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Generation of Multi-View Video 
Using a Fusion Camera System for 3D Displays 

Eun-Kyung Lee and Yo-Sung Ho, Senior Member, IEEE 

Abstract — In this paper, we present a fusion camera 
system combining one time-of-flight depth camera and two 
video cameras to generate multi-view video sequences. In 
order to obtain the multi-view video using the fusion camera 
system for 3D displays, we capture a stereo video using a 
pair of video cameras and a single view depth video with the 
depth camera. After performing a 3D warping operation for 
the depth video to obtain an initial depth map at each 
viewpoint, we refine it using segment-based stereo matching. 
To reduce mismatched depth values along object boundaries, 
we detect moving objects using color difference between 
frames. Finally, we recompute the depth value of each pixel 
in every segment using stereo matching with a new cost 
function. Experimental results show that the proposed fusion 
system produces multi-view video sequences with accurate 
depth maps, especially along the boundaries of objects. 
Therefore, it is suitable for generating more natural 3D views 
for 3D displays than previous works1.

Index Terms — 3D display, depth camera, depth 
estimation, multi-view image generation 

I. INTRODUCTION
As 3D videos become attractive in a variety of 3D 

multimedia applications, it is essential to obtain multi-view 
video sequences with corresponding depth maps, which are 
often called as multi-view video-plus-depth data [1]. In the 
near future, consumers will be able to experience 3D depth 
impression and choose their own viewpoints in the immersive 
visual scenes created by 3D videos. Recently, the ISO/IEC 
JTC1/SC29/WG11 Moving Picture Experts Group (MPEG) 
has recognized the importance of the multi-view video-plus-
depth data for free-viewpoint TV (FTV) or 3DTV [2], and 
has investigated needs for standardization on 3D video 
coding [3], [4]. Moreover, 3D video systems have been 
studied to represent 3D scenes for 3D displays [5], [6]. 

With respect to the current 3D research activities, it is 
important to estimate accurate depth information from real 
world scenes. Although various depth estimation methods 
have been developed in the field of computer vision, accurate 
measurement of depth information from natural scenes is still 
time-consuming and problematic. 

In general, depth estimation methods can be classified into 
two categories: passive depth sensing and active depth 
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Promotion Agency) (NIPA-2010-( C1090-1011-0003)). 
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sensing. The former calculates depth information indirectly 
from 2D images captured by two or more video cameras. 
Typical examples include shape from focus [7] and stereo 
matching [8]. The advantage of indirect depth estimation is 
low price because we can create depth maps using cheap off-
the-shelf video cameras. However, accuracy of the depth 
maps is relatively lower than those produced from active 
approaches in occlusion and textureless regions. 

On the other hand, active depth sensing methods usually 
employ physical sensors, such as laser, infrared ray (IR), or 
light pattern, to obtain depth information from natural scenes 
directly. Structured light patterns [9] and depth cameras [10], 
[11] are major examples of these approaches. Nevertheless, 
these direct depth estimation tools and systems are quite 
expensive for consumers. Therefore, time-of-flight (TOF) 
depth cameras with low price and small size have been 
introduced and applied for 3D home game and multimedia 
environment [12]. While they can capture depth values 
directly in real-time, their crucial disadvantages are that they 
produce only low-quality depth maps with optical noises. 

In recent year, fusion camera systems composed of 
multiple video cameras and one or more TOF cameras have 
been proposed [13], [14]. Zhu et al. [15] presented a 
calibration method to improve depth quality using a TOF 
depth sensor. They used the probability distribution function 
of the depth information measured by the TOF depth sensor 
and provided a more reliable depth map. Lee et al. [16] 
enhanced the depth resolution and accuracy by combining the 
actual distance information measured by the depth camera 
with the disparity map estimated by the passive depth sensing 
method. However, the previous fusion systems have 
produced only low-resolution depth maps and focused on 
generating depth maps of static 3D scenes.  

Nowadays, many research institutes and companies are 
interested in development of a fusion camera system for 
3D consumer devices such as 3D cellphones, 3D tablet 
PCs, 3D laptops, 3D game consoles, etc. Since 
forthcoming 3-D multimedia applications running on those 
devices are expected to use high quality 3-D videos, we 
need to create multi-view video data with high quality 
depth information.  

In this paper, we devise a fusion camera system with one 
depth camera and stereo video cameras. The proposed 
system can produce multi-view images for dynamic 3D 
scenes by enhancing the low-resolution depth information 
measured by the depth camera. The main contribution of our 
work is to propose a practical 3D video generation solution 
for dynamic 3D scenes, which can be applicable to 3D 
consumer devices. 
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Fig. 1. Overall framework of multi-view image generation for 3D display. 

The remainder of this paper is organized as follows. In 
Section II, we present the overall architecture of the proposed 
fusion camera system. Section III describes preprocessing 
steps for enhancing depth maps and Section IV presents how 
to generate the multiple video sequences with their 
corresponding depth maps using the proposed camera system. 
After showing experimental results in Section V, we draw 
conclusion in Section VI. 

II. SYSTEM ARCHITECTURE

The proposed fusion system is composed of one depth 
camera and two video cameras. Figure 1 illustrates the overall 
framework to generate stereo depth map using the fusion 
system. After calibrating each camera independently, we 
perform an image rectification to adjust vertical mismatches 
in multiple images. Then, we apply a color correction 
operation to maintain color consistency among stereo images. 
To obtain depth maps for stereo images, we perform a 3D 
warping operation onto each stereo camera using the depth 
map measured by the depth camera. The warped depth data is 
used as an initial depth at each camera position. After we 
segment each stereo image, we assign the depth value of the 
warped depth data in each segment as the initial depth of the 
segment. In order to improve the depth accuracy of object 
boundaries, we separate the moving objects using color 
difference between frames. Then, the depth of each segment 
is refined by a color segmentation-based stereo matching 
method. Finally, we obtain depth maps by conducting a pixel-
based depth map refinement using a proposed cost function in 
each segment. Since all steps are processed twice, from left to 
right and right to left, we can obtain at least two depth maps 
in two views. From the two-view information, multi-view 
images can be generated from the proposed algorithm. 

In this paper, we introduce a compact and minimum 
camera setup for multi-view image generation with two video 
cameras and one depth camera. However, depending on 
applications and device capabilities, this system can be easily 
extended to multi-view video and multi-view depth cameras. 

III. PREPROCESSING OF THE FUSION CAMERA SYