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In multi-view video, a number of cameras capture the same scene from different viewpoints. Color vari-
ations between the camera views may deteriorate the performance of multi-view video coding or virtual
view rendering. In this paper, a fast color correction method for multi-view video is proposed by model-
ing spatio-temporal variation. In the proposed method, multi-view keyframes are defined to establish the
spatio-temporal relationships for accurate and fast implementation. For keyframes, accurate color correc-
tion is performed based on spatial color discrepancy model that disparity estimation is used to find cor-
respondence points between views, and linear regression is performed on these sets of points to find the
optimal correction coefficients. For non-keyframes, fast color correction is performed based on temporal
variations model that time-invariant regions are detected to reflect the change trends of correction coef-
ficients. Experimental results show that compared with other methods, the proposed method can pro-
mote the correction speed greatly without noticeable quality degradation, and obtain higher coding
performance.

Crown Copyright � 2010 Published by Elsevier Inc. All rights reserved.
1. Introduction Since multi-view video contains a large amount of inter-view
Three-dimensional (3D) video and imaging technologies is an
emerging trend in the development of digital video systems, as
we presently witness the appearance of 3D displays, coding sys-
tems and 3D camera setups. New video applications such as
three-dimensional television (3DTV) and free viewpoint video
(FVV) system have drawn wide attention [1]. 3DTV aims to provide
viewer depth perception of the scene by simultaneously rendering
multiple images for different viewing angles. Instead, FVV applica-
tion provides the ability for user to interactively select view of the
scene. Since more views of a given scene would be needed in such
applications, multi-view acquisition [2], multi-view video coding
(MVC) [3] and virtual view rendering [4], etc, are the key technol-
ogies for 3DTV and FVV applications.

In a multi-view video system, multiple cameras capture the
same scene to form multi-view videos. Many factors may lead to
color inconsistency between views during acquisition. For exam-
ple, it is often impossible to capture an object under perfectly con-
stant lighting conditions across the views. Additionally, with
multiple cameras, the internal setting like the exposure or focus
setting may be varied. Furthermore, specular reflection may occur
that light is reflected in different directions with varying intensity.
Therefore, an important problem is how to compensate color dif-
ferences between different views of images and videos when cap-
tured with multiple cameras.
010 Published by Elsevier Inc. All r

.

statistical dependencies, both temporal and inter-view predictions
are exploited in MVC [5,6]. However, when multi-view video data
are recorded, significant variations are often observed between the
luminance and chrominance components of different views. These
discrepancies will reduce the correlation between different views,
and therefore affect compression efficiency. Furthermore, these
discrepancies will negatively affect rendering of new virtual views,
and lead to subjective quality degradation such as dizziness and
unnaturalness especially in random view access. Much works were
carried out to compensate the illumination changes among multi-
view cameras [7–9]. To improve the compression efficiency,
weighted prediction had already existed in H.264/AVC, which sup-
ports a multiplicative weighting factor and an additive offset [7].
Sohn et a1. used average and variance in blocks to compensate col-
or and luminance in order to use H.264/AVC for MVC [8]. As part of
the standardization efforts of the JVT, a block-based illumination
compensation scheme was proposed for MVC [9], and adopted in
joint multiview video model (JMVM). However, for these methods,
the compensation process must be inversed at the decoder, and the
decoded views are still color inconsistent.

Color correction is an effective way to compensate the color
inconsistency in multi-view video. Many color correction methods
were proposed, in most of which color pattern board was used to
extract color mapping relationship between views [10]. However,
it is not easy to provide a color pattern in various imaging
conditions. Yamamoto et al. corrected luminance and chrominance
of views by using lookup tables, the correspondences of which
were detected by scale invariant feature transform [11]. Chen used
ights reserved.
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linear transformation of YUV channels, the coefficients of which
were obtained by simplified color error model [12]. Fecker modi-
fied the luminance and chrominance variations by calculating
lookup tables from histograms of two views [13]. In our previous
method, color correction was treated as an optimization problem,
and the effective color mapping relationships were calculated by
using dynamic programming technique [14].

On the other hand, there are many works that perform fast
implementation of color correction for multi-view images [15].
While extending to multi-view video, how to improve the correc-
tion accuracy and reduce computational complexity simulta-
neously remains an important problem worthy of study. The
most direct strategy is to perform color correction in frame-by-
frame mode, however the computational complexity is usually
intolerable. In our previous work, once color mapping relationship
is established at one time, the following color mapping relation-
ship will be the same [16]. In [13], Fecker also supposed that the
mapping function is time-constant during a certain time period.
In fact, the assumption is not always kept especially when the mul-
ti-view imaging is time-varying. In general, it is a more difficult
problem to achieve high correction accuracy and low computa-
tional complexity simultaneously. More accuracy correction can
yield a significant increase in computational complexity, and vice
versa. Since the inter-view and temporal correlations are usually
strong in multi-view video, if we can model spatio-temporal vari-
ation, the above problem can be solved easily.

