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ABSTRACT: Virtual view synthesis is one of the most important tech-

niques to realize free viewpoint television and three-dimensional (3D)

video. In this article, we propose a view synthesis method to generate

high-quality intermediate views in such applications and new evalua-
tion metrics named as spatial peak signal-to-noise ratio and temporal

peak signal-to-noise ratio to measure spatial and temporal consistency,

respectively. The proposed view synthesis method consists of five major

steps: depth preprocessing, depth-based 3D warping, depth-based his-
togram matching, base plus assistant view blending, and depth-based

hole-filling. The efficiency of the proposed view synthesis method has

been verified by evaluating the quality of synthesized images with vari-
ous metrics such as peak signal-to-noise ratio, structural similarity, dis-

crete cosine transform (DCT)-based video quality metric, and the newly

proposed metrics. We have also confirmed that the synthesized images

are objectively and subjectively natural. VVC 2010 Wiley Periodicals, Inc. Int

J Imaging Syst Technol, 20, 378–390, 2010; Published online in Wiley Online

Library (wileyonlinelibrary.com). DOI 10.1002/ima.20253
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image-based rendering; evaluation of virtual view

I. INTRODUCTION

Three-dimensional (3D) video provides users with a realistic 3D

impression of the scene and is now considered a key technology that

could spur the next wave of multimedia experiences such as 3D cinema,

3D broadcasting, 3D displays, and 3D mobile services (Isgro et al.,

2004; Tanimoto, 2004; Smolic and Kauff, 2005; Tanimoto, 2006).

The key technical building blocks of the 3D processing chain are

coding and rendering. The role of efficient coding becomes much

more important for 3D systems due to the drastic increase in the vol-

ume of data. Some of the past research and standardization efforts to

address this issue include MPEG-2 multiview video profile (Chen and

Luthra, 1997), MPEG-4 multiple auxiliary component (Karim et al.,

2005), and moving picture experts group (MPEG)/joint video team

(JVT) multiview video coding (MVC) (ISO/IEC JTC1/SC29/WG11,

2003, 2005, 2007a; Shum et al., 2004; Smolic and McCutchen, 2004;

Smolic et al., 2005). Recently, MPEG has initiated a work aimed spe-

cifically toward 3D video applications. While the previous MPEG/

JVT standardization activities for MVC was focused on compression

efficiency improvement for generic multiview coding scenarios, this

activity will target a broader technical scope including issues such as

depth estimation, coding, and rendering. One of the current underly-

ing key design assumptions is the use of depth maps along with cam-

era parameters for rendering intermediate views for either free view-

point navigation or 3D displays.

On the other hand, given the ever increasing diversity in 3D services

and displays, proper rendering of 3D views is indispensable. In other

words, it becomes necessary to resample the views and resize each view

depending on the number of views and resolutions required by the dis-

play, respectively. For applications such as free viewpoint television

(FTV) (Shade et al., 1998; Zitnick et al., 2004; Gan et al., 2005) and

the case when there are more views to be rendered at the display than

are actually coded, resampling means generation of virtual views based

on the actual views. The problem of generating an arbitrary view of a

3D scene has been heavily addressed in the area of computer graphics.

Among the techniques for rendering, image-based rendering (IBR)

techniques have received much attention lately for rendering real world

scenes. These techniques use image rather than geometry as primitives

for rendering virtual views and often are classified into three categories

depending on how much geometric information is used (Chang et al.,

1999): rendering without geometry, with explicit geometry, and with

implicit geometry. Techniques such as plenoptic modeling (McMillan

and Bishop, 1995), light-field rendering (Debevec et al., 1998), lumi-

graph (ISO/IEC JTC1/SC29/WG11, 2006), and ray space (ISO/IEC

JTC1/SC29/WG11, 2007b,c) belong to the rendering without geome-

try. In this approach, the quality of view synthesis usually depends on

the baseline distance and the synthesis quality increases with the num-

ber of available views within a restricted viewing angle. On the other

hand, an IBR system with depth maps that uses techniques such as 3D

warping and layered depth images (LDIs) belongs to the second cate-

gory while view morphing and view interpolation as in Gortler et al.

