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ABSTRACT: Digital matting for extracting foreground objects from

an image is an important process to generate special effects in the
movie industry and the broadcasting center. Recently, a digital mat-

ting algorithm has been developed to create an alpha matte using a

well-focused image generated from multiview images. However, this

method could generate only a single-view alpha matte, even though it
used multiple cameras. In this article, we propose a new estimation

scheme for multiview alpha mattes by sharing the trimap of the refer-

ence view. Furthermore, we use the motion vector to update the tri-

map for video matting. After we extract foreground objects from all
view images, we composite the foreground objects with the corre-

sponding background images captured in the same multiview camera

arrangement. Experimental results demonstrate that multiview com-
posite images can generate reasonably natural 3D views through the

stereoscopic monitor. VVC 2010 Wiley Periodicals, Inc. Int J Imaging

Syst Technol, 20, 285–293, 2010; View this article online at wileyonlinelibrary.

com. DOI 10.1002/ima.20251
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system; trimap sharing

I. INTRODUCTION

Efficient image and video compositing techniques are required to make

special effects in a movie industry or a broadcasting center. In general,

a composite image is divided into two layers: foreground object and

background. To extract a foreground object, referred to as a foreground

matte, we remove the background of the original image by considering

an alpha value a that represents the pixel opacity of the image. This

technique is known as digital matting (Chuang et al., 2001). Mean-

while, digital compositing is to combine a foreground matte with an ar-

bitrary background by using the alpha value a (Porter and Duff, 1984).

Blue screen matting is widely used for digital matting (Smith and

Blinn, 1996). As the blue screen matting algorithm uses monotonous

blue or green backgrounds, it is easy to extract a foreground object

from them. However, if the foreground object contains the back-

ground constraint color, it is hard to pull out the foreground object

efficiently. Furthermore, a virtual studio environment is required for

the blue screen matting. To overcome the limitation of blue screen

matting, natural image matting, which has fewer constraints for back-

grounds, has been actively studied in the field of computer vision

(Hillman et al., 2001; Wexler et al., 2002; Hillman and Hannah,

2005). However, the natural image matting requires user assistances

and more complicated algorithms than the blue screen matting. More-

over, we need to make strenuous efforts to extract the foreground

object from complex background scenes (Ruzon and Tomasi, 2000).

To obtain the enhanced alpha matte in the natural image matting, we

can also use secondary operations by an image gradient (Sun et al.,

2004). Although the previous works enable us to represent complex

boundaries correctly, they usually take too tedious operations.

Recently, a digital matting algorithm using multiview cameras

has been developed to create an accurate alpha matte (Joshi et al.,

2006). It can generate an alpha matte fast and automatically. How-

ever, even though this work uses a multiview camera system, it can

only generate a single-view alpha matte because it assumed that the

alpha value a is fixed in all view images. As a result, the work cannot

produce multiview composite images from the multiview camera

system. In addition, as previous work suffers from a large amount of

ad-hoc operations to create a trimap, such as double-thresholding and

the selection of a structuring element, the unknown region of the tri-

map is tended to be isolated and broadened. Therefore, it is difficult

to estimate the alpha value in the unknown region.

In this article, we propose a new digital matting algorithm to esti-

mate multiview alpha mattes using multiview images. The main con-

tribution of our work is that we first propose the concept and
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methodology of the framework for multiview video matting and

compositing. In this work, we generate view-dependent alpha mattes

to extract each foreground object from multiview images by sharing

a trimap of a reference view. For video matting, we use the motion

vector to update the trimap. Furthermore, we consider multiview

background images captured from the identical camera system for

digital compositing. Thus, we can generate 3D scenes using multi-

view composite images. We can also reduce the overall processing

time in comparison with the conventional matting methods that inde-

pendently extracts the foreground object from each camera.

This article is organized as follows. In Section ‘‘Alpha Channel

Estimation,’’ we discuss the conventional alpha channel estimation,

and we describe the multiview video matting and compositing in Sec-

tion ‘‘Multiview Video Matting and Compositing.’’ After experimen-

tal results and analysis are presented in Section ‘‘Experimental Results

and Discussion,’’ we conclude the article in Section ‘‘Conclusion.’’