In this paper, we propose a fast color correction method for
multi-view video. The aim of the proposed method is to achieve
lower computational complexity and higher accuracy simulta-
neously when color correction is performed for multi-view video.
The paper begins by describing the spatial color discrepancy model
and temporal variation model in multi-view imaging. Based on
spatial color discrepancy model, a new color correction method
for multi-view images is proposed by using disparity estimation
and linear regression. Then, based on the temporal variation mod-
el, color correction is extended to multi-view video. Finally, exper-
imental results for different test sequences are given and the
performances of computational complexity, correction accuracy
and coding efficiency are compared to those of other methods.
2. Spatial color discrepancy model in multi-view imaging

Multi-view video is captured by multiple cameras simulta-
neously from different viewpoints. For illustration, we show an
example of a typical multi-view imaging model with two cameras
in Fig. 1. In this case, the same object will appear different colors in
different views due to various imaging factors, and these inconsis-
tencies will degrade the performance of subsequent MVC or virtual
Fig. 1. Illustration of m
view rendering. On the other hand, once the imaging condition is
fixed, the color change trends will be constant during acquisition.
Therefore, it is necessary to model the color discrepancy in mul-
ti-view imaging.

The image intensity Ik taken from a Lambertian surface by a dig-
ital color camera can be described as

Ik ¼
Z

k
EðkÞSðkÞRkðkÞdk ð1Þ

where E(k) denotes spectral power distribution of the illumination,
S(k) denotes the surface spectral reflectance of the object and Rk(k)
is spectral sensitivity of the kth camera sensors.

A finite dimensional linear model [17] is used to describe the
spectral function of illumination and surface reflectance as a linear
combination of several basis functions

SðkÞ ¼
Xn

j¼1

rjsjðkÞ ; EðkÞ ¼
Xm

j¼1

ejejðkÞ ð2Þ

where m and n denote the numbers of basis functions, here, m and n
are set 3. sj(k) is the jth reflectance basis function, and rj is its
weighting coefficient. ej(k) is the jth basis function for the illumi-
nant, and ej is its weighting coefficient.

Let A be the 3 � 3 spread matrix that corresponds to illumina-
tion and surface reflectance, b be the 3 � 1 offset vector of the
imaging sensors, x be the 3 � 1 vector of ideal values at a particular
pixel, and y is the 3 � 1 vector containing the measured values.
Then, under the finite dimensional linear model assumption, the
color discrepancy can be modeled as a linear transformation

y ¼ Axþ b ð3Þ

Starting from Eq. (3), we can derive color discrepancy model in
multiple cameras. As shown in Eq. (4), current and reference view
images are obtained at the same time instant from different cam-
eras for the same scene

yref ¼ A1xref þ b1

ycur ¼ A2xcur þ b2
ð4Þ

where xref and xcur are ideal color values for current and reference
view images, respectively. yref and ycur are the corresponding actual
acquired color values for different cameras, respectively. Supposing
that xref and xcur are consistent in the matching pixels, the color dis-
crepancy model between yref and ycur can be described as

ŷref ¼ A1A�1
2 ðycur � b2Þ þ b1 ¼Mycur þ T

M ¼ A1A�1
2 ;T ¼ b1 � A1A�1

2 b2

ð5Þ

where ŷref denotes the matching pixels in reference view image that
corresponds to ycur. However, due to the limited scene information
ulti-view imaging.
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from only two images, the color discrepancy model derived at one
specific time instant cannot reflect the actual change trends at all
times. Thus, temporal extension of the color discrepancy model is
necessary.

3. Temporal variation model in multi-view imaging

In Fig. 2, considering color discrepancy over time, the same ob-
ject will give different color values from different cameras at differ-
ent time instant. In multi-camera imaging geometry, the same
object will give similar motion trajectory in different cameras,
and the disparity in neighboring views at different time stamp will
be equivalent. Supposing that It

sðx0; y0Þ and It
sþ1ðx1; y1Þ are the color

values for different views at time t, and Itþ1
s ðx2; y2Þ and Itþ1

sþ1ðx3; y3Þ
are the corresponding color values for different views at time
t + 1, respectively. Let g1(�) be color discrepancy relationship at t
time, and f1(�), f2(�) be temporal variation relationships for the view
s and view s + 1, respectively. If we have derived the variation rela-
tionships as

It
sðx0; y0Þ ¼ g1ðI

t
sþ1ðx1; y1ÞÞ

It
sðx0; y0Þ ¼ f1ðItþ1

s ðx2; y2ÞÞ
It

sþ1ðx1; y1Þ ¼ f2ðItþ1
sþ1ðx3; y3ÞÞ

ð6Þ

Thus, the relationship between Itþ1
s ðx2; y2Þ and Itþ1

sþ1ðx3; y3Þ can be
easily represented by

Itþ1
s ðx2; y2Þ ¼ f�1

1 ðg1ðf2ðItþ1
sþ1ðx3; y3ÞÞÞÞ ¼ g2ðItþ1

sþ1ðx3; y3ÞÞ ð7Þ

where g2(�) denotes the color discrepancy relationship at time t + 1.
Therefore, if we can model the temporal variation f1(�) and f2(�)

in the above equation, the relationship between color discrepancy
models g1(�) and g2(�) can be easily established.

