0, 
S2T1, S0T1, S3T1, S0T3, S2T3, and S3T3, thus decoding 
delay is predicted as D=7C. There are only three states 
provided in G because these states will be empirically shown to 
be enough for user interaction through user behavior studies. 

The interactivity of an IMVS can be evaluated by our 
weighted random graph model. Interaction from user in the 
period from T0 to T3 will form a random path P from the start 
point to end point, while the possibility and frame-cost of P are 
the product of all pstate i and the sum of all fc in P, respectively. 
Therefore, the expected number of frames to be decoded for P 

can be obtained in probability space as 

E(P)=P(P)W(P),                  (2) 

where P(P) and W(P) are the possibility and frame-cost of 
random path P, respectively. E(.) is the expectation operator for 
random variable in probability theory. The two parameters in (2) 
can be calculated as 

state 
state ( )

( ) ,
i j

ip P
P p

∈
= ∏P              (3) 

( )
( ) ( ) ,

j
jf P

W P f
∈

= ∑               (4) 

where (pstate i)j and (f)j (j=0,1,…,N) are distinctive weights on P 
and N+1 is the length of the random path. For example, the 
value of N is 4 in Fig. 1(b). 

Given an MVC scheme and its corresponding weighted 
random graph model, E(P) indicating the expected number of 
decoded frames for an interaction procedure from start point to 
end point can be calculated using (2) to (4). A higher value of 
E(P) will result in longer latency for interaction. However, the 
value of E(P) is calculated for one random path. The number of 
random paths will increase dramatically with the size of 
weighted random graph model. Therefore, it is not suitable to 
evaluate the interactivity of an IMVS by just one E(P) value. 
To this end, the interactivity for G that indicates the expected 
number of decoded frames for any random path in weighted 
random graph model is calculated by 

( ) ( ).E G E P= ∑                (5) 

The average interactivity of an IMVS is obtained by (5), 
indicating the average decoding latency for any interaction in G. 
A smaller E(G) value represents higher interactivity of IMVS, 
since less latency is needed.  

2. Possibility for pstate i 

Users can interact with an IMVS in the procedure of 
watching, and the possibility pstate i for view switching is critical 
in our weighted random graph model. Figure 2 provides a 
series of interactivity performances for different MVC schemes 
when pstate i ranging from 0 to 1. The names of the mentioned 
schemes will be described in the latter section. These results 
show that the gradient of interactivity is different but constant 
for MVC schemes when the value of pstate i are changing. In this 
case, it is better to compare interactivity performance of 
schemes in a specific possibility interval or value. 

To this end, an interactive multiview video player was 
developed and substantial experiments were arranged for user 
behaviors [13]. These empirical studies showed that users tend 
to interact with an IMVS in just a small range of views, 
although they are able to switch to far distance views. This is  
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Fig. 2. Values of E(G) for different MVC schemes when different
values of pstate i are selected. 
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Table 1. Experimental results for view switching possibilities. 

Left Right 

Switch step Possibility Switch step Possibility 

1 0.0018 1 0.0018 

2 0.0000 2 0.0000 

3 0.0000 3 0.0000 

4 0.0000 4 0.0000 

5 0.0000 5 0.0000 

6 0.0000 6 0.0000 

7 0.0000 7 0.0000 

 

because that far distance view switching will cause scene 
jittering and make the user very uncomfortable. According to 
statistical results, the value of pstay is 0.9964, and the 
possibilities for other states are listed in Table 1. 

According to the results in Table 1, users tend to have just 3 
interaction states in the procedure of watching, and may not 
switch to other views with more than 1 step. Therefore, the 
interaction state set S with 3 states is enough for our random 
graph model. Furthermore, the possibilities for these states are 

pstay=0.9964, 
pright=0.0018, 
pleft=0.0018. 

On the other hand, pswitch is 0.0036, and it is a special case in 
view 0 and M–1 since these views do not have adjacent left and 
right neighbor views, respectively. 

3. Example of Weighted Random Graph Model  

In this section we select two MVC schemes and their 
associated models as shown in Figs. 1 and 3. The value of M–1  

 

Fig. 3. (a) MVC sample scheme 2 and (b) weighted random 
graph model G for sample scheme 2. 
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Table 2. Calculation for weighted random graph model in Fig. 3(b).