II. ALPHA CHANNEL ESTIMATION

Most existing methods for natural image matting require the input

image to be accompanied by a trimap [Chuang et al., 2001; Hillman

and Hannah, 2005; Hillman et al., 2001; Ruzon and Tomasi, 2000;

Sun et al., 2004). The goal of the method is to solve the compositing

equation I 5 aF 1 (I 2 a)B, where I, F, and B are the composite,

foreground, and background colors, respectively, for the unknown

pixels. Given the composite color I, matting solves the inverse

problem with seven unknowns (a, Fr, Fg, Fb, Br, Bg, Bb) and three

constraints (Ir, Ig, Ib) (Joshi et al., 2007; Levin, et al., 2008). This is
typically done by exploiting some local regularity assumptions on F
and B to predict their values for each pixel in the unknown region.

To make a composite image, we first extract a foreground object by

estimating an alpha channel. An alpha matte, which is composed of

alpha values, can separate and blend pixels according to its values

ranged 0 to 1. Then, the extracted foreground object can be compos-

ited with an arbitrary background.

In this Section, we first introduce the previous alpha channel esti-

mation techniques briefly and explain their inherent problems for esti-

mation of multiview alpha mattes. Then, we propose a new scheme to

estimate multiview alpha mattes by sharing the trimap of a reference

view that has significantly a better achievement in foreground extrac-

tion as compared to the conventional method in next Section.

A. Variance-Based Alpha Estimation. Joshi et al. (2006)

extended the compositing equation to deal with the variance of

pixel measurements using a camera array for alpha matting. Given

n images of a scene, we consider the following matting equation of

a given scene point i by

IiðpÞ ¼ aðpÞFiðpÞ þ ð1� aðpÞÞBiðpÞ ð1Þ
where Ii(p) corresponds to the intensity of point p recorded in image

Ii. Fi(p) and Bi(p) are the foreground and background pixel values

that, as a function of the transparency a(p), are mixed to give Ii(p).
We consider fIiðpÞgni¼1; fFiðpÞgni¼1 and fBiðpÞgni¼1 as sampling the

random variables I, F, and B, respectively, and rewrite the compo-

siting equation using these variables as

I ¼ aFþ 1� að ÞB; ð2Þ
By deriving the variance-based matting equation to solve for a, we
take the variance of Eq. (2)

varðIÞ ¼ var aFþ 1� að ÞB½ �: ð3Þ

If we assume that B and F are statistically independent, then

varðIÞ ¼ var aFþ 1� að ÞB½ �
¼ aFþ 1� að ÞB� aFþ 1� að ÞBh i½ �2

D E
¼ a F� Fh ið Þ � 1� að Þ B� Bh ið Þ½ �2

D E

¼ a2 F� Fh ið Þ2
D E

B� Bh ið Þ2
D E
¼ a2var Fð Þ þ 1� að Þ2var Bð Þ; ð4Þ

where hXi denotes the mean value of X. The assumption that B
and F are statistically independent is manifested in going from the

third to the fourth line of Eq. (4), where the expected value of term

a(1 2 a)(E 2 hFi)(B 2 hBi) is assumed to be equal to zero. To

compute a, we need to solve a quadratic equation as

varðFÞ þ varðBÞ½ �a2 � 2varðBÞaþ varðBÞ � varðIÞ½ � ¼ 0: ð5Þ

The solutions to this quadratic equation are

a ¼ varðBÞ � ffiffiffiffi
D

p

varðFÞ þ varðBÞ ; ð6Þ

where

D ¼ varðIÞ varðFÞ þ varðBÞ½ � � varðFÞvarðBÞ: ð7Þ

However, the variance-based alpha estimation suffers from one

problem that prevents it to become a complete method for multi-

view alpha matte generation. The source of this problem arises

from this fact that the transparency of the point a is view-independ-

ent and fixed across all images. Consequently, it is hard to make

view-dependent alpha mattes using the variance-based alpha esti-

mation even though we use camera arrays.