4. The proposed fast color correction method for multi-view
video

Fig. 3 shows a typical FVV reference model [18]. On the sender
side, multi-view images are captured with multiple cameras. The
captured images may contain the misalignment and color differ-
ences of the cameras. Then image correction, including geometric
calibration and color correction, should be performed. The cor-
rected multi-view images are compressed for transmission and
storage by the encoder. On the receiver side, free viewpoint images
are generated by interpolating the decoded images and displayed
on a 2D/3D display. Therefore, color correction is a very important
process in the FVV system.

Since it is not practical to calculate the correction matrices in a
frame-by-frame mode, in order to find a better tradeoff between its
Fig. 2. Relationships of temporal and inter-view correlations.
complexity and accuracy, multi-view keyframes are defined and
applied. Different with the keyframe concept in computer anima-
tion [19], the keyframe in this paper corresponds to a triggering,
which hints correction coefficients should be updated. For key-
frames, the correction matrices are obtained by performing color
correction directly. While for non-keyframes, the correction matri-
ces are obtained from previous frames by utilizing temporal varia-
tion model. The interval between keyframes can be decided in
fixed or adaptive way. In the proposed method, in order to be com-
patible with the following MVC, we only consider the fixed key-
frames interval, which is similar to the size of group of picture
(GOP) in MVC.

Thus, based on the above defined multi-view keyframes, a new
color correction method for multi-view video is proposed. As
shown in Fig. 4, the method is summarized as follows.

Step 1. Check whether the current multi-view frames are key-
frames or not. If they are keyframes then go to Step 2, other-
wise, go to Step 3.
Step 2. Calculate the disparity vectors between multi-view
images by mean-removed sum of absolute differences (MRSAD)
based disparity estimation. Then, achieve color correction of
multi-view keyframes with linear regression.
Step 3. Detect time-invariant regions between two consecutive
frames. Then, achieve fast color correction based on the tempo-
ral variation model.

4.1. The proposed color correction method for multi-view images

In the proposed method, keyframes provide a suitable abstrac-
tion and description of the color discrepancy information between
views, and the color discrepancy model for the subsequent frames
is inherited from the keyframes. Therefore, the keyframes should
be corrected accurately. The above color discrepancy model is de-
rived from RGB format data. While for YUV video format, a linear
color transformation is also satisfied because the transformation
from RGB to YUV is also linear. Supposing view s as reference view,
color correction is performed for view s + 1 to obtain consistent
color appearance with the reference view. The color corrected val-
ues for each component is expressed as a weighted linear sum of
the current YUV values

Ycor

Ucor

Vcor

2
64

3
75 ¼

aY1 aY2 aY3

aU1 aU2 aU3

aV1 aV2 aV3

2
64

3
75

Ysþ1

Usþ1

Vsþ1

2
64

3
75þ

aY4

aU4

aV4

2
64

3
75 ð8Þ

In order to derive the above coefficients, we use MRSAD-based
disparity estimation [9] to find matching points between reference
and current views, and perform a linear regression to derive the
coefficients. For an N � N block of pixels located at position (x, y),
MRSAD is defined as

MRSADði; jÞ ¼
Xx0þN

x¼x0

Xy0þN

y¼y0

jðYsþ1ðx; yÞ � lsþ1Þ � ðYsðxþ i; yþ jÞ

� lsÞj ð9Þ

where Ys+1(x, y) and Ys(x, y) are luminance values of the view s and
the view s + 1, respectively, (i, j) represents a candidate disparity
vector, and ls+1 and ls are the mean values of pixels for each blocks,
respectively.

Here, the current view is firstly divided into 8 � 8 blocks, and
for each block, the disparity vector ds+1?s from view s + 1 to view
s is calculated by minimizing the MRSAD over a search range

dsþ1!s ¼ arg min
ði;jÞ2X

MRSADði; jÞ ð10Þ
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Fig. 4. Flowchart of the proposed method.
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where X denotes the disparity search range. However, the disparity
vectors estimated with the above formula may not be the true dis-
parity due to occlusion, mismatching or other factors. An inverse
matching operation from reference view to current view is per-
formed to validate the matching. If the disparity deviation between
ds+1?s and ds?s+1 is less than 2, that is, | ds+1?s+ds?s+1 | < 2, then the
blocks are matched.