No. Random path P P(P) W(P) E(P) 

1 
Start, T0S0, T1S0, T2S0, 

T3S0, End 
0.2473 4 0.9892 

2 
Start, T0S0, T1S1, T2S0, 

T3S0, End 
0.1614E-5 4 0.6457E-5

. . . 
. . . 

. . . 
. . . 

. . . 

68 
Start, T0S3, T1S3, T2S3, 

T3S3, End 
0.2473 4 0.9892 

E(G) 4 

 

and N are both equal to 4 for these two schemes. In accordance 
with (2) to (5), the calculation for average interactivity of 
IMVS can be summarized as a 4-step algorithm. 

1: Find out all the possible random paths P. 
2: Obtain P(P) and W(P) by (3) and (4), respectively. 
3: Compute E(P) by (2). 
4: Determine E(G) by (5). 

Given the MVC schemes in Figs. 1(a) and 3(a), the 
calculation for these two schemes are listed in Tables 2 and 3, 
respectively. There are 68 random paths in total for the two 
models. For each of these paths, P(P), W(P), E(P), and E(G) 
are obtained by (3), (4), (2), and (5), respectively. 
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Table 3. Calculation for weighted random graph model in Fig. 1(b).

No. Random path P P(P) W(P) E(P) 

1 Start, T0S0, T1S0, T2S0, 
T3S0, End 0.2473 4 0.9892 

2 Start, T0S0, T1S1, T2S0, 
T3S0, End 0.1614E-5 16 0.2583E-4

. . . 
. . . 

. . . 
. . . 

. . . 

68 Start, T0S3, T1S3, T2S3, 
T3S3, End 0.2473 6 1.4839 

E(G) 7.5211 

 

  Several phenomena can be found in the calculation of the 
two schemes. First, the two schemes both have 68 random 
paths in their correspondent graph model due to the same 
model size and structure. In other words, the number of P is 
determined by the model size and structure. The model size, 
that is, the group of picture (GOP) size, is restricted to the 
number of views and time-stamps, and model structure is 
related to the cardinality of S. Therefore, different graph models 
will have the same number of P if these schemes are with the 
same GOP size, and this is convenient for comparative study. 

Second, the possibility P(P) is equivalent for correspondent 
random path in different graph models. For example, the 
values of P(P) for the first P in Fig. 1(b) and Fig. 3(b) are both 
0.2473. This is result from the same possibility and edge 
combination in P.  

Third, the difference between two graph models is the value 
of W(P), thus it will result in different E(P) and E(G). The 
value of W(P) is result from the prediction structure of the 
MVC scheme. The correspondent frame in the same position 
of different prediction structures will have different frame-cost. 

Finally, given different MVC schemes with the same GOP 
size, they will have different average interactivity. There are 
three factors that can affect the value of E(G), including fc, pstate i, 
and the cardinality of S. The latter two factors are determined 
by user behavior, which is settled and can be treated as a 
constant. Therefore, the average interactivity E(G) is 
determined by the factor fc, that is, the prediction structure of 
MVC scheme. 

III. JMVM Scheme Discussions 

In this section, we will apply our weighted random graph 
model G to the well known JMVM prediction structure [7], 
which has been shown to be efficient in terms of RD 
performance. The JMVM prediction scheme is a rather fixed 
prediction structure that makes use of hierarchical B frames on 
the temporal dimension and interview prediction on the spatial 
dimension. Schwarz and others [14] presented a detailed  

 

Fig. 4. (a) MVC-HBP scheme in JMVM prediction structures and
(b) weighted random graph model G for the JMVM 
prediction structure in (a). 
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description of the hierarchical B frame structure. As shown in 
Fig. 4(a), MVC-HBP is a typical hierarchical prediction structure 
with three stages of a dyadic hierarchy in temporal and interview 
predictions. Hierarchy levels of the prediction structure are 
denoted by the indices in the frames, and all frames are predicted 
using only frames of the same or a higher hierarchy level as 
references. This dyadic hierarchy structure is one of the schemes 
applied in the JMVM. The correspondent graph model for the 
MVC-HBP scheme is given in Fig. 4(b). Our graph model can 
complement RD performance values, providing a three-
dimensional characterization for MVC schemes. 