B. Color-Cluster-Based Alpha Estimation. A vast literature

is devoted to the alpha estimation based on color clusters. Chuang

et al. [2001] used mixture of oriented Gaussians to learn the local

distribution and then a, foreground color F, and background color

B are estimated as the most probable ones given that distribution.

Hillman et al. [2001] used principal component analysis to repre-

sent color clusters with oriented line segments.

Basically, we can estimate a clean foreground color f and a clean
background color b from the color clusters of foreground and back-

ground. By using them, we can make a blended pixel p in the set of

unknown pixels. If we assume that f is within the foreground cluster

and b within the background cluster extracted from the image, then,

the pixel p will lie on the line. Thus, a will be the ratio bp
�!

=bf
!

(Hillman et al., 2001).

As shown in Figure 1a, we first cluster the area of foreground

and background according to the central pixel of unknown area.

The size of the window should be flexible with respect to the width

of unknown regions. Second, we calculate representative values of

the foreground and background cluster by quantizing R, G, and B
coordinates with level 10 and then make a histogram (ISO/IEC

JTC1/SC29/WG11 M11014, 2004). We chose histogram value over

10. Finally, we take the mean of both clusters’ chosen pixel RGB

coordinate. From the vector in Figure 1b, we perform dot product to

get a proportion of ~f � ~b and ~s� ~b, where ~f � ~b and ~s� ~b specify
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the vectors whose origin is point b and terminals are point f and s,
respectively. From the representative values of the foreground,

background and unknown area, we can recover a by using a simple

geometrical formulation in Eq. (8)

a ¼ ð s!� b
!Þ � ð f!� b

!Þ
f
!� b

!��� ���2 : ð8Þ

However, the previous color cluster based alpha estimations

work well only when the color distributions of the foreground and

background do not overlap and the unknown region in the trimap is

small (Levin et al., 2008). As the trimap is not made by user-assist

for the proposed multiview matting, the unknown region in the tri-

map is wide. As shown in Figure 2, color cluster based alpha esti-

mation is not a reliable approach to estimate multiview alpha

mattes.

III. MULTIVIEW VIDEO MATTING ANDCOMPOSITING

This Section denotes to the presentation of a new scheme for the

multiview video matting and compositing, where we efficiently uti-

lize the concept of the trimap sharing and view-dependent alpha

matte generation for this purpose.

A. Concept of Multiview Video Matting and Compositing. For

natural 3D scene editing system, we should handle foreground

objects of other views for multiview matting. We define the multi-

view matting as a method that considers multiview foreground

objects extraction. For efficient multiview matting, we do not inde-

pendently extract the foreground object from each camera but adapt

a trimap sharing concept. By trimap sharing, we do not need to

make manual multiview trimaps. We also define the multiview

compositing as a method that composes the extracted multiview

foreground objects with the corresponding multiview backgrounds

to make multiview composite images. Through the multiview com-

posite images, we can generate natural 3D scenes using the stereo-

scopic monitor.

Figure 3 illustrates the proposed multiview video matting and

compositing. From the camera arrays, we capture multiview

images, and then segment foreground objects in the multiview

images. Finally, we composite them with multiview background

images from the same camera environment.

Figure 4 shows the proposed procedure of the multiview video

matting and compositing using trimap sharing. First, we film multi-

view images using a multiview camera system as shown in Figure

4a. Second, we make a synthetic aperture image (SAI) in Figure 4b

by moving other view images to the central view image, i.e., the

reference view, of the multiview camera system (Joshi, et al.,

2006). SAI will be specified by the following subsection. After cre-

ating SAI, we convert it into a variance image in Figure 4c by cal-

culating a variance of its corresponding pixels. Third, to generate a

trimap in Figure 4d, we apply dilation and erosion operations into a

binary image generated by the variance image. The trimap contains

the foreground object, background, and unknown areas. Fourth, the

trimap is shared with other views and used to create multiview

alpha mattes by estimating the boundary of unknown areas. Finally,

we can extract and composite the multiview foreground objects

from multiview images using multiview alpha mattes in Figure 4e.