Then, all matching pixels in current and reference views are de-
fined in vector forms as Ys+1, Us+1, Vs+1, Ys, Us, Vs. Let W = [Ys+1, Us+1,
Vs+1, 1] and U = [Ys, Us, Vs], the relationships between the vectors
of matching points can be expressed as

U ¼ WCþ e ð11Þ

where e is error vector, and C is a 4 � 3 matrix. By minimizing the
energy of the error vector e in a least square sense [20], the correc-
tion matrix C can be computed by

C ¼ ðWTWÞ�1WTU ð12Þ

In order to have a similar form with the color discrepancy mod-
el in Eq. (5), the matrix C is divided into a 3 � 3 matrix M and a
3 � 1 matrix T. Supposing H = [Y, U, V]T for each pixel (x, y), using
the matrices M and T, the color discrepancy model is described as

Ĥs ¼MHsþ1 þ Tþ e ð13Þ

where Ĥs and Hs+1 are the corresponding color vectors of view s and
view s + 1, respectively.
Fig. 5. Relationships o
4.2. The proposed fast color correction method for multi-view video

By performing the above method for multi-view images frame
by frame, it can be easily extended to video. However, for low com-
plexity applications, such as wireless multi-view video system
[21], it is not practical to carry out the same process for every
frame since performing disparity estimation and linear regression
would be computationally expensive. In our previous work [15],
once the color mapping relationship established at one time, the
mapping will be directly applied frame by frame, which may lead
to a perceptible flicker. The primary case of flicker comes from
scene change. Supposed at time n, object c is mapped to c0 as shown
in Fig. 5(a). At time (n + m), another object appears with varying
illumination, and it is mapped to c0 0, as shown in Fig. 5(b). If consis-
tent mapping function is performed at time n and (n + m), flicker
may occur.

In order to show the influence of flicker, we compare the correc-
tion coefficients aY1, aY2, aY3 and aY4, as shown in Fig. 6, which are
obtained by performing disparity estimation and linear regression
frame by frame. It is obvious that only minor changes occur for the
coefficients aY1, aY2 and aY3, while for the coefficient aY4, the
changes are drastic. In other words, even though those coefficients
can lead to a good fitting between different views at a particular
time, it can also result in discontinuous variations between adja-
cent time instants, which may deteriorate the temporal correla-
tions. Therefore, it is necessary to model the temporal variations
to reflect the actual variation trends of the coefficients. In the exist-
ing techniques, Bayesian model [22] or Kalman filtering [23] can be
used to predict the temporal variations. However, for both Bayes-
ian and Kalman filtering models, it is difficult and time-consuming
to obtain accurate model coefficients. Here, we propose a method
with temporal information to fast obtain the correction matrices.
The proposed method mainly consists of two steps, time-invariant
detection and temporal variation modeling.
4.2.1. A. Time-invariant detection
The objective of time-invariant detection is to extract the back-

ground regions that are unchanged over time. For single-view vi-
deo, illumination change is the main reason for discontinuous
color variations among frames. However, the illumination in fore-
ground motion regions is instable. First, motion objects may vary
with time, which make it hard to measure the illumination inten-
sity for these regions. Second, even for the same objects, the re-
flected intensity may also be inconsistent when the reflective
surface is changed. In order to extract stable temporal variation
f object mapping.
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information in video, we use background as a uniform reference
surface between two consecutive frames.

Here, we propose an algorithm that incorporate both motion
and edge information to identify the background. First of all, an ini-
tial motion detection mask (MDM) at time t, denoted as MDMit, be-
tween two consecutive frames, is computed by a thresholding
operation. The decision rule for obtaining MDMit can be expressed
as

MDMitðx; yÞ ¼
not changed if Dtðx; yÞ 6 brN

changed otherwise

�
ð14Þ
Dtðx; yÞ ¼ jYðx; y; t þ 1Þ � ltþ1 � ðYðx; y; tÞ � ltÞj ð15Þ
r2
N ¼

1
M

X
ðx;yÞ
ðYðx; y; t þ 1Þ � ltþ1 � ðYðx; y; tÞ � ltÞ2 ð16Þ

where Y(x, y, t) and Y(x, y, t + 1) are Y components of pixels at the tth
and (t + 1)th frames at position (x, y), and lt and lt+1 are the average
luminance of the frames t and t + 1, respectively. b is a weigh factor
which is set to 2 empirically. M is the number of pixels in a frame.
Figs. 7–9(a) show an example of MDMi for ‘Flamenco1’, ‘Objects2’,
and ‘Race1’ sequences, respectively.
Fig. 7. Example of the algorithm for detect

Fig. 8. Example of the algorithm for detec
However, only taking illumination into account for change detec-
tion suffers from the problem that unchanged pixels are easily mis-
taken as changed ones. To overcome the problem and be more
robust under varying illumination, moving object edge is incorpo-
rated to identify the regions with motion. We define the edge detec-
tion mask (EDMt) as a set of all edge points detected by the SUSAN
operation in current frame. Figs. 7–9(b) show the EDMt for ‘Fla-
menco1’, ‘Objects2’, and ‘Race1’ sequences, respectively.