The results in Fig. 5(a) show the max-E(P) in each view and 
the all E(P) of the MVC-HBP graph model. Values of E(P) 
within view interval x indicate that they belong to those 
random paths started from SxT0. The max-E(P) in each view is 
the maximal expectation number of decoded frames for P 
started from the corresponding view at T0. There are 8 values 
for this category since the classical MVC-HBP scheme is with 
8 views. The values of E(P) shows the expected frame costs for 
all P excluding the above 8 paths with the max-E(P). As can be 
found in Fig. 5(a), there are 33,942 random paths, but most of 
the values of E(P) are close to 0. 

The results in Fig. 5(b) show the comparative study of max-
E(P) in each view and W(P) for all 33,942 random paths. The 
random path with max-E(P) will be with the minimal W(P) in 
its correspondent view interval x. On the other hand, those  
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Fig. 5. (a) Comparative results of max-E(P) in view and E(P) in P
for MVC-HBP random graph model and (b) comparative 
results of max-E(P) in view and W(P) for P for MVC-
HBP random graph model. 
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random paths with much smaller E(P) will have much higher 
W(P). More view switching will lead to higher W(P), but lower 
P(P) and thus lower E(P). 

The results in Fig. 5 show the possibility that P(P) is 
important in determining E(P) and that view dependencies are 
important in determining W(P). 

First, we consider the importance of P(P) to determine 
E(P).The max-E(P) in each view interval x is obtained on the P 
that without view switching, that is, the possibility for all 
directed edges on P is pstay. For example, the random path P 
formed by start point, S0T0, S0T1, S0T2, S0T3, S0T4, S0T5, 
S0T6, S0T7, S0T8, and end point will be with the max P(P) 
0.1214 in view interval 0.  

The value of max-E(P) is much larger than E(P)s in its 
correspondent view interval, since most of the E(P) is close to 
0. This phenomenon results from the possibility of switching. 
The user tends to stay in the current view with extra high 
possibility, as shown in Table 1 and discussed before. Therefore, 
the P(P) will be extra small for P with more view switches. As  

 

Fig. 6. (a) Comparative results of max-E(P) in view and E(P) in 
P for Simulcast random graph model and (b) comparative 
results of max-E(P) in view and W(P) for P for Simulcast 
random graph model. 
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can be found in Fig. 5(b), the W(P) for P with more view 
switches is much higher than the path without switching. 
However, more times of view switching will result in higher 
W(P), but lower P(P) and E(P). As depicted by Fig. 5(a), there 
are 33,942 random paths in MVC-HBP graph model, but only 
120 of them can have E(P) lager than 0.002. 

Next, we examine the importance of view dependencies in 
determining W(P). The view-independent random path will 
have the minimal W(P) within its correspondent view interval x. 
For example, the view S0 is encoded temporally without any 
interview predictions, and the P formed by start point, S0T0, 
S0T1, S0T2, S0T3, S0T4, S0T5, S0T6, S0T7, S0T8, and end 
point will with the minimal W(P), that is, 9, in view interval 0. 

The W(P) for that one-view-dependent P will be higher than 
that of view-independent one. Longer view dependencies will 
result in lager W(P). As shown by Fig. 5(b), values of W(P) 
distributed in view interval 4 are greater than those in view 
interval 2.  

The W(P) for dyadic-view-dependent random paths will be  
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Fig. 7. Proposed MVC scheme based on JMVM. 
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much higher than that of view-independent and one-view-
dependent paths. Longer view dependencies will have higher 
results. As shown by Fig. 5(b), values of W(P) distributed in 
view interval 5 are greater than those in view interval 1.  

More and longer view dependencies will result in lower 
interactivity. Figure 6 shows the results for Simulcast scheme 
as a comparative study to Fig. 5. Simulcast is another typical 
JMVM scheme that processes frames with just temporal 
predictions. As can be found in Fig. 6, the max-E(P) is smaller 
than those correspondent in Fig. 5(a), and values of W(P) is 
distributed regularly in view intervals. As discussed above, 
higher value of E(P) will result in higher E(G), and thus lower 
interactivity. 

Based on the above analyses, we proposed an MVC scheme 
in Fig. 7 with shorter view dependencies. In this proposed 
scheme, the view S4 is encoded with the same method of S0 in 
the MVC-HBP scheme, while other views change their 
encoding method accordingly. We trim all the dyadic-view-
dependencies for non-anchor frames so as to decrease the 
interview dependencies of frames. 