(1996), Levoy and Hanrahan (1996), Droese et al. (2004), Tanimoto

(2005), (ISO/IEC JTC1/SC29/WG11, 2007d, and Chan et al. (2007)

belong to the third category as they use the point correspondences.

Obviously, the quality of view synthesis in these explicit/implicit ge-

ometry-based rendering approaches largely depends on the accuracy of

the geometry information.Correspondence to: Sehoon Yea; e-mail: yea@merl.com
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In this article, we propose a new view synthesis algorithm within the

aforementioned scope of the FTV and 3D video activities (ISO/IEC

JTC1/SC29/WG11, 2007e) and new evaluation metrics to measure the

spatial and temporal consistencies of the synthesized views. The pro-

posed view synthesis method consists of five major steps: depth prepro-

cessing, depth-based 3D warping, depth-based histogram matching,

base plus assistant view blending, and depth-based hole-filling. First, a

preprocessing is performed on the acquired scene depth data to correct

errors and enhance the spatial and temporal consistencies of depth val-

ues. Second, a depth-based 3D warping technique is adopted to avoid

the discontinuity problem in the direct warping of textures caused by

round-off errors. Third, a depth-based histogram matching algorithm is

used to reduce the illumination difference between two reference views.

Fourth, a base plus assistant view blending is introduced to blend two

3D warped reference images in a robust manner against the inaccuracy

of the depth and camera parameters. Finally, a depth-based hole-filling

technique is used to fill the remaining holes using a depth-based in-

painting technique. The synthesized view is evaluated by peak signal-

to-noise ratio (PSNR), structural SIMilarity (SSIM) (Wang et al., 2004),

DCT-based video quality metric (VQM) (Xiao, 2000; MSU), and the

newly proposed spatial PSNR (SPSNR) and temporal PSNR (TPSNR).

The rest of this article is organized as follows. In Section II, we

describe the basics of view synthesis. We explain the details of the

proposed view synthesis algorithm and the evaluation metrics in

Sections III and IV, respectively. We then demonstrate and evaluate

the performance of the proposed scheme in Section V, and conclude

this article in Section VI.

II. BACKGROUND

This section briefly reviews the camera geometry model and the

general idea of depth-based view synthesis.

A. Camera Geometry Model. A general pinhole camera is mod-

eled by its optical center C and its image plane I. A 3D point W is

projected into an image point M given by the intersection of I with
the line containing C and W. The line containing C and orthogonal to

I is called the optical axis (Z) and its intersection with I is the princi-
pal point (p). The distance between C and I is the focal length.

Let w 5 [x y z]T be the coordinates of W in the world reference

frame (fixed arbitrarily) and m 5 [u v]T the coordinates of M in the

image plane (pixels). The mapping from 3D coordinates to 2D coordi-

nates is perspective projection, which is represented by a linear trans-

formation in homogeneous coordinates. Let ~m 5 [u v 1]T and ~w 5 [x
y z 1]T be the homogeneous coordinates of M and W, respectively;

then, the perspective transformation is given by the matrix ~P:

j ~m ¼ ~P ~w; ð1Þ
where j is a scale factor called projective depth. j becomes the true

orthogonal distance of the point from the focal plane of the camera.

The camera is therefore modeled by its perspective projection ma-

trix (henceforth simply camera matrix) ~P, which can be decom-

posed, using the QR factorization, into the product

~P ¼ A½Rjt�: ð2Þ
The matrix A depends on the intrinsic parameters only and has the

following form:

A ¼
au g u0
0 av v0
0 0 1

2
4

3
5; ð3Þ

where au 5 2fku, av 5 2fkv are the focal lengths in horizontal and

vertical pixels, respectively (f is the focal length in millimeters, ku and
kv are the effective number of pixels per millimeter along the u and v
axes), (u0, v0) is the coordinate of the principal point given by the inter-
section of the optical axis with the retinal plane as shown in Figure 1,

and g is the skew factor that models nonorthogonal u2 v axes.