Then, by combining the above two masks, those unchanged pix-
els are excluded, and the final MDM (MDMft) for current frame is
expressed as
MDMftðx; yÞ ¼MDMitðx; yÞ \ EDMtðx; yÞ ð17Þ

Note that these unchanged pixels are basically removed after
incorporating the extracted edges, as shown in Figs. 7–9(c). Finally,
in order to separate the foreground and background, horizontal
and vertical scanning with 8 � 8 block over MDMft is first per-
formed. If the block is located in the middlepart of two edge blocks
in horizontal and vertical scan line simultaneously, it is regarded as
the foreground. Otherwise, it is regarded as the background. Final-
ly, the regions are connected by simple connection templates. By
applying the connected MDM (MDMct) in Figs. 7–9(d) on color vi-
deo, the foreground regions are detected, as shown in Figs. 7–9(e).
ing foreground regions of ‘Flamenco1’.

ting foreground regions of ‘Objects2’.
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4.2.2. B. Fast color correction with temporal variation model
For single camera, color distributions in background regions of

adjacent frames are assumed to Gaussians, pðc; tÞ � Nðl1;r1Þ and
pðc; t þ 1Þ � Nðl2;r2Þ, where c is the color value, p(c, t) is the prob-
ability density function, and u and r are the mean and standard
deviation, respectively. In order to response the above distribu-
tions, the acquired intensity value for Y component between adja-
cent frames is modeled as

Yt
sðx0; y0Þ ¼ a � Ytþ1

s ðx; yÞ þ b ð18Þ

where a is a scaling factor and b is an offset factor. By transferring
the parameters of Gaussian models from the tth frame to the
(t + 1)th frame, the coefficients a and b are derived by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rtþ1

s =rt
s

q
; b ¼ ltþ1

s � a � lt
s ð19Þ

where lt
s and ltþ1

s are the means in Gaussian models of the view s at
the tth and (t + 1)th frames, respectively. rs

t and rs
t+1 are the corre-
Fig. 10. Distance comparison betwee

Fig. 11. Eight original viewpoint images
sponding standard deviations. Considering YUV components of
view s and view s + 1, the temporal variation models can be further
expressed as

Ĥt
s ¼ ZsH

tþ1
s þHs þ e ð20Þ

Ĥt
sþ1 ¼ Zsþ1Htþ1

sþ1 þHsþ1 þ e ð21Þ

where Zs, Zs+1 and Hs, Hs+1 are the matrices in temporal variation
model for view s and view s + 1, respectively.

Supposing that the color discrepancy model at time t has been
known, and it is described as

Ĥt
s ¼MtHt

sþ1 þ Tt þ e ð22Þ

where Mt and Tt are the correction matrices at time t, respectively.
Then, based on the spatio-temporal relationship in Eq. (7), the color
discrepancy model at time t + 1 can be described as

Ĥtþ1
s ¼ Z�1

s MtZsþ1Htþ1
sþ1 þ Z�1

s ðM
tHsþ1 þ Tt �HsÞ þ e ð23Þ
n adjacent correction matrices.

of ‘Flamenco1’, ‘Objects2’ and ‘Race1’.



Fig. 12. Statistic results of correlation coefficients.

Fig. 13. The relationship between keyframe interval and saved time.
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Supposing Mtþ1 ¼ Z�1
s MtZsþ1 and Ttþ1 ¼ Z�1

s ðM
tHsþ1 þ Tt �HsÞ, Eq.

(23) is simplified as follows:

Ĥtþ1
s ¼ Mtþ1Htþ1

sþ1 þ Ttþ1 þ e ð24Þ

where Ĥtþ1
s and Htþ1

sþ1 are the corresponding color vectors of view s
and view s + 1 at time t + 1, respectively. Thus, the color discrepancy
model at time t + 1 is derived, and Mt+1 and Tt+1 are the correspond-
ing correction matrices at time t + 1.

It is noteworthy that the proposed method has at least two
important advantages. Firstly, by utilizing the temporal variation
model, computational complexity of color correction is signifi-
cantly reduced. Secondly, since the correction matrices are derived
from previous frames, discontinuous variations between adjacent
frames can be avoided. In order to describe the discontinuous vari-
ations, we calculate the distances of M matrices (DMMs) and dis-
tances of T matrices (DTMs) between two adjacent time instants.
The distances are computing by adding the total errors for each
element in the matrix. As shown in Fig. 10, it is obvious that both
DMMs and DTMs with the proposed method are significantly lower
than the frame-by-frame method, and the DMMs are almost no
change, which guarantees smooth variations between subsequent
frames.

5. Experimental results and analyses

In experiments, multi-view video sequences ‘Flamenco1’, ‘Ob-
jects2’ and ‘Race1’ are used as the test sequences [24]. The size of
the sequences is 320 � 240, and the images are taken by a horizon-
tal parallel camera configuration with eight viewpoints. Fig. 11
shows eight original views of ‘Flamenco1’, ‘Objects2’, and ‘Race1’.
Clearly, the color consistency among these eight views of the se-
quences is poor. In this case, the first, fifth and sixth views are cho-
sen as the reference, and the other views are corrected by
referencing the nearest view. To confirm the performance of the
proposed method, we implemented our coding experiments in
JMVM7.0 [25]. The test condition is set as follows: four basis QPs
Table 1
Speedup performance comparisons of ‘Flamenco1’, ‘Objects2’ and ‘Race1’.