IV. Experimental Results 

We provide interactivity and RD performance results for 
MVC schemes by comparing the MVC-HBP and the proposed 
schemes. In this section, the experiments will be performed on 
average decoding delay C, interactivity and RD performances 
of MVC schemes, respectively. 

1. Average Decoding Delay 

The average decoding delay is important in setting weights  

Table 4. Selected MVC test sequences and experiment settings. 

Sequence Resolution Frame rate 
Number of 

encoded frames 
Ballroom 640 × 480 25 241 

Breakdancer 1024 × 768 15 97 

Exit 640 × 480 25 241 

Race1 640 × 480 30 617 

Table 5. Statistical results on decoding delay (ms) for different frame 
types, resolutions, QPs, and video contents. 

Seq. Exit 

Res. 640 × 480 

Scm. Proposed 8×8 MVC-HBP 8×8 

QP 22 27 32 22 27 32 

I 63.13 63.63 63.75 62.00 59.75 58.50

P 74.56 71.81 64.66 75.16 66.56 59.69

B1 78.59 76.07 70.32 77.80 69.93 63.02

B2 76.48 73.81 68.67 76.79 67.83 62.64

B3 72.14 70.39 65.36 73.64 64.20 60.06

B4 69.06 66.98 63.67 69.79 61.83 59.02

Seq. Breakdancer 

Res. 1024 × 768 

Scm. Proposed 8×8 MVC-HBP 8×8 

QP 22 27 32 22 27 32 

I 155.88 147.00 144.63 173.63 157.38 143.00

P 167.50 150.41 140.28 172.66 150.25 139.66

B1 179.61 161.93 152.36 181.80 162.89 151.86

B2 181.00 165.25 157.98 182.27 168.29 158.65

B3 175.94 160.66 152.61 177.43 162.00 153.89

B4 175.04 160.31 151.94 176.10 159.81 152.83

 

(that is, wI, wP, and wBl) and the parameter C in (1). In this part 
of the experiment, we will show the average decoding delay 
for different types of frames under various conditions, 
including QPs, multiview video contents, and coding schemes. 
The selected multiview test sequences and experiment settings 
are listed in Table 4, and the computer is equipped with 2.93G 
CPU and 4G memory. Each sequence is decoded 4 times on 
each QP and coding scheme to gather the statistical results. The 
results of sequences Exit and Breakdancer are listed in Table 5. 
In this table, I, P, B1, B2, B3, and B4 are the frame types, and 
Res. is the frame resolution. All the results are measured by 
milliseconds. 

According to the results in Table 5, we find that the decoding 
delay for the frame is limited in a small range of milliseconds 
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for one sequence when all required references are ready in 
memory. For example, the decoding delay for the frame Exit 
sequence is around 67.81, and Breakdancer is around 161.24 
regardless of the frame type, coding QP, and coding scheme. 
The statistical results for Ballroom and Race1 are also similar 
to the other sequences. Therefore, we can obtain C easily and 
set wI=wP=wBl=1 for the convenience of theoretical analysis. 
There should be a gap between physical and theoretical 
decoding delay, but it will be small in statistical manner.  

2. Interactivity evaluations for MVC schemes 

As mentioned above, more and longer view dependencies in 
MVC scheme will result in lower interactivity. In this 
subsection of experiments, we select several typical MVC 
schemes in JMVM, including Simulcast, KS-IBP, KS-IPP, KS-
PIP, MVC-HBP, and the proposed scheme, to find the effects 
of view dependency on interactivity. All of these schemes are 
with equivalent GOP size, that is, 8×8, but with a different 
number of view dependencies. The details of KS-IBP, KS-IPP, 
KS-PIP, Simulcast, and MVC-HBP are described in [4]. The 
results of E(G) for correspondent schemes are listed in Table 6. 

In these six MVC schemes, MVC-HBP is the most complex 
scheme that with more and longer view dependencies, 
resulting in the highest value of E(G) and the lowest 
interactivity. On the other hand, the schemes KS-IPP, KS-IBP, 
and KS-PIP are with similar number but different length of 
view dependencies. The length of view dependency in KS-IPP 
is longer than that of KS-IBP, and thus the value of E(G) for 
KS-IPP is greater than that of KS-IBP. The two schemes KS-
IBP and KS-PIP are with similar dependency length, but KS-
PIP is simpler, and the value of E(G) changes accordingly. 
Furthermore, Simulcast is a special scheme without view 
dependency, and thus it has the lowest value of E(G) and 
highest interactivity among these schemes. When comparing 
KS-PIP with the proposed scheme, KS-PIP has longer but 
simpler view dependencies, and thus the values of E(G) for the 
two schemes are closed to each other. 