Figure 1. The pinhole camera model.

Figure 2. Depth-based virtual view synthesis. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]
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The camera position and orientation (extrinsic parameters) are

represented by the 3 3 3 rotation matrix R and the translation vector

t, respectively, corresponding to the rigid transformation that brings

the camera reference frame onto the world reference frame (Trucco

and Verri, 1998; Fusiello, 2000; Hartley and Zisserman, 2000).

B. Depth-Based View Synthesis. The schematic diagram of a

typical depth-based view synthesis system is shown in Figure 2. The

goal of such a system is to synthesize a virtual view from its neighboring

views using the camera parameters, texture images, and depth images.

The 3D image warping is the key technique in depth-based view

synthesis. In 3D warping, pixels in the reference image are back

projected to 3D spaces and reprojected onto the target viewpoint as

shown in Figure 3.

Equations (4) and (5) represent the back projection and the

reprojection processes, respectively.

ðx; y; zÞT ¼ RrefA
�1
ref ðu; v; 1ÞTdu;v þ tref ð4Þ

l;m; nð ÞT¼ AvirR
�1
vir f x; y; zð ÞT�tvirg ð5Þ

where A, R, and t are camera parameters and d represents the depth

value of a point in the 3D space that needs to be back-/reprojected.

The coordinates (l, m, n) in (5) is normalized to (l/n, m/n, 1) and
then represented as an integer coordinate (U, V) in the virtual view.

III. PROPOSED VIEW SYNTHESIS ALGORITHM

The proposed view synthesis algorithm consists of five steps: depth

preprocessing, depth-based 3D warping, depth-based histogram

matching, base plus assistant view blending, and depth-based hole-fill-

ing. Figure 4 shows a diagram of the proposed view synthesis scheme

and each subalgorithm will be detailed in the following subsections.

A. Depth Preprocessing. In general, the depth data can be

obtained by a special depth camera system and computer graphics

tools or mathematically calculated by depth estimation algorithms.

Currently, depth estimation is the most popular approach and

actively studied since the depth camera is too expensive and com-

puter graphic images cannot represent real scenes.

However, mathematically calculated depth data tend to have er-

roneous values in certain regions in the image or have inconsistent

values across spatial or temporal neighbors due to the local nature

of depth estimation process. These problems associated with depth

could lead to various visual artifacts in the synthesized images. To

resolve these issues, we propose to preprocess the depth data. The

proposed depth preprocessing consists of three steps: temporal fil-

tering, initial error compensation, and spatial filtering. Basically,

we apply a median filtering instead of averaging filter because aver-

aging filter results in new pixel values which do not exist in the ini-

tial depth image, which degrades rendering quality.

As a first step, we apply a 1D median filter along the colocated

pixels of consecutive depth image frames. It aims to reduce the tem-

poral inconsistency of depth values belonging to the same object or

background. In this article, we apply a median filter as follows:

Yi;j;t ¼ medianðJi;j;tÞ; for maxðJi;j;tÞ �minðJi;j;tÞ <¼ g
Xi;j;t; otherwise

�
ð6Þ

where Xi,j,t is the value of a pixel at the spatial location (i, j) at time

t, Ji,j,t is a set of pixels in a 3 3 3 window centered around the

Figure 3. General concept of 3D warping. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Diagram of the proposed view synthesis scheme.
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spatio-temporal location (i, j, t), and g is a threshold value to deter-

mine whether or not the filter will be applied.

The next step has to do with compensating for the initial error

that is caused by an erroneous merge of foreground and background

in the typical depth estimation process. Usually, it occurs when the

foreground and the background have similar textures. The human

eyes can easily distinguish them but it is often a difficult task for an

automated algorithm. In this article, we correct the initial errors by

using image dilation and erosion as in (7) and (8), respectively,

(Bangham and Marshall, 1998). As the quality of a synthesized

image will be worse in case the foreground has a background’s

depth value than the other way around, image dilation is conducted

prior to image erosion in the proposed scheme.

