
High-quality Non-blind Image Deconvolution 

Jong-Ho Lee and Yo-Sung Ho 
Gwangju Institute of Science and Technology (GIST) 

261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Korea 
e-mail: {jongho, hoyo}@gist.ac.kr 

 
 

Abstract—The most annoying artifacts in image deconvolution 
are ringing and amplified noise. These artifacts can be reduced 
significantly by regularization using the Maximum a Posteriori 
(MAP) method that exploits not only the likelihood but also the 
image prior in image deconvolution. Although ringing and 
noise can be reduced significantly with strong regularization, 
image details are also reduced, so the deconvolved image is 
neither sharp nor clear. In this paper, we propose a non-blind 
image deconvolution method with adaptive regularization that 
can reduce ringing and noise more noticeable in a smooth 
region and preserve image details in a textured region. For 
adaptive regularization, after we make a quick estimate of the 
reference image that can indicate the strength of 
regularization, we perform regularization adaptively according 
to the local characteristics. Experimental results show that 
ringing and noise are suppressed significantly, while 
preserving image details effectively. 

Keywords-non-blind image deconvolution; maximum a 
posteriori; adaptive regularization 

I.  INTRODUCTION  
Camera motion blur is one of the most common and 

unpleasant defects in photography. If the motion blur is 
shift-invariant, recovering a true latent image from a 
degraded image reduces to image deconvolution. The 
blurring process is commonly modeled as a convolution of 
the true latent image and a kernel with additive noise: 

 

NKIB +⊗=  ,                           (1) 
 

where B is the degraded image, I is the true latent image, K 
is the kernel, and N is additive noise. 

If both the kernel and the latent image are unknown, the 
problem is called blind deconvolution. On the other hand, if 
the only latent image is unknown, the problem is called non-
blind deconvolution. In this paper, our target is non-blind 
deconvolution. In many cases, the kernel can be estimated 
effectively. Fergus et al. estimated the kernel from a single 
image using variational Bayesian approach [1]. Ben-Ezra 
and Nayer estimated the kernel using a secondary sensor [2]. 
Yuan et al. estimated the kernel from a blurred image and a 
noisy image [3]. 

However, non-blind deconvolution is still an ill-posed 
problem although the kernel is known, so it gives rise to 
artifacts in the deconvolved image. The main artifacts are 
ringing and noise amplification. Ringing is the ripple-like 
artifact that appears around strong edges in the deconvolved 
image as shown in Fig. 1 (b). Kernel is often band-limited, so 

its frequency response shows near-zero values at the high 
frequency. Therefore, the direct inverse of the kernel with 
the blurred image causes large signal amplification at the 
high frequency components. This is represented as ringing 
near the edges and amplified noise. Especially, kernel 
estimation errors accelerate the ringing artifacts and give 
unpleasant deconvolved results. Although many effective 
blind deconvolution algorithms are proposed, estimating the 
kernel is a still tough problem. If the blurred image has 
saturated pixels or the latent image does not contain sharp 
edges, the blind deconvolution algorithms often fail to find 
correct kernels. Thus, the kernel estimation errors which 
cause severe ringing artifacts and noise amplification are 
inevitable. 

It is useful to include the image prior into deconvolution 
to overcome these artifacts. The prior helps to reduce 
ringing and noise while recovering the latent image. 
However, this regularization technique works well only for 
small-size kernels and small kernel estimation errors. If the 
kernel size or kernel estimation errors are large, the artifacts 
are also increased, and strong regularization is needed to 
reduce these artifacts. The strong regularization reduces 
artifacts significantly, but it also reduces image details.  

We propose a non-blind image deconvolution method 
with adaptive regularization that can reduce ringing and 
noise effectively in a locally smooth region and preserve 
image details in a textured region so that the high-quality 
deconvolved image can be resulted in. First, we estimate a 
reference image that indicates right edge information of the 
latent image, and adaptive regularization is performed 
referring to this estimated reference image. In the reference 
image estimation and adaptive regularization, we use 
adaptive bilateral filtering and adaptive shock filtering to 
enhance the result. 

                         (a)                                                (b) 
 
Figure 1: Ringing artifacts in image deconvolution. (a) 
Deconvolution result. (b) A magnified patch. 