Figure 1. Color clusters and its geometrical representation: (a) pixel

sets in color cluster, (b) color space. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 2. Drawbacks of color-cluster-based alpha estimation.
[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 3. Outline of multiview matting and compositing. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 4. Multiview matting procedure: (a) multiview images, (b)

synthetic aperture image, (c) variance image, (d) trimap sharing, (e)
multiview alpha mattes. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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In the multiview image matting, we make the reference trimap

from SAI. We share the reference trimap to the side views. For next

frame’s trimap, we need to update the reference trimap. By using

the temporal information of the video sequence, we do not need to

make SAI at every frame. As a result, we can save time to perform

the video matting.

To update the reference trimap, we need to find a motion vector

using the present and previous frame. To calculate the motion vec-

tor, we split the frames as 16 3 16 block size, and then use 48 3 48

block size search range. By using the motion vector, we update the

trimap. However, there exist some holes in the trimap. To reduce

the holes, we perform closing operation. Finally, we can make an

updated trimap for next frame.

B. Multiview Image Rectification. Image rectification is the

geometrical transformation of two or more images, i.e., multiview

images. Using the multiview image rectification, we can efficiently

overlap each view to make SAI easily. Basically, multiview images

have horizontal disparities and vertical mismatches among views.

Horizontal disparities are caused by distances between camera posi-

tions, and vertical mismatches can be occurred by the camera mis-

alignment and different camera rotations.

Multiview image rectification transforms each image by apply-

ing the rectifying transformations to obtain rectified images which

have no vertical mismatches. We use the rectification algorithm by

Tanimoto and Fuji (ISO/IEC JTC1/SC29/WG11 M11014, 2004).

After camera calibration, we first calculate one baseline that has the

minimum distance to each camera center. Then, we assume virtual

cameras which are on the perfectly arranged parallel camera array

and we can estimate all camera parameters of them. Rectifying

transformations can be defined by solving relationships between the

original and the estimated camera parameters. By applying these

transformations, we finally get rectified images.

C. Synthetic Aperture Image. Figure 5 is a good example of

SAI generation (Vaish et al., 2005). As we move the disparity of

between two images, we can focus on the image according to the

calibration chart or the computer monitor. In our work, we obtain

SAI as shown in Figure 6a.

In the digital matting using multiview cameras (Joshi et al.,

2006), we overlap identical image pixels in each camera to compute

the mean and variance statistics as shown in Figure 6b.

Thus, the image of each camera is synthetically refocused

according to the foreground object’s depth plane (Isaksen et al.,

2000). This characteristic is used to make SAI that is well focused

on the foreground object but blurred at the background. By shifting

the disparity between the foreground object of the reference view

and foreground object of the other camera, we can make arbitrary

aperture images.

D. Trimap Generation and Sharing. In the previous method

(Joshi et al., 2006), the trimap can be generated by taking two

threshold values T1 and T2. Especially, it is difficult to determine

T2 because it varies in a broad range from 1000 to 5000. Basically,

the threshold T2 depends on the number of images and the charac-

teristic of images. Thus, T2 causes incorrect trimap generation as

shown in Figure 7a.

However, the proposed trimap in Figure 7b can depict the

boundary area appropriately rather than the previous method. To

make the proposed trimap, we adapt automatic threshold selection

algorithm to make the binary image from the variance image. Then,

we dilate and erode the binary image to outward and inward,

respectively. After creating the trimap, we share it for other view

images to generate multiview alpha mattes. For efficient trimap

sharing, we need to determine the size of structuring element to

make a proper trimap for side views. We use the concept of 3D

warping techniques to model the size of structuring element.

D.1. Automatic Threshold Selection Algorithm. To select a

threshold value automatically for a binary image generation, we

first calculate the histogram of the variance pixel values. Then, we

set an initial threshold T as 20 because most of pixel intensities of

the variance image are skewed around the lower intensity range as

shown in Figure 8.

After that, we separate the histogram into two areas, G1 and G2,

using the initial threshold T and calculate the mean intensities, l1

Figure 5. Focused depth change according to parallax shift: (a)
focused on the calibration chart, (b) focused on the monitor. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 6. SAI and its pixel variance: (a) SAI, (b) pixel variance of

SAI. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Figure 7. Trimap comparison: (a) previous trimap, (b) proposed

trimap.
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and l2, in both G1 and G2 areas. Finally, we update the threshold

T as the average of each mean intensity, T 5 0.5�(l1 1 l2), and
repeat the averaging and updating procedures until T is converged.