Table 6 also lists the interactivity savings ΔE(G)% for the 
proposed scheme when compared to other schemes. The value 
of ΔE(G)% is obtained as 

ΔE(G) =(Eo–Ep)/Eo×100 (%),             (6) 

where Ep is the value of E(G) for the proposed scheme, Eo is 
the value of E(G) for the KS-IPP, KS-PIP, KS-IBP, MVC-HBP, 
or Simulcast scheme. It can be found that the interactivity of 
the proposed scheme is better than MVC-HBP by 37.1130%. 

We also extend the GOP size of the proposed scheme to 
8×12 and compare the interactivity performance to the MVC-
HBP (long) scheme. The results in Table 6 show that the  

Table 6. Interactivity savings of the proposed scheme compared to 
other MVC schemes. 

Name of scheme Interactivity E(G) ΔE(G) (%) 

MVC-HBP 19.5918 37.1130 

KS-IPP 16.6821 26.1442 

KS-IBP 14.3209 13.9670 

KS-PIP 13.0576 5.6435 

Simulcast 9.2094 -33.7840 

Proposed 12.3207 - 

MVC-HBP (long) 40.8079 59.8860 

Proposed (long) 16.3697 - 

Table 7. Comparative results of interactivity on MVC schemes with 
different GOP size. 

Name of 
scheme 

GOP 
size E(G)/N

Name of 
scheme 

GOP 
size E(G)/N

MVC-HBP 8×8 2.1769 Simulcast 8×8 1.0233

KS-IPP 8×8 1.8536
MVC-HBP 

(long) 8×12 3.6928

Proposed 8×8 1.3690 Tree mode 4×4 1.5661

KS-IBP 8×8 1.5912 Transposed 5×5 4.6000

KS-PIP 8×8 1.4508 All I frame N×M 1.0000

 

proposed scheme will have 59.8860% savings on E(G). 
The evaluation function (5) is able to predict the interactivity 

performance for all MVC schemes. The value of E(G) 
indicates the average number of decoded frames for watching 
N frames. Therefore, for any scheme with GOP size N×M, the 
value of E(G)/N is the average number of decoded frames for 
switching from current frame SiTj to next frame Si(+0,+1,-1)Tj+1. In 
this case, the value E(G)/N is able to compare the interactivity 
among different schemes with different GOP sizes. In this 
subsection, we select the previous 6 schemes and the MVC-
HBP (long) [4], Tree mode [6], and Transposed [15] schemes 
for interactivity comparison. Furthermore, we select All I 
frame scheme for the convenience to figure out the lower 
bound of interactivity. In this scheme, all frames are intra-
coded without any temporal or interview predictions, and thus 
it can be with any GOP size. The interactivity results for these 
schemes are listed in Table 7. 

The experimental results in Table 7 show that the 
interactivity performance for MVC schemes can be compared 
even though they are with different GOP sizes. The All I frame 
scheme has the lowest value of E(G)/N since it has no temporal 
or interview prediction. Any switching from SiTj to Si(+0,+1,-1)Tj+1 
will result in one frame decoded in this scheme. Therefore, the 
value of E(G)/N for All I frame scheme is the lower bound for 
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all MVC schemes.  
The results in Table 7 for different schemes also show the 

effect of view dependency on interactivity. Experimental 
results indicate that more and longer dependencies will result in 
lower interactivity, which shows the agreement to previous 
analyses. 

3. Experimental results on RD performance 

We use JMVM software version 7.0 [7] to test the RD 
performances of MVC-HBP and the proposed schemes. The 
MVC test sequences selected for RD performance and their 
settings are listed in Table 4. All RD tests were performed 
using the following fixed QP values: 22, 27, 32, and 37, and all  
DeltaLayerQuants are set as 0. The MVC-HBP and the 
proposed scheme with the same 8×8 and 8×12 GOP size are 
compared. These comparisons will be impartial on the 
interactivity evaluation model.  

