
GPU Parallel Programming
for Real-time Stereoscopic Video Generation

In-Yong Shin and Yo-Sung Ho

Gwangju institute of Science and Technology (GIST)
261 Cheomdan-gwagiro, Buk-gu, Gwangju, 500-712, South Korea

{siy0808, hoyo}@gist.ac.kr

Abstract - In this paper, we propose a fast depth image based rendering method to generate a virtual view image
in real-time using a graphic processor unit (GPU) for a 3D broadcasting system. Simple and efficient hole filling
method is performed to reduce complexity and prevent hole filling error. Also, we designed a vertical parallel
structure for a forward mapping process to take advantage of the single instruction multiple threads structure of
GPU. Additionally, we utilize high speed GPU memories to boost computation speed. As a result, we can generate
virtual view images 15 times faster than a CPU-based processing.

I. Introduction
Recently, various researches have been on 3D

broadcasting system as increasing interest in 3D multimedia
service. 3D broadcasting system provides realistic multimedia
service that offers a 3D effect based on binocular depth cue.

Fundamentally, in order to offer clients 3D experience,
real camera images captured from more than two viewpoints
should be given to a 3D display device. The most
representative way of 3D broadcasting system is stereo
video broadcasting system that gives only two viewpoints.
Stereo viewing is a common technique to increase visual
realism or enhance user interaction with 3D scenes. Two
views of a scene are needed, one for the left eye, one for the
right. Thus, the stereo video system requires double
transmission bandwidth compare to traditional broadcasting
system. There are several solutions for this problem. Multi-
view video coding (MVC) can reduce amount of redundant
data by using inter-view statistical dependencies. Since all
cameras capture the same scene from different viewpoints.
There is another way of solving this problem. Send one color
video for the left eye and corresponding depth map at a
transmitting station. Then, virtual viewpoint video for the
right eye can be generated by using depth image based
rendering (DIBR) in the receiving part. This method can
reduce amount of transmission data due to simplicity of depth
map. A great part of depth map consists of smooth areas.
Additionally, it is single channel image. Conversely, DIBR
part has high computation complexity. Thus, it is hard to
execute in real-time at the receiving part.

In this paper, we focused on second method which use
DIBR algorithm. In order to implement massively large
computational algorithm in real-time, algorithms based on
graphics processing units (GPUs) have recently attracted a lot
of interest in several fields. So, we propose a fast stereo video
generation technique by using GPU. Compute Unified Device
Architecture (CUDA) is a parallel computing architecture
developed by NVIDIA cooperation. CUDA is the general

purpose computing engine in NVIDIA GPUs that is
accessible to software developers through industry standard
programming languages.

This paper organized as follows. In Section II, the stereo
video broadcasting system is explained. In Section III, our
proposed method is explained. In Section IV, the
experimental results are given. The conclusion is presented in
Section V.

II. Stereo Video Broadcasting System
In general, stereo video display device needs two

viewpoint video sequences of the same scene. Thus, we need
to send these two sequences through a transmission channel.
However, if we send two video sequences, this doubles the
bandwidth increase in Fig. 1 as shown below.

Figure 1: Bandwidth Comparison of mono and stereo video.

Some methods are proposed to reduce this bandwidth. In
this paper we use one of these methods which utilize a depth
map. There are three parts of this method. First, preparing left
viewpoint images and corresponding depth maps. A depth
map provides a clue to make right viewpoint image.

�-� �3�1�5� �-

Additionally, the depth map can be compressed with high
compression ratio due to its simple texture. Second, encoding
left viewpoint images and corresponding depth map. After
then, transmit its compressed data. Last, decoding received
data and making right viewpoint image by using depth map.
In the last part, we use DIBR algorithm which can make right
viewpoint image what we want based on depth information of
left color image. By this means, as shown in Fig. 2, we can
achieve about 1.2 times bandwidth comparing mono video
broadcasting bandwidth while still generating stereo video in
the receiving part. However, DIBR algorithm is very heavy at
a real-time point of view. Thus, it is important to implement
DIBR algorithm in real-time.

Figure 2: Bandwidth Comparison of traditional method and
application of transmitting left viewpoint image and
corresponding depth map.