TScheme1 (s) TScheme2 (s) TS (%)

Flamenco1 1396.875 222.421 84.08
Objects2 1372.515 205.203 85.05
Race1 1355.828 189.593 86.02
22, 27, 32, 37 are used, the temporal GOP size is 15, and the total
number of encoded frames in each view is 600.

Fig. 12 shows statistic results of the correlation coefficients of
‘Flamenco1’, ‘Objects2’ and ‘Race1’ in the view 1 and view 2, respec-
tively. It is evident that there are strong correlations between adja-
cent time instants since most of the correlation coefficients are
larger than 0.9, and for ‘Race1’, the coefficients are relatively low
for some frames because of rapid scene changes. Therefore, it is
necessary to model the temporal variations for multi-view video
by exploiting the high correlations.

5.1. Computational complexity comparison

In order to objectively measure performances of the proposed
method in computational complexity and correction accuracy, four
color correction schemes are discussed

Scheme 1: Traditional color correction method which is per-
formed frame by frame
Scheme 2: The proposed color correction method in which key-
frames are put in every 10 frames
Scheme 3: The proposed color correction method in which key-
frames are put in every 15 frames
Scheme 4: The proposed color correction method in which key-
frames are put in every 30 frames

Table 1 shows experimental results of computational time in
which TS indicates the average time saving and it is defined by

TS ¼ TScheme1 � TProposed

TScheme1
� 100 ð%Þ ð25Þ

where TScheme1 and TProposed are the total computational time for
Scheme 1 and the proposed scheme, respectively. The maximum
disparity search ranges in the experiments are 40 and 5 at horizontal
and vertical directions, respectively. Table 1 shows the speedup per-
TScheme3 (s) TS (%) TScheme4 (s) TS (%)

137.250 90.17 89.781 93.57
137.671 89.97 90.546 93.40
138.593 89.78 87.328 93.56



Fig. 14. WMSE comparison results.
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formance of the proposed scheme with different keyframes inter-
vals. It is obvious that the proposed scheme can significantly reduces
the computational complexity, ranging from 84.08% to 93.57%, when
the keyframes interval is ranging from 10 to 30. Fig. 13 shows the
relationship between keyframes interval and saved time. From the
figure, it is noted that more computational time can be saved with
the proposed method, and the saved time increases with increasing
keyframes interval length, while the accuracy of color correction will
be also decreased with the increasing keyframes interval length.
Therefore, an optimal keyframe interval will exist for the best trade-
off between accurate correction and fast execution.
Fig. 15. WSSIM com

Fig. 16. Mean and standard deviati
5.2. Objective and subjective correction performance comparison

In order to objectively evaluate performance of the proposed
method, the structural similarity index (SSIM) metric [26] is used
to measure the similarity. We calculate the following weighted
mean square errors (WMSE) and weighted SSIM (WSSIM) between
the corrected images with frame-by-frame method and the pro-
posed method. WMSE or WSSIM is calculated based on the
weighted average on three components

WMSE ¼ w1MSEY þw2MSEU þw3MSEV ð26Þ
parison results.

on comparisons of ‘Flamenco1’.



Fig. 17. Mean and standard deviation comparisons of ‘Objects2’.

Fig. 18. Mean and standard deviation comparisons of ‘Race1’.

Fig. 19. Color correction results of ‘Flamenco1’. (a) Reference image (view 1, frame #559); (b) current image (view 2, frame #559); (c) the corrected image with HM method in
[13]; (d) the corrected image with the proposed scheme.

Fig. 20. Color correction results of ‘Objects2’. (a) Reference image (view 1, frame #559); (b) current image (view 2, frame #559); (c) the corrected image with HM method in
[13]; (d) the corrected image with the proposed scheme.
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WSSIM ¼ w1SSIMY þw2SSIMU þw3SSIMV ð27Þ
where w1, w2 and w3 are weighted parameters, w1 = 0.8, w2 = 0.1,
w3 = 0.1 for Y, U and V components, respectively. Here,
0 6WSSIM 6 1, where WSSIM = 1 if two images are the same. As
shown in Figs. 14 and 15, for different keyframe interval, WMSE val-
ues are relatively low, and WSSIM values are close to 1, which im-
plies that the differences between the frame-by-frame method and
the proposed method are not obvious. In other words, the proposed
method can still achieve good correction results even with larger
keyframe interval.

Figs. 16–18 show the mean and standard deviation comparisons
of Y channel for ‘Flamenco1’, ‘Objects2’ and ‘Race1’, respectively.
Here, the keyframe interval is 15. As can be seen from the results,
the means and standard deviations of the corrected images with
Fig. 21. Color correction results of ‘Race1’. (a) Reference image (view 1, frame #559); (b
[13]; (d) the corrected image with the proposed scheme.

Fig. 22. Enlarged part signified in Fig. 19. (a) Reference image; (b) current image; (c) t
scheme.