A� Bðx; yÞ ¼ max
ðx;yÞ2B

ABðx; yÞ½ � ð7Þ

A� Bðx; yÞ ¼ min
ðx;yÞ2B

ABðx; yÞ½ � ð8Þ

where A represents the image and B is structuring element which

operates on A. The AB is a masked region with B and (x, y) is a pixel
in the image A. In this article, we use a disk-shaped structuring ele-

ment with disk radius set to five.

Figure 5. An example of depth preprocessing for ‘‘Breakdancers’’ sequence: (a) temporal filtered image, (b) dilated image, (c) eroded image,

and (d) spatial filtered image.

Figure 6. 3D warping with erroneous blanks: (a) depth image and (b) 3D warped texture image using (a). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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The final step has to do with smoothing outliers in an estimated

depth image using a 2D median filter. It smoothes out the outlier of

objects in a depth image and removes the unwanted noises. In this ar-

ticle, we use a 53 5 median filter for every pixel at (i, j) as follows:

Yi;j ¼ medianðJi;jÞ ð9Þ

where Ji,j is a set of pixels in a 5 3 5 window centered around the

location (i, j).

Figure 5 illustrates the result of each step of the proposed depth

preprocessing for ‘‘Breakdancers’’ provided by MicroSoft Research

(MSR). The effect of the proposed scheme is noticeable especially

around the faces of the two men standing behind on the left side of

the dancer as well as around the boundaries of the dancer on the

floor. The proposed depth preprocessing method not only compen-

sates for the initial depth errors efficiently but also recovers the spa-

tial and temporal consistency (van den Branden Lambrecht and

Verscheure, 1996). Hence, the preprocessed depth will lead to sig-

nificantly improved objective and subjective qualities of the synthe-

sized images.

B. Depth-Based 3D Warping. Most previous view synthesis

algorithms warp the texture images using the corresponding

depth maps. However, a direct 3D warping of texture images of

neighboring views into the virtual image plane often causes false

black-contours in the synthesized image as shown in Figure 6b.

These contours are caused by round-off errors involved with the in-

teger representation of the virtual view’s coordinate as well as by

spurious initial depth values.

However, once the depth image corresponding to the virtual

view is obtained, we can use it to always find, by inverse warping,

the proper texture values from its neighboring view without gener-

ating false black-contours in the synthesized view. To obtain the

depth image corresponding to the virtual view, we first warp the

depth values of the reference view. Note that the false black-con-

tours appear in the warped depth image as shown in Figure 7a for

the exactly same reason as with the texture warping. To remove

these erroneous contours, we apply a median filtering (ISO/IEC

JTC1/SC29/WG11, 2008a). Figure 7 illustrates the above

procedures.

C. Depth-Based Histogram Matching. In case we have two

reference views for the virtual view synthesis as shown in Figure 2,

we can first synthesize two 3D warped views, i.e., one from each

view. Before blending these two warped images, we apply a histo-

gram matching to reduce the illumination and color differences

between the two images which may cause inconsistency of the syn-

thesized image. On the basis of previous histogram matching algo-

rithm (Fecker et al., 2007), we modify the mapping condition con-

sidering the distributions of cumulative histograms and then apply

this modified histogram matching regionally using depth-based

segments.

The histograms of the two 3D warped images for reference views

are analyzed and those 3D warped images are adjusted to have a similar

distribution. The whole procedures of histogram matching are as fol-

lows. The first step is to modify the two 3D warped images to have

same holes and then to apply a median filter for noise reduction as

shown in Figure 8. By using the modified images instead of original 3D

warped images, the accuracy of the histogram matching is improved.