As shown in Figure 9, we can make the binary image automatically

using the threshold value T.
Even though we can make the binary image automatically, it

cannot fully specify the foreground object because of the circumfer-

ential noise and holes. To reduce the circumferential noise and

holes, we perform on 8-connected region-labeling algorithm and

use a morphological filter. In constructing a morphological filter,

we use erosion and dilation with a flat structuring element as fol-

lows (Lim et al., 2006; Gonzalez and Woods, 2002).

ðf � KÞðxÞ ¼ maxff ðx� zÞ þ kðzÞ;
z 2 Z; ðx� zÞ 2 Fg ð9Þ

ðf � KÞðxÞ ¼ minff ðxþ zÞ � kðzÞ;
z 2 Z; ðxþ zÞ 2 Fg ð10Þ

where f and k represents an image and a small structuring element,

F and K are the domains of f and k. After implementing closing

operation by using the composition of the kth order morphological

dilation and erosion operations, we perform again on the 8-con-

nected region-labeling algorithm. Finally, the largest labeled region

is marked out for the candidate region of the foreground object.

From the binary image in Figure 10, we make a trimap by dilat-

ing outward and eroding inward using Eqs. (9) and (10) to specify

the unknown area. To this end, the foreground object, background,

and unknown areas are represented as a set like Eq. (13).

A ¼ fIvarðx; yÞjIvarðx; yÞ < T; 0 � x < T; 0 � y < Hg ð11Þ

B ¼ fIvarðx; yÞjIvarðx; yÞ � T; 0 � x < T; 0 � y < Hg ð12Þ

C ¼ fðA� ZÞ 	 ðA� ZÞgc ð13Þ

where set A, set B, and set C contain the foreground, background,

and unknown area’s pixel values whose intensity are 255, 0, and

128, respectively. The foreground set A specifies the region in

which the variance value is less than T, and the background set B
specifies the region in which the variance value is greater than T.
The Symbols �, §, and

J
are morphological operations and rep-

resent dilation, erosion, and exclusive-or, respectively. Ivar(x, y) is
the pixel intensity of the location (x, y) in the variance image Ivar.
Figure 11 shows the results of the manual and automatic trimap

images. We notice that the automatically generated trimap is appro-

priate compared with the manually generated trimap.

D.2. Structuring Element Size Modeling. To model the size of

structuring element, we use the 3-D image warping technique with

the depth and intrinsic camera parameter (McMillan, 1997.). From

the geometry of stereo images in Figure 12, we recover the depth

value in Eq. (16) by using Eqs. (14) and (15).

Z

f
¼ Y

nx1
ð14Þ

Figure 8. Histogram of variance images.

Figure 9. Result of automatic binary images.

Figure 10. Result of morphological filtering and region-labeling.

Figure 11. Result of manual and automatic trimap images.
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Z

f
¼ ðY � BÞ

xr
ð15Þ

Z ¼ f � B
ðxi � xrÞ ¼

f � B
d

ð16Þ

where Z, B, f, and d represent the depth, camera shift, focal length

and disparity, respectively. Furthermore, the Z should be normal-

ized as a real depth dr, whose interval is from 0 to 255, in the 3D

space by using Eq. (17)

dr ¼ 255� 255 � ðZ � ZcioseÞ
Zfar � Zciose

� �
þ 0:5 ð17Þ

Here, Zfar and Zcolse are the maximum and minimum depth value

obtained by Eq. (16) and bac means the maximum integer which is

less than or equal to a.
For 3D warping, we first map the image pixel location to the

real space coordinate system (x, y, z) using Eq. (18),

ðx; y; zÞT ¼ RrefA
�1
ref ðu; v; 1Þdu;v þ Tref ð18Þ

where Aref, Rref, Tref, and du,v mean intrinsic parameter, rotation ma-

trix, translation matrix, and the depth value of (u, v), respectively.
Second, we obtain the (li, mi, ni) by projecting the (x, y, z)T in Eq.