2010 Fourth Pacific-Rim Symposium on Image and Video Technology

978-0-7695-4285-0/10 $26.00 © 2010 IEEE

DOI 10.1109/PSIVT.2010.54

282



II.  RELATED WORK 
In non-blind deconvolution, the kernel is assumed to be 

known or estimated in other ways. Thus, the remaining task 
is to estimate true latent image. Wiener filtering [6] and 
Richardson-Lucy method [7] are traditional and popular 
non-blind deconvolution methods. They were proposed 
decades ago, but are still widely used for image restoration 
because they are simple, fast, and gives good results in case 
of the relative small-size blur. However, these methods are 
weak to image noise and kernel estimation error, so they 
suffer from ringing artifacts. Donatelli et al. use a PDE-
based model to recover a latent image with reduced ringing 
by incorporating an anti-reflective boundary condition and a 
re-blurring step [13]. Regularization techniques using image 
prior are also proposed to avoid these artifacts. Dey et al. 
proposed total variation regularization with Laplacian prior 
[8]. Levein et al. used a sparse prior that shows excellent 
results without ringing artifacts [9]. However, all these non-
blind deconvolution methods are effective when the kernel 
size is small and the kernel has no error. Otherwise, the 
deconvolved image contains severe ringing artifacts and 
amplified noise. 

In blind deconvolution, the problem is more challenging 
because the kernel as well as the latent image is unknown. 
Additional input is used to facilitate the problem in some 
methods. Yuan et al use a pair of images, a blurred image 
and a noisy image, to estimate the kernel and deblur the 
blurred image [3]. Ben-Ezra and Nayar attach a low-
resolution video camera to a high-resolution still camera to 
help in recording the kernel [1]. Recently, the kernel was 
estimated from a single image. Fergus et al. used a 
variational Bayesian method with natural image statistics to 
estimate the kernel [1]. Jia used an alpha matte that 
describes transparency changes caused by a motion blur for 
kernel estimation [10].  Shan et al. proposed the deblurring 
method using a MAP to estimate the kernel and the latent 
image from a single image [4]. 

However, all the above methods fail to preserve image 
details and reduce artifacts at the same time in the 
deconvolution because it is difficult to locate proper edge 
information in the blurred image. 

III. OVERVIEW 
The main idea of our algorithm is to change the strength 

of regularization according to the local characteristics of the 
latent image. For this adaptive regularization, right edge 
information is needed, but unfortunately, it is not available in 
the blurred image. Thus, we make the reference image 
temporally which indicates the textured region and the 
smooth region much better than the blurred image. This 
reference image is estimated fast in the frequency domain 
using FFTs (Fast Fourier transforms).  

On the other hand, Adaptive regularization is performed 
in the spatial domain using the estimated reference image. 
The strength of regularization on each pixel of the blurred 
image is controlled by the reference image. The deconvolved 
image with adaptive regularization is set to the second 
reference image, and adaptive regularization is performed 
again. Since the new reference image shows the edge 
information better than the first reference image, it gives 
better deconvolved result.  

In the reference image estimation and adaptive 
regularization, we also use adaptive bilateral filtering and 
adaptive shock filtering to enhance the performance of the 
algorithm. Fig. 2 represents the overall procedure of our 
algorithm. 

IV. REFERENCE IMAGE ESTIMATION 
The reference image is to locate the smooth region and 

the textured region correctly. However, it is difficult to 
distinguish between two regions perfectly at one try. Thus, 
the reference image is estimated by iteration. First, a 
temporal reference image is estimated by combination of 
fast image deconvolution using hyper-Laplacian priors [5] 
and the model of the spatially random distribution of image 
noise [4]. This combination enables the reference image to 
be estimated fast with enhanced image details. 

Fast image deconvolution using hyper-Laplacian uses an 
alternating minimization scheme where the non-convex part 
of the problem is solved in one phase, followed by a 
quadratic phase which can be efficiently solved in the 
frequency domain using Fast Fourier Transforms (FFTs). 
Thus, the latent image I* can be estimated very fast with the 
following equations. 

Figure 2: Overview of our algorithm.
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where I* is the estimated latent image, i is the pixel index, 
f1=[1 -1], f2=[1 -1]T, β is a weight that will be varied during 
the optimization, wi

1 and wi
2 are auxiliary variables that 

allow the term (I ⊗ fj )i to be moved outside the |.|α. 
The model of the spatially random distribution of image 

noise states that not only image noise but also its higher-
order partial derivatives follow Gaussian distributions with 
different standard deviations as follows [4]. 
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where ∂* denotes the operator of any partial derivative with 
k(∂*)=q representing its order. ∂*N=∂*(B-I ⊗ K) follows a 
Gaussian distributions with standard deviation σq= q2 σ0, 
where σ0 denotes the standard deviation of N. Θ = {∂0, ∂x, ∂y, 
∂xx, ∂xy, ∂yy} represents a set of partial derivatives. 

The reference image I* is generated by combining (2) and 
(3) as follows. 
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where τk(∂*)=1, 0.5, and 0.25 when k(∂*)=0, 1, and 2 
respectively. To solve (4), w={w1, w2} values are calculated 
first with the method introduced in [5], and the reference 
image I* is estimated with (4) given a fixed value of w. 
λ=8ⅹ103 and α=2/3 are used to estimate I*. Equation (4) 
can be solved using 2D FFT very fast assuming circular 
boundary conditions. We applied the algorithm proposed in 
[12] to reduce the boundary artifacts caused by FFT.  