The second step is to compute the histograms of the left image

and the right image. Let yL[m, n] denote the amplitude of the left

image. Then, its histogram is given as follows:

Figure 7. 3D warping without erroneous blanks: (a) 3D warped depth image, (b) median filtered depth for (a), and (c) 3D warped texture image

using (b). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 8. Image modification for histogram matching: (a) 3D warped view 3, (b) 3D warped view 5, (c) modified view 3, and (d) modified view

5. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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hL½v� ¼ 1

w � h
Xh�1

m¼0

Xw�1

n¼0

d½v; yL½m; n��; with d½a; b� ¼ 1; if a ¼ b
0; otherwise

�

ð10Þ
In (10), w denotes the image width and h is the image height. The

value of v ranges from 0 to 255. The histogram matching is done by

mapping the left and right images to a virtual image. Two steps are

necessary to generate the mapping function M. First, the cumulative

histogram CL[v] of the left image is created:

CL½v� ¼
Xv

i¼0

hL½i� ð11Þ

The histogram hR[v] and cumulative histogram CR[v] of the

right image are calculated in the same manner. Both the left

and right images, which are already warped into the virtual

view position, are median filtered and modified to have the

same holes as shown in Figures 8c and 8d so that the two

views have almost identical textures except for slight differen-

ces in their illuminations.

Based on the cumulative histograms, we make a cumulative his-

togram CV[v] for virtual:

CVðvÞ ¼ a CLðvÞ þ ð1� aÞCRðvÞ ð12Þ

where CL and CR are the cumulative histograms for left and right

images. Generally, the weighting factor a is calculated based on the

baseline distance as follows:

a ¼ tV � tLj j
tV � tLj j þ tV � tRj j ð13Þ

where t is a translation vector for each view.

The mapping function between the left image and the virtual

image is obtained by matching the number of occurrences in the ref-

erence image to that of occurrences in the virtual image as in (14)

and as shown in Figure 9 as an example.

M½v� ¼ u; for CV½u� < CL½v� � CV½uþ 1� & CV½v� <¼ CL½v�
uþ 1; for CV½u� < CL½v� � CV½uþ 1� & CV½v� > CL½v�

�

ð14Þ

The calculated mapping function is applied to the left image yL[m,
n], resulting in the histogram-matched image yHML[m, n] as in (15).

The histogram yHMR[m, n] of the right image is calculated in the

same manner.

yHML½m; n� ¼ M½yL½m; n�� ð15Þ

Figure 9. Mapping algorithm using cumulative histograms: (a) CV[v] <5 CL[v], (b) CV[v] > CL[v].

Figure 10. Rough region division by depth: (a) foreground region and (b) background region. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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In general, we assume that the difference of volume of light for

each camera causes the illumination and color differences and dif-

ferently affects each object and color component. By considering

the above assumption, we apply the histogram matching regionally

and the regions are divided using depth. Figure 10 shows an exam-

ple of rough region division for the image in Figure 8d.

Figure 11. Histogram matching: (a) histograms, (b) histograms after histogram matching, (c) cumulative histograms, and (d) cumulative histo-

grams after histogram matching. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 12. Hole extension: (a) before extension and (b) after extension. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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While the previous histogram matching converts one view to the

other to have a similar histogram, the proposed histogram matching

modifies both the views to have similar histogram as that of the vir-

tual view, which is defined by considering baseline distances. In

addition, the proposed histogram matching maps the indices differ-

ently for the two cases in Figure 9.

Figure 11 shows an example for proposed histogram matching.

In this case, histograms of the 3D warped left and right views have

similar shapes but different distributions caused by illumination and

color differences. By mapping these two reference view to have a

similar cumulative histogram with that of the virtual view, we can

reduce the illumination differences between two views. The pro-

posed histogram matching is independently applied to each color

component of RGB format.

D. Base Plus Assistant View Blending. The boundary errors

around the big holes are usually caused by inaccuracy of the camera

parameters and inaccurate boundary matching between texture

images and depth images. To remove these visible errors, we extend

the hole boundaries by using image dilation as shown in Figure 12.

These extended holes can be filled by the other 3D warped view

and we expect more natural synthesized view by removing this kind

of errors.