(18) to Ci, destination of camera view-point, using Eq. (19)

ðlv;mi; niÞT ¼ AciR
�1
ci
fðx; y; zÞT � Tcig: ð19Þ

Third, we normalize the (li, mi, ni) as (li/ni, mi/ni, 1), then, it can be

represented as (Ui, Vi) through the integer coordinate system.

Finally, we map the pixel value located in (u, v) to the location of

(Ui, Vi).

After selecting the two points on the foreground in the reference

view, whose distance is maximized, we perform 3D warping into the

corresponding location of the right most and left most views. Then,

we calculate the distance between the warped two points. Likewise,

we set the size of the unknown area’s width and height as follow

Width ¼ longest distance� shortest distance ð20Þ

Height ¼ 1

2
3Width: ð21Þ

Ideally, we do not care the disparity in the vertical direction because

we assume that the height of each camera from the ground is identi-

cal. However, we should consider the vertical disparity due to the

possibility of vertical height difference in actual application. Here,

we set the vertical size of the unknown areas as a half of width.

E. View-dependent Alpha Matte Generation. To generate

view-dependent alpha mattes with the shared trimap, we first con-

vert the RGB color space for the multiview images into YCbCr

color space, and apply Gaussian filtering into Cb components to

reduce the noise around the foreground boundaries. Then, we per-

form canny edge algorithm. Let Pu is the set of unknown pixels in

the trimap and Pe is the set of edge pixel in the multiview images.

Thus, boundary edges can be represented as the set Pb 5 Pu \ Ps.

We label N disconnected boundary edge sets, E1, E2, . . ., EN, then,

count their pixel number |E1|, |E2|, . . ., | EN | where |�| denotes the
length of the edge. Because short edges can be regarded as a noise,

we need to label only edges whose length is bigger than the thresh-

old. The threshold value is decided by analyzing the number of dis-

connected edges of the boundary edges, and threshold value is

experimentally 30. Finally, the labeled edge set is represented by

E ¼ Em
Em > Thershold;

m ¼ 1; 2; . . . ;M < N

����
� �

; ð22Þ

Next, we connect the disconnected boundary edges in Eq. (22) by

using end points of them. To figure out the end point, we use 3 3 3

block whose element is Bij(i, j 5 1,2,3). If the B22 contains white

pixel 1, then we calculate the

Sum ¼ B11 � B12j j þ B12 � B13j j þ B13 � B23j jþ
B23 � B33j j þ B33 � B32j j þ B32 � B31j j þ B31j �
B21j þ B21 � B11j j

.

We can regard the point whose Sum is 2 as the end point. We can

define the set of end points by Em(i, j), 0 � i < W, 0 � j < H, 1 �
m � M where i and j indicate the horizontal and vertical position in

edge images, and M is the number of the labeled edges. W and H
are the horizontal and vertical resolution of the multiview images,

respectively. Finally, we calculate the minimum Euclidean distance

Dist ¼ mini¼kfElði; jÞ;Elði; jÞg; 1 � l; k � M between the end

points. Finally, we make the contour of the foreground by connect-

ing the points El(i, j) and Ek(i, j) to make multiview alpha mattes.

However, during view-dependent alpha matte generation, we

cannot obtain robust edges from the canny edge algorithm. To over-

come the problem in the edge extraction, we apply the histogram

equalization operator into the multiview images. Then, we again

apply the canny edge operation with Cb components of the histo-

gram equalized multiview images. Finally, we merge the extracted

edges of original multiview images with the extracted edges of his-

togram equalized multiview images.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

For evaluation of the proposed approach, we used a 1D parallel

multiview camera system where seven Multi Sync IEEE-1394b

cameras were equipped with the camera baseline of 5 cm. Figure 13

shows the multiview camera system. Especially, we have captured

Figure 12. Geometrical representation of the stereo images.
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test sequences with narrow camera arrays and a foreground object

that is far away from the background but relatively near in camera

array because it is efficient to make a SAI (Joshi, et al., 2006) Test

data were Pooh, Dog, Bear, and Person sequences and their actual

image resolution is 1024 3 768. The experiment was implemented

on an Intel based PC (Intel Core 2 Quad CPU 2.41GHz, 2GB

DDR2RAM) under Microsoft Windows XP.