The RD performances for different test sequences and four 
selected schemes are shown in Fig. 8. For schemes with the 
same GOP size, they have the same temporal prediction 
structure within one view, but adopt different prediction 
dependencies among views. Therefore, the comparison settings 
among schemes are with the same GOP size and the same 
temporal prediction structure, but with different view 
prediction dependency. As we have mentioned above, the 
interactivity performance will be affected by the number and 
length of view dependency in one scheme. In this subsection, 
we will further show the effect on RD performance.  

According to the results in Fig. 8, the MVC-HBP or MVC-
HBP (long) scheme with more complex and longer view 
dependencies have better RD performance in almost all of the 
test sequences. However, the coding gain is quite small when  

 

Table 8. Parameters of BDBR and BDPSNR for the proposed
scheme comparing to MVC-HBP in JMVC with 8×8 GOP 
size. 

Sequence BR range (kbps) BDPSNR 

Ballroom [327.2107, 3091.0945] 0.0151 

Breakdancer [267.2797, 3847.6909] 0.0088 

Exit [171.9791, 2169.9734] –0.1791 

Race1 [496.8723, 3987.3069] –0.0411 

Sequence PSNR range (dB) BDBR 

Ballroom [32.7436, 41.0606] 0.2958 

Breakdancer [35.8248, 40.7059] 0.2903 

Exit [35.2829, 41.5753] –7.6353 

Race1 [33.3885, 42.2170] –1.0977 

 

Table 9. Parameters of BDBR and BDPSNR for the proposed 
scheme comparing to MVC-HBP in JMVC with 8×12 
GOP size. 

Sequence BR range (kbps) BDPSNR 

Ballroom [338.6926, 2999.0107] –0.0075 

Breakdancer [259.6464, 3690.7524] –0.0109 

Exit [152.7541, 2021.4348] –0.0068 

Race1 [509.5121, 4072.0627] –0.0434 

Sequence PSNR range (dB) BDBR 

Ballroom [32.8599, 41.0712] –0.2412 

Breakdancer [35.8214, 40.6859] –0.8432 

Exit [35.2615, 41.5419] –0.3459 

Race1 [33.2495, 42.1587] –1.1479 

 

compared to the proposed scheme. We use BDPSNR and 
BDBR algorithms in [16] to figure out the RD performance of 
the proposed scheme when comparing it to the MVC-HBP. 
The results in Tables 8 and 9 show that the proposed scheme 
has similar RD performance with the MVC-HBP scheme on 
four test sequences when different GOP sizes are selected. On 
the other hand, the results in Table 6 show that the proposed 
and the proposed (long) scheme can save 37.1130% and 
59.8860% interactivity when comparing it to the MVC-HBP 
and MVC-HBP (long) scheme, respectively. Therefore, an 
IMVS can have more interactivity gains with small RD loss 
when it chooses the proposed scheme at the encoder rather than 
the MVC-HBP. The proposed scheme will be an alternative 
selection with high interactivity and appropriate RD 
performance for IMVS.  

V. Conclusion 

We presented a new interactivity evaluation model for MVC 
schemes, and found that some of the considerations have to be 
taken into account for a high interactivity design for the scheme. 
This new interactivity evaluation model allows us to analyze 
the interactivity efficiency of MVC prediction structure, and 
provides a new tool in MVC scheme designing. 

We also discussed the prediction structure of JMVM 
considering both RD and interactivity performance. The factors 
that can affect the interactivity performance were figured out, 
and we found these factors are important to both interactivity 
and RD performances. Furthermore, we modified the JMVM 
prediction structure and obtained the proposed scheme. The 
experimental results show that the new scheme has a similar 
RD performance compared to the MVC-HBP scheme but 
considerably gains on interactivity performance. The proposed  
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Fig. 8. RD performances for different schemes with same GOP size. 
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(a) RD curves for different schemes on Ballroom sequence. 
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(b) RD curves for different schemes on Breakdancer sequence.

4,000
35

0 500 1,000 1,500 2,000 2,500
Rate (kbps) 

GOP length 8 
Proposed 
MVC-HBP

Proposed 
MVC-HBP

GOP length 12

42

41

40

38

36

PS
N

R
 (d

B
) 

(c) RD curves for different schemes on Exit sequence. 
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(d) RD curves for different schemes on Race1 sequence. 
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scheme can be an alternative selection for multiview video 
encoder in future interactive multiview video system with high 
interactivity and compression requirements. Finally, the results 
show that the interactivity issue is significant for future 
multiview applications when selecting an MVC scheme. 
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