Although the I* estimated by (4) has reduced ringing 
artifacts and noise due to regularization, and shows edge 
information much better than the blurred image, it still has 
small ringing artifacts and noise, and its edges are slightly 
blurred. To solve these problems, we apply an adaptive 
bilateral filter and an adaptive shock filter to I*. 

The adaptive bilateral filter is to reduce small ringing 
artifacts and noise in I* which are not removed completely 
even with regularization. To reduce ringing artifacts and 
noise while preserving edges, strong filtering is applied to 
the smooth region and weak filtering is applied to the 
textured region. Since the region without any edges in the 
blurred image is also the smooth region in the latent image, 

the pixel p satisfying the following equation is judged to be 
in the smooth region Ω. 
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where Eg(p) is the edge strength at the pixel location p on 
the blurred image, Wx=W ⊗ [1 -1], Wy=W ⊗ [1 -1]T, W is the 
3ⅹ3 window whose center is located on p, and Ntotal is the 
total number of pixels of W. Tb=2ⅹ10-5 is used for the 
experiment. The adaptive bilateral filtering on I* is 
performed with the following equation. 
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where Gd and Gr are Gaussian functions with standard 
deviations σd and σr respectively. N is a neighboring window, 
RN is a radius of N, and Z is a normalization term. R0=1, 
σ0=4, and σr=0.05 are used for the filtering. 

After adaptive bilateral filtering, the ringing artifacts and 
noise in I* are significantly reduced, but edges in I* are 
blurred because of regularization and adaptive bilateral 
filtering. We use an adaptive shock filter to recover these 
slightly blurred edges selectively. The shock filter is an 
effective filter to recover sharp edges from slightly blurred 
step signals [12], and the adaptive shock filter performs the 
recovering process adaptively according to the local 
characteristics. The evolution equation of the adaptive shock 
filter is as follows.  

Figure 3: Reference image estimation. (a) Blurred image. (b) 
Result of (4). (c) Smooth region Ω in white. (d) Result after 
simple filtering operations on (b). 

(a) (b)

(c) (d)
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where It is an image at time t, and 2∇  and ∇ are the 
Laplacian and gradient respectively. dt is the time step for a 
single evolution. The interim result images described in 
section 4 are represented in Fig. 3. 

V. ADAPTIVE REGULARIZATION 
The reference image estimated in section 4 provides edge 

information much better than the blurred image, but the fine 
scale detail layer is suppressed and ringing and noise are 
still noticeable. We perform adaptive regularization using 
the reference image to obtain the deconvolved result with 
enhanced image details and suppressed ringing and noise 
simultaneously.   

According to Bayes framework, the posteriori for the 
latent image is written as: 

 

),()|()|( IpIBpBIp ∝                      (8) 
 

where p(B|I) denotes the likelihood of the blurred image 
given the latent image, and p(I) represents the image prior. 
The MAP solution of I can be obtained by minimizing the 
following energy: 
 

),(* IEargminI
I

=                           (9) 

 

where 
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The likelihood is based on noise, N= B-I ⊗ K. For this 
likelihood, we adopt the model of the spatially random 
distribution of image noise [4] that is described in (3). We 
also adopt the sparse distribution as the image prior [9]: 
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where f1=[1 -1] and  f2=[1 -1]T. 
By taking the likelihood and the prior into (10), we get 
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where η=2σ0
2α. η is the regularization weighting factor that 

controls the strength of regularization. For adaptive 
regularization, η should have an effect on each pixel with 
different intensity according to the local characteristics. 

Fig. 4 shows the step signals of the blurred image and the 
reference image and the difference between the derivatives 
of step signals of the reference image and the blurred image. 
When the blurred image is deconvolved, the step signal of 
the blurred image with a gentle slope becomes steeper. That 
is, the derivative of the step signal of the reference image is 
larger than that of the step signal of the blurred image. This 
causes the big difference between the derivatives of the step 
signals of the reference image and the blurred image at the 
real edges, and this fact can be used for good criteria for 
detecting real edges to perform adaptive regularization. 

Based on this criteria, E(I) in (12) is modified as follows.  
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If the ( BIref ∇−∇ )(p) on pixel p is larger than Ta, the 
pixel p is considered to be in the textured region, so no 
regularization is performed on that pixel. Otherwise, the 
pixel p is considered to be in the smooth region, and strong 
regularization is performed on that pixel. Ta=2ⅹ10-5 was 
used for our experiments. Fig. 5 (a) shows H( BIref ∇−∇ ) 
map. The smooth region is represented in white and the 
textured region in black. To solve (13), iterative re-weighted 
least squares (IRLS) algorithm is used. IRLS poses the 
optimization as a sequence of least squares problems, while 
each least square problem re-weighted by solution at the 
previous step [9].  

The result image after adaptive regularization suppresses 
the ringing artifacts and noise in the smooth region while 
preserving image details in the textured region. For better 
result, this image is set as the new reference image since it 
shows better edge information than the first reference image. 
Adaptive regularization is performed again based on the 
new reference image. 

Figure 4: Local characteristics. (a) Step signal of the blurred
image. (b) Step signal of the reference image. (c) Difference
between the derivative of (b) and the derivative of (a). 
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Figure 5: Adaptive regularization. (a) H(∇Iref −∇B) map. (b) 
Finally deconvolved image. 
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After final adaptive regularization, the smooth region is 
detected on the finally adaptive-regularized result image. 
Based on this detected smooth region, adaptive bilateral 
filtering is used to remove small ringing and noise remained 
in the adaptively regularized image, and adaptive shock 
filtering based on the detected smooth region is used to 
enhance the fine scale detail layer. 

Fig. 5 (b) shows the results of adaptive regularization. 
When compared to the first reference image in Fig. 3 (b), the 
finally deconvolved image shows that the ringing artifacts 
and noise are reduced significantly without losing sharpness 
of edges. 

VI. EXPERIMENTAL RESULTS 
We applied our algorithm to the synthesized image and 

the real blurred image. The synthesized image is generated 
by convolving the artificial kernel and the original image. 
For the synthesized image, both objective quality and 
subjective quality are checked. For the real blurred image, 
only subjective quality is checked. The kernels of all images 
are estimated by Fergus et al’s single image blind 
deconvolution method [2]. We compare our algorithm with 
four other non-blind image deconvolution methods, the 
standard Richardson-Lucy (RL) method [7], Total variation 
(TV) regularization [8], Levin et al’s method [9] and Shan 
et al’s non-blind deconvolution method [4]. For fare 
comparison, we tune the regularization parameters of all 
algorithms to produce the best results.  

Fig. 6 shows the comparison of the subjective quality in 
case of the synthesized “Beer” image. The estimated kernel 
size is 37ⅹ37, and the size of blurred image is 664ⅹ489. 
The RL method preserves edges very well but produces the 
most noticeable ringing and noise. The TV regularization 
reduces ringing and noise significantly, but image details are 
also reduced. The Levin et al’s algorithm and the Shan et 
al’s algorithm reduce ringing effectively without large 
image details loss, but they show limitations in case of large 
kernel errors since the same regularization weighting factors 
are applied to all pixels of the image. However, our 
algorithm shows the good result with reduced ringing and 
noise in smooth region effectively, while preserving image 
edges well by adjusting the regularization weighting factor 
according to the local characteristics.  

For the synthesized image, the objective quality also can 
be compared since we already know the original image. 
Table 1 shows the comparison of objective quality. We used 
(14) for the comparison metric. We calculated and 
compared the SNR for R, G, B channels and luminance 
component of the deconvolved images. Our algorithm 
shows the best performance compared to other non-blind 
image deconvolution methods. 
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where I is the original image, μ(I) is the mean of I, and I* is 
the deconvolved image. 

 

Figure 6: Beer. (a) Blurred image and estimated kernel. (b) 
Richardson-Lucy method. (c) TV regularization. (d) Levin et al.
(e) Shan et al. (f) Our method. (g) Close-up views of (a)-(f). 

(a) (b)

(c) (d)

(e) (f)

(g)
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Table 1: Comparison of SNRs for the “Beer” image 
Method SNR_R SNR_G SNR_B SNR_Y 

RL 8.6460 6.4081 5.8152 7.7587 
TV 7.9823 5.4414 3.9164 6.7483 

Levin et al’s 15.6266 15.4895 15.1118 15.5924 
Shan et al’s 14.7365 15.1967 14.9486 14.9606 

Ours 16.0644 15.7858 15.3756 16.0915 

Figure 7 shows the results for the real blurred image. Our 
result shows the smallest ringing in the background and the 
most improved image details when compared with other 
methods. 

VII. CONCLUSION 
The most notorious artifacts at image deconvolution are 

ringing artifacts and noise amplification. This problem is 
solved using the image prior that represents global statistics 
of the image. However, strong regularization for reducing 
artifacts at image deconvolution does not preserve image 
details. In this paper, we have presented the adaptive 
regularization method with help of the reference image that 
separates the smooth region from the textured region. The 
experimental results show that our approach suppresses 
ringing artifacts effectively, while preserving image details. 
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