A. Procedures of the DIBR Method
For the right viewpoint image generation based on a depth

map, we use depth image based warping algorithm as shown
in Fig. 3 [3]. DIBR is the process of synthesizing virtual
views of a scene from color image and corresponding depth
map. Conceptually, this view generation can be understood as
the following process. At first, the original image points are
re-projected into the 3D world, utilizing the relevant depth
data. After then, these 3D space points are projected into the
image plane of a virtual viewpoint camera, which is located at
the wanted viewing position. The consecutive operation of re-
projection and subsequent projection is generally called 3D
image warping in the computer graphics. However, This
approach requires drastic computational costs. Thus, instead
of using projection and re-projection homography matrix is
commonly used to transform one plane into another one [4].
In the end of DIBR algorithm filling holes which are appeared
due to disocclusion region. It is important part of DIBR
algorithm, because it determines quality of virtual viewpoint
image. So, we proposed a simple and efficient hole filling
algorithm to achieve parallelized fast implementation.

B. Homography Matrix
In order to alleviate complexity of projection and re-

projection, a simple view transformation described by
homography matrix is used to transform one plane into
another one instead of using projection and re-projection.

Each depth plane in left view has to acquire its own
homography matrix. Generally, depth map has 256 possible
levels of depth which we have to calculate 256 homography
matrices before warping process.

Figure 3: Block diagram of depth image based rendering
algorithm.

C. Warping Process
If we warp a left color image toward right viewpoint, there

will be numerous small holes on the warped color image
because of spatially sampled image data. There are three steps
to prevent this problem. First, forward depth map warping is
conducted. Second, depth image is filtered by using median
filter. Third, backward color image warping is performed.
After then, we can get an image as shown in Fig. 4 (b). There
are some hole regions that are absent in left view, such as
occluded regions, in the result of warping process.

Figure 4: (a) Forward warping result (b) Backward warping
result.

�-� �3�1�6� �-

D. Fast Hole Filling Method
Although warping process fills up proper pixel values in

the right viewpoint image, there are still unknown hole
regions which cannot find a same fetch from the left color
image due to occlusion problem. Thus, we have to find the
most plausible value by using surrounding pixel information.
Most of the presented hole filling methods use image
interpolation or in-painting algorithm. In order to get best
quality hole filled image, neighboring background pixel
values and their geometric information are used. The reason
why we use background region information is that
background pixels rather than the foreground ones as the
disoccluded area is more reasonable by definition of the
diocclusion [5].

In this paper, we focused on a real-time implementation.
So, we have to use simple and efficient hole filling method. In
the past research, directional interpolation method is used
with reasonable assumption that hole regions belong to
background not to foreground objects [6]. Figure 5 shows
how hole regions are filled with neighboring background
depth values.

Figure 5: Directional image interpolation method.

III. Proposed Algorithm

In many cases, directional image interpolation produces
reasonable interpolated depth map. However, there is an
erroneous interpolated region in Fig. 6. The shape of
foreground object is changed due to the fact that interpolation
was conducted by using foreground depth value.

Figure 6: (a) Warped color image with hole region (b) Result
of traditional directional interpolation method.

A. Proposed Hole Filling Method

Generally, a width of hole region is determined by
disparity difference between left end position and right end
position in the stereo image warping. Also, if the width of
hole region is the same with disparity difference between left
end point and right end point, two end points of hole are
adjacent point in the reference view depth map. Thus, in this
case, traditional directional interpolation produce valid
interpolated depth map. However, if the width of hole region
is not the same with disparity difference between two end
points of hole region. Thus, we have to use different
interpolation method to avoid error. Figure 7 shows proposed
hole filling algorithm. If a disparity difference between two
end point of hole region is larger than horizontal length of
hole, we take pixel value from the reference image point
which is positioned with foreground disparity for each hole
position. To facilitate the understanding, Fig. 8 shows
proposed algorithm graphically. In the result of proposed
method, there are not foreground shape change.

Figure 7: Block diagram of proposed hole filling algorithm.

Figure 8: (a) Proposed interpolation method (b) Result of
proposed method.