Fig. 23. Enlarged part signified in Fig. 20. (a) reference image; (b) current image; (c) the co
the proposed method are basically fitted to those of the frame-
by-frame method. However, for the frame-by-frame method, it is
applied independently to each frame, which may lead to discontin-
uous variations between frames. While for the proposed method,
smooth variations between subsequent frames can be obtained
by using temporal variation models, which can reflect the actual
variation trends of the original view.

Figs. 19–21(a) and (b) show the reference image and original
image in the view 1 and view 2 at time 559 of ‘Flamenco1’, ‘Ob-
jects2’ and ‘Race1’. Clearly, the color consistency among the views
is poor. Thus, the color correction is necessary if the multi-view
images will be used to render new virtual arbitrary view. Figs.
19–21(c) show the corrected images with histogram matching
(HM) method presented in [13] and Figs. 19–21(d) show the cor-
rected images with the proposed method. Although the computa-
) current image (view 2, frame #559); (c) the corrected image with HM method in

he corrected image with HM method; (d) the corrected image with the proposed

rrected image with HM method; (d) the corrected image with the proposed scheme.
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tional complexity of the HM method is low, content variation be-
tween the current image and the reference image will inevitable
to cause problem in the histogram related algorithm. We enlarge
the part signified in Figs. 19 and 20, and show the detail examples
in Figs. 22 and 23. It can be seen more clearly that compared to HM
method, the proposed method can not only correct the color of cur-
rent image to that of reference one, but also preserve the structural
and contrast information of original image much better. This is be-
Fig. 24. Coding performance co

Fig. 25. Coding performance c

Fig. 26. Coding performance
cause the proposed method attempts to model the relationship be-
tween two data sets that preserve the contrast and structure to be
corrected.

5.3. Coding performance comparison

Then, we compare our method with (1) compressing the origi-
nal video; (2) the illumination compensation (IC) method adopted
mparisons of ‘Flamenco1’.

omparisons of ‘Objects2’.

comparisons of ‘Race1’.
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in JMVM; (3) the frame-by-frame method. Figs. 24–26 show the
rate-distortion performance comparisons of ‘Flamenco1’, ‘Objects2’
and ‘Race1’ for all eight views, respectively. The vertical axis in
each sub-figure is the PSNR of luma or chroma channel, while
the horizontal axis corresponds to the sum of the bitrates used
for encoding. The Y component carries the luma channel informa-
tion, and the chroma PSNR is the average PSNR of the U and V com-
ponents. As can be seen from the results, the proposed method
results in larger PSNR gains compared to compressing the original
data with or without IC, especially in chroma channel. Besides, the
coding performances of the proposed method are higher than the
frame-by-frame method at high bitrate side. The reason lies in that
the frame-by-frame method can result in discontinuous variations
between adjacent time instants, while the proposed method can
eliminate those discontinuous variations by modeling the tempo-
ral variations, which increases the temporal correlations in MVC.

6. Conclusions

Color correction is an important issue for multi-view video cod-
ing and virtual view synthesis in three-dimensional television and
free viewpoint video applications. In this paper, a fast color correc-
tion method for multi-view video is proposed by modeling spatio-
temporal variation. Experimental results show that the proposed
method can achieve better performance in computational com-
plexity, correction accuracy and coding efficiency. In the proposed
method, in order to evaluate the correction performance, the cor-
rected images with frame-by-frame method are assumed as refer-
ence. In fact, the reference itself is not right. Therefore, how to
objectively evaluate the performance of the proposed method is
an important problem to be settled. Currently, the proposed meth-
od corrects the color information based on a set of fixed keyframes,
leaving no adaptability to video content. In future work, we will re-
search on intelligent algorithms that automatically understand the
video content to find keyframes.

Acknowledgments

This work was supported by the Natural Science Foundation of
China(Grant 60872094, 60832003, 60902096), 863 Project of China
(2009AA01Z327), the Program for New Century Excellent Talents in
University (NCET-06-0537), the Specialized Research Fund for the
Doctoral Program of Higher Education of China (20093305120
002), and the Open Project Program of the State Key Lab of CAD&CG
(Grant A0904), Zhejiang University. It was also sponsored by K.C.

Wong Magna Fund in Ningbo University.

References

[1] Y. Morvan, D. Farin, P.H.N. de With, System architecture for free-viewpoint
video and 3D-TV, IEEE Transactions on Consumer Electronics 54 (2) (2008)
925–932.
[2] A. Kubota, A. Smolic, M. Magnor, et al., Multiview imaging and 3DTV, IEEE
Signal Processing Magazine 24 (6) (2007) 10–21.

[3] P. Merkle, A. Smolic, K. Muller, et al., Efficient prediction structures for
multiview video coding, IEEE Transactions on Circuits and Systems for Video
Technology 17 (11) (2007) 1461–1473.

[4] K. Muller, A. Smolic, K. Dix, et al., View synthesis for advanced 3D video
system, EURASIP Journal on Image and Video Processing 2008, Article ID
438148, pp. 11, doi:10.1155/2008/438148.

[5] Y. Chen, Y. K. Wang, K. Ugur, et al. The emerging MVC standard for 3D video
services, EURASIP Journal on Advances in Signal Processing, vol. 2009, Article
ID 786015, pp. 13, doi:10.1155/2009/786015.