The next step is view blending to combine 3D warped views to

the virtual view and the simplest way would be taking a weighted

sum of the two images as below:

IVðu; vÞ ¼ aILðu; vÞ þ ð1� aÞIRðu; vÞ ð16Þ

where IL and IR are the 3D warped reference texture images and IV
is an image to be blended. Generally, the weighting factor a is cal-

culated based on the baseline distance as in (13).

However, a drawback of this method is that inconsistent (due to,

for e.g., camera parameters, inconsistent depth values, etc.) pixel

values from both views can contribute to the warped image and of-

ten leads to an unnaturalness such as double edge artifacts and

smoothing as shown in Figure 13. To avoid such a problem, we

define a base view and an assistant view for view blending. The

base view is the main reference view from which most of the pixel

values are warped, and the assistant view is used as a supplementary

reference view for hole-filling. Then (16) can be rewritten as (17),

where a is 1 for nonhole regions and 0 for hole regions in the 3D

warped base view. In other words, most regions of the blended

view came from the base view and some remaining holes are filled

from the assistant view. We choose a closer view from the virtual

view as the base view.

IVðu; vÞ ¼ a IBðu; vÞ þ ð1� aÞIAðu; vÞ ð17Þ

where IB is the base view and IA is the assistant view.

E. Hole-Filling Using Depth-Based In-Painting. The last

step of the proposed view synthesis is depth-based hole-filling.

Even though view blending efficiently fills up most disoccluded

regions, some holes still remain. In general, these remaining holes

are caused by still remaining disocclusion regions and wrong depth

value. Disocclusion regions are defined as areas that cannot be seen

in the reference image but exist in the synthesized one. Many exist-

ing hole-filling methods use image interpolation or in-painting tech-

niques and fill up the remaining holes using neighboring pixels

solely based on geometrical distance. However, observe that it

make more sense to fill up the holes using the background pixels

rather than the foreground ones as the disoccluded area usually

belongs to the background by definition. Therefore, we propose a

hole-filling algorithm that prefers the background pixels over the

foreground ones in addition to considering the existing in-painting

technique.

Figure 13. View blending methods: (a) weighted sum method and (b) base and assistant method. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 14. General in-painting circumstance.
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The general in-painting problem is as follow (Telea, 2004): the

region to be in-painted X and its boundary @X are defined and the

pixel p belong to X would be in-painted by its neighboring region

Be(p) as shown in Figure 14.

This concept is quite reasonable for common image in-paint-

ing but it should be changed to be applied to hole-filling in

view synthesis because @X of a certain hole can belong to both

the foreground and the background. In this case, we replace the

boundary region facing the foreground with the corresponding

background region located on the opposite side as depicted in (18).

That is, we intentionally manipulate the hole to have neighborhood

belonging only to the background as shown in Figure 15.

pfg 2 @Xfg ! pbg 2 @Xbg

BeðpfgÞ ! BeðpbgÞ
ð18Þ

where fg and bg represent the foreground and the background,

respectively.

To distinguish the foreground and the background, we use the

corresponding depth data. In other words, for the two pixels horizon-

tally opposite to each other on the holes boundary, we regard the

Figure 15. Manipulation of hole to have neighborhood only come from background.

Figure 16. In-painting procedure: (a) image with holes, (b) boundary region copy from background, (c) previous in-painting, and (d) proposed
depth-based in-painting. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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pixel having the larger depth value as belonging to the foreground

and vice versa. Figure 16 shows the results from the previous in-

painting and the proposed depth-based in-painting techniques.

F. Self-Evaluation Metrics. To evaluate the performance of the

view synthesis algorithm, generally, we measure the similarity

between the synthesized view and the existing original one. The

PSNR, SSIM (Wang et al., 2004), and VQM (Xiao, 2000) are

widely used but these are only useful when the original view is

available for virtual view. In addition, they cannot evaluate tempo-

ral consistency that is susceptible to illumination changes and the

focus mismatch and to which human eyes are quite sensitive.