B. GPU Parallel Programming
In order to achieve real-time implementation, we use

parallel programming which executed on the GPU called
CUDA. The architecture of CPU and GPU are very different.
GPU has a ;lot of cores capable of calculating floating point
operation. Conversely, GPU has a small number of instruction
control unit. Thus, GPU has a Single Instruction Multiple
Threads (SIMT) structure [7]. So, DIBR algorithm is very

�-� �3�1�7� �-

suitable for GPU programming due to that all of image pixels
are determined with same operation in the DIBR algorithm
excepting forward warping process. There is a important
condition of SIMT parallel processing. It is data
independency between all data executed simultaneously. If we
use rectangle parallel structure for the forward warping, there
will be simultaneously overlapped data. In this case, we
cannot know that which data will be remained. To remove a
dependency of forward warping process, we determined
vertical parallel structure as shown in Fig 9. Virtual right
viewpoint depth image can be forward warped by allowing
vertical parallel structure. We can use more than one vertical
structure, if the space between two structures is less than
maximum disparity. The reason why we use vertical structure
is that the distribution property of pixels which has possibility
about overlap simultaneously.

Figure 9: Vertical parallel structure for forward warping.

IV. Experimental Results
For the experiment, we used a ballet sequence produced

by Microsoft Research. Figure 10 shows results of traditional
algorithm and proposed algorithm. Significant errors are
produced in Fig. 10 (a) while Fig. 10 (b) shows better quality
which is result of proposed method. Left color image and
generated right viewpoint image are presented in Fig. 11.
Table 1 shows a comparison of computation time CPU and
GPU. GPU device can boost computation power about 15time
than a CPU operation.

Figure 10: (a) Result of the usual directional interpolation (b)
Result of the proposed hole filling algorithm.

Figure 11: (a) Left viewpoint input image (b) Right
viewpoint image generated by using (a) and corresponding
depth map.

Table 1: Comparison of computation time for a 720x480
sequence.

System Time Relative speed

CPU
P4 Core2 2.66GHz 125.7ms 1

GPU(CUDA)
nVIdia GTX 260 8.15ms 15.4

IV. Conclusions
In this paper, we developed a fast virtual viewpoint image

generation method based on the DIBR method. In order to
generate a virtual view image in real-time for the 3D
broadcasting system, we use GPU parallel programming
which called CUDA. Simple and efficient hole filling method
is proposed to reduce complexity and prevent hole filling
error. In order to take advantage of the single instruction
multiple threads structure of GPU, we collect independent
data sets and use high speed memories. From these techniques,
we can produce virtual viewpoint images 15 times faster than
the serial CPU processing. Therefore, low bandwidth and
real-time stereo video broadcasting system is possible.

Acknowledgments
This research was supported by the MKE(The Ministry of

Knowledge Economy), Korea, under the ITRC(Information
Technology Research Center) support program supervised by
the NIPA(National IT Industry Promotion Agency) (NIPA-
2010-(C1090-1011-0003))

References
1. O. Schreer, P. Kauff, and T.Sikora, 3D

Videocommunication, John Wiley&Sons, 2005.
2. L. McMilan, “A List-Priority Rendering Algorithm for

Redisplaying Projected Surfaces,” Technical Report
TR95-005, Univ. of North Carolina, 1995.

3. G. Wolberg, Digital Image Warping, IEEE Computer
Society Press, 1990.

4. ISO/IEC JTC1/SC29/WG11, Contribution for 3D Video
Test Material of Outdoor Scene, M1537, 2008.

5. K. Oh, S. Yea, and Y. Ho, “Hole Filling Method using
Depth Based In-painting for View Synthesis in Free
Viewpoint Television and 3-D Video,” Picture Coding
Symposium, pp. 39 (1-4), 2009.

6. H. Shin, Y. Kim, H. Park, and J. Park, “Fast View
Synthesis using GPU for 3D display,” IEEE Transactions
on Consumer Electronics, Vol. 54, No. 4, pp. 2068-2076,
2008.

7. nVIDIA Corporation, “CUDA 2.3 Programming Guide,”
in http://www.nvidia.com/object/cuda_develop.html, 2009.

�-� �3�1�8� �-