[6] Yun Zhang, Gangyi Jiang, Mei Yu, et al., Adaptive multiview video coding
scheme based on spatiotemporal correlation analyses, ETRI Journal 31 (2)
(2009) 151–161.

[7] T. Wiegand, G.J. Sullivan, G. Bjntegaard, et al., IEEE Transactions on Circuits and
Systems for Video Technology 13 (7) (2003) 560–576.

[8] K. Sohn, Y. Kim, J. Seo, et al., H.264/AVC-compatible multi-view video coding,
ISO/IEC JTC1/SC29/WG11, M12874 Bangkok, Thailand, Jan. 2006.

[9] J.H. Hur, S. Cho, Y.L. Lee, Adaptive local illumination change
compensation method for H.264/AVC-based multiview video coding,
IEEE Transactions on Circuits and Systems for Video Technology 17
(11) (2007) 1496–1505.

[10] S.H. Lee, J.H. Choi, Design and implementation of color correction system for
images captured by digital camera, IEEE Transactions on Consumer Electronics
54 (2) (2008) 268–276.

[11] K. Yamamoto, M. Kitahara, H. Kimata, et al., Multiview video coding using view
interpolation and color correction, IEEE Transactions on Circuits and Systems
for Video Technology 17 (11) (2007) 1436–1449.

[12] Y. Chen, J. Chen, C. Cai. Luminance and chrominance correction for multi-view
video using simplified color error model, in: Proc. of Picture Coding
Symposium, Beijing, China, April 2006.

[13] U. Fecker, M. Barkowsky, A. Kaup, Histogram-based prefiltering for luminance
and chrominance compensation of multiview video, IEEE Transactions on
Circuits and Systems for Video Technology 18 (8) (2008) 1258–1267.

[14] Feng Shao, Gangyi Jiang, Mei Yu, Multi-view video color correction using
dynamic programming, Journal of System Engineering and Electronics 19 (6)
(2008) 1115–1120.

[15] M. Zhang, N.D. Georganas, Fast color correction using principal regions
mapping in different color spaces, Real-Time Imaging 10 (1) (2004) 23–
30.

[16] Feng Shao, Gangyi Jiang, Mei Yu, et al. A content-adaptive multi-view video
color correction algorithm, in: IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 1, pp. 969–972, 2007.

[17] T. Lanrence, A. Brian, Color constancy: a method for recovering surface spectral
reflectance, Journal of Optical Society of America (A) 3 (1) (1986) 29–33.

[18] M. Tanimoto, T. Fujii, K. Suzuki. Available Technologies for FTV, ISO/IEC JTC1/
SC29/WG11, M15088 Antalya, Turkey, January 2008.

[19] A. Agarwala, A. Hertzmann, D.H. Salesin, et al., Keyframe-based tracking for
rotoscoping and animation, ACM Transactions on Graphics 23 (3) (2004) 584–
591.

[20] D.C. Montgomery, E.A. Peck, G.G. Vining, Introduction to Linear Regression
Analysis, Wiley/InterScience Press, New York, 2006. July.

[21] C. Yeo, J.J. Wang, K. Ramchandran, Robust distributed multi-view video
compression for wireless camera networks, in Proc. of SPIE: Visual
Communications and Image Processing, vol. 6508, p. 65080P, 2007.

[22] D. Ascher, N.M. Grzywacz, A Bayesian model of temporal frequency masking,
Vision Research 40 (16) (2000) 2219–2232.

[23] S.K. Sahu, K.V. Mardia, A Bayesian kriged Kalman model for short-term
forecasting of air pollution levels, Journal of the Royal Statistical Society: Series
C (Applied Statistics) 54 (1) (2005) 223–244.

[24] R. Kawada, KDDI multi-view video sequences for MPEG 3DAV use, ISO/IEC
JTC1/SC29/WG11, M10533 Munich, Germany, 2004.

[25] A. Vetro, P. Pandit, H. Kimata, et al., Joint multiview video model (JMVM) 7.0,
ISO/IEC JTC1/SC29/WG11, JVT-Z207, Antalya, Turkey, Jan. 2008.

[26] Z. Wang, L. Lu, A.C. Bovik, Video quality assessment based on structural
distortion measurement, Signal Processing: Image Communication 19 (2)
(2004) 121–132.

http://dx.doi.org/10.1155/2008/438148
http://dx.doi.org/10.1155/2009/786015

	Fast color correction for multi-view video by modeling spatio-temporal variation
	Introduction
	Spatial color discrepancy model in multi-view imaging
	Temporal variation model in multi-view imaging
	The proposed fast color correction method for multi-view video
	The proposed color correction method for multi-view images
	The proposed fast color correction method for multi-view video
	A. Time-invariant detection
	B. Fast color correction with temporal variation model


	Experimental results and analyses
	Computational complexity comparison
	Objective and subjective correction performance comparison
	Coding performance comparison

	Conclusions
	Acknowledgments
	References