A. Visual Evaluation. Figures 14(a), 14(c), 14(e), and 14(h)

show the results of multiview alpha mattes. By using the multiview

alpha mattes, we extracted foreground objects of each view as

shown in Figures 14(b), 14(d), 14(f), and 14(i). As shown in Figure

15, we composited the extracted foreground objects with corre-

sponding multiview background images from the same camera

environment. The previous method had no contribution for the 3D

scene generation because it only considered the single-view fore-

ground on an arbitrary background image.

However, the proposed method considered not only the multi-

view foreground objects but also the corresponding multiview

Figure 13. Multiview camera system. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 14. Multiview alpha mattes and foreground objects: (a)

pooh sequence, (b) bear sequence, (c) dog sequence, (d) person

sequence. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 15. Multiview composite images. [Color figure can be
viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 16. Results of the stereoscopic view: (a) stereo input, (b)

stereoscopic view. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Figure 17. Qualitative comparison. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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background images captured by the same multiview camera system.

As a result, as shown in Figure 15, multiview composite images

generated by the proposed method could be used as a multiview

video.

To prove the multiview composite images can generate the mul-

tiview video, we displayed the two adjacent images of the multi-

view composite images with a stereoscopic monitor as shown in

Figure 16. We also displayed the stereoscopic images captured by

the two adjacent cameras in the multiview camera system with the

stereoscopic monitor. We could experience natural 3D effects by

not only the stereoscopic images but also stereoscopic composite

images. Thus, the proposed multiview digital matting can be used

for a 3D image editing system.

As shown in Figure 17, we compared extracted foregrounds by

the previous and proposed methods. The previous method had prob-

lems on the foreground boundaries compared to the proposed

method. While the proposed method extracted foreground bounda-

ries more exactly than the previous method, the previous method

was failed due to the color similarity between foreground and back-

ground at times.

B. Quantitative Evaluation. Figure 18 shows the error rate of

the test images using the previous and proposed methods. We used

error evaluation method as Eq. (23) and Eq. (24) (Kwak et al.,

2004),

EU ¼ M � ðM \ NÞ
sM

; EO ¼ N � ðM \ NÞ
sN

; ð23Þ

Error Rate ¼ EU þ EOð Þ3 100; ð24Þ

where M is pixel number of ground truth image from a image tool

and N is pixel number of foreground object from the proposed

method. The term SM and SN are the numbers of M and N. EU is the

error rate of under-extraction and EO is the error rate of over-extrac-

tion as shown in Figure 19. With under- and over-extraction, we

mean that the corresponding area is and is not to be extracted. As

you can see from the quantitative error results in Figure 18, our

method provides the lower error rate than the previous method. One

reason that the previous method is inferior to the proposed method

because the broad unknown area specified by dilation and erosion

caused incorrect a. Thus, the incorrect a increased the error rate.

V. CONCLUSIONS

In this article, we have proposed the concept and methodology of

multiview foreground extraction and composition to the multiview

background technique for the multiview camera system. By using

the multiview camera system, we have reduced manual steps for the

trimap generation. We have made the trimap from SAI and shared

it for multiview images to make alpha mattes by the boundary esti-

mation. Furthermore, we used the motion vector to update the tri-

map for video matting. Finally, we made alpha mattes by the edge

labeling algorithm. Using the view-dependent alpha mattes, we

extracted foreground objects of each view and composite them with

corresponding multiview backgrounds. In contrast to previous

methods, the proposed method enables us to do the multiview
Figure 18. Error rate of the test sequences: (a) pooh sequence, (b)

bear sequence, (c) dog sequence, (d) person sequence.

Figure 19. Evaluation system: (a) under-extraction, (b) over-extrac-

tion. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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matting and compositing by considering foreground objects and

their corresponding backgrounds. Finally, we have verified that

multiview composite images can generate 3D scenes through the

stereoscopic monitor. We, therefore, believe that the proposed

approach could be helpful to edit the multiview composite images

effectively.
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