To overcome the limitations of the existing evaluation measure,

we propose new evaluation metrics named as SPSNR and TPSNR.

The SPSNR measure the spatial consistency by checking spatial

noise caused by view synthesis. Generally, the view synthesis

increases the high-frequency components since the 3D warped

images and holes have a lot of high-frequency component. Thus,

we can evaluate the spatial consistency by checking the degree of

the volume of the increased high-frequency components. From the

above concept, the SPSNR is defined as follows:

SPSNR ¼ 10 log
2552

SMSE

SMSE ¼ 1

h3w

Xw
i¼1

Xh
j¼1

imgði; jÞ � imgLPFði; jÞ½ �2
ð19Þ

where h and w denote image height and width. We apply the 5 3 5

median filter as an low pass filter (LPF) to remove spatial noise and

its difference image with the original image only contains the high-

frequency components. We define the volume of the high-frequency

components as SMSE similar to MSE in PSNR and develop the

SPSNR similar to existing PSNR.

The TSPNR to evaluate the temporal consistency is similar with

the SPSNR except for its input image is replaced with the difference

image between two temporally successive frames in (20). The

TPSNR measure the high-frequency components of the temporal

changes. The main merit of the proposed measures is it only uses

the synthesized view itself.

TPSNR ¼ 10 log
2552

TMSE

TMSE ¼ 1

h3w

Xw
i¼1

Xh
j¼1

imgDði; jÞ � imgDLPFði; jÞ½ �2

imgDðtÞ ¼ imgðtÞ � imgðt� 1Þj j

ð20Þ

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We have tested the proposed algorithm on two test sequences:

‘‘Breakdancers’’ and ‘‘Ballet.’’ Among the eight views, view 3 and

view 5 were selected as reference views and view 4 is set as the vir-

tual view to be synthesized. Each major subalgorithm of the pro-

posed method is evaluated by existing objective evaluation meas-

ures, such as PSNR, SSIM (Wang et al., 2004), VQM (Xiao, 2000),

and the proposed SPSNR and TPSNR. While a larger value means

a better quality for PSNR, SPSNR, and TPSNR, the opposite is true

for VQM. In the case of SSIM, the closer the value is to 1, the better

is the quality. The proposed view synthesis algorithm was com-

pared with the view synthesis software version 2.3 (ISO/IEC JTC1/

Table I. Experimental results for ‘‘depth preprocessing’’

Evaluation

Measures

Breakdancers Ballet

Without

Preprocessing

With

Preprocessing

Without

Preprocessing

With

Preprocessing

PSNR 31.7300 31.6421 31.7773 31.7935

SSIM 0.8381 0.8379 0.8736 0.8739

VQM 3.9973 4.0984 2.6134 2.5351

SPSNR 38.8363 38.9236 38.3793 38.5004

TPSNR 37.8345 38.0415 39.6727 40.7091

Figure 17. Synthesized images: (a) without depth preprocessing and (b) with preprocessing. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Table II. Experimental results for ‘‘histogram matching’’

Evaluation

Measures

Breakdancers Ballet

Without

Histogram

Matching

With

Histogram

Matching

Without

Histogram

Matching

With

Histogram

Matching

PSNR 31.7300 31.8754 31.7773 31.5912

SSIM 0.8381 0.8367 0.8736 0.8714

VQM 3.9973 3.9729 2.6134 2.7049

SPSNR 38.8363 38.7442 38.3793 38.0913

TPSNR 37.8345 37.7891 39.6727 39.5653
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Figure 18. Histogram matching: (a) without histogram matching and (b) with histogram matching. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

Figure 19. In-painting: (a) previous in-painting and (b) depth-based in-painting. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 20. Synthesized images for ‘‘Breakdancers’’ sequence: (a) reference software and (b) proposed method. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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SC29/WG11, 2008b) released by Nagoya University, which is cur-

rently used as a reference software in MPEG FTV/3D video stand-

ardization activity. The default view blending method in the refer-

ence SW was replaced with the proposed base plus assistant method

to make a more meaningful comparison.

A. Experimental Results for Depth Preprocessing. The

results for depth preprocessing are given in Table I and their corre-

sponding samples of synthesized images are shown in Figure 17.

The depth preprocessing does not provide noticeable quality

improvements in terms of the existing evaluation measures but it

shows some gains for SPSNR and TPSNR. Especially, we can con-

firm that the temporal consistency of the ‘‘Ballet’’ sequence is

enhanced by depth preprocessing. In addition, we can confirm some

improvements such as natural smooth boundary for the dancer on

the floor and the shapes of the heads of the two dancers standing on

the left.

B. Experimental Results for Depth-Based Histogram
Matching. As shown in Table II and sample images in Figure 18,

the proposed histogram matching improves the subjective quality

by reducing the illumination and color changes. However, its objec-

tive quality is slightly degraded.

C. Experimental Results for Proposed Depth-Based In-
painting. The experimental results for depth-based in-painting

are given in Table III and their corresponding synthesized sam-

ple images are in Figure 19. The proposed depth-based in-

painting fills up the remaining holes using only the pixels

located in the background when the holes border with both the

foreground and the background. We can confirm the proposed

method improves both the subjective and the objective

qualities.

D. Experimental Results for the Proposed View Synthesis
Method. The proposed view synthesis method consists of various

subalgorithms such as depth preprocessing, depth-based 3D warp-

ing, depth-based histogram matching, base and assistant view

blending, and hole-filling using depth-based in-painting. In this sec-

tion, the proposed view synthesis method is compared with the ref-

erence view synthesis software (ISO/IEC JTC1/SC29/WG11,

2008b). The main tools of the reference software are depth-based

3D warping, hole-filling using in-painting, and weighted sum–based

view blending. In this experiment, we replace the view blending

method in reference view synthesis software with the base plus as-

sistant method.

The experimental results are given in Table IV and their corre-

sponding synthesized sample images in Figures 20 and 21. We

could confirm that the synthesized images by the proposed view

synthesis method are both subjectively and objectively better than

those of the reference software.

V. CONCLUSIONS

In this article, we have proposed a virtual view synthesis method

and self-evaluation metrics for FTV and 3D video. The proposed

method consists of four steps: depth preprocessing, depth-based 3D

warping, illumination and color difference compensation with a

depth-based histogram matching, and hole-filling by a depth-based

Table IV. Experimental results for ‘‘proposed view synthesis method’’

Evaluation

Measures

Breakdancers Ballet

Reference

Software

Proposed

Method

Reference

Software

Proposed

Method

PSNR 31.6292 31.8150 32.1825 32.2854

SSIM 0.8341 0.8365 0.8664 0.8718

VQM 3.9273 4.0628 2.7430 2.5351

SPSNR 38.4073 38.8319 37.8048 38.2107

TPSNR 37.3941 38.0104 39.2467 40.6742

Figure 21. Synthesized images for ‘‘Ballet’’ sequence: (a) reference software and (b) proposed method. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Table III. Experimental results for ‘‘hole-filling using in-painting’’

Evaluation

Measures

Breakdancers Ballet

Previous

In-Painting

Depth-Based

In-Painting

Previous

In-Painting

Depth-Based

In-Painting

PSNR 31.7300 31.7484 31.7773 32.4967

SSIM 0.8381 0.8384 0.8736 0.8740

VQM 3.9973 3.9852 2.6134 2.5131

SPSNR 38.8363 38.8448 38.3793 38.3821

TPSNR 37.8345 37.8458 39.6727 39.8938
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in-painting technique. In addition, a base plus assistant view blend-

ing method was introduced for better subjective quality compared

with the weighted sum–based view blending. The effectiveness of

the proposed method was confirmed by evaluating the quality of the

synthesized image using various quality measures including the

newly proposed self-evaluation metrics SPSNR and TPSNR. We

observed that the proposed method produced both subjectively and

objectively better results compared with those by the current refer-

ence software being used in the MPEG FTV/3D video standardiza-

tion activities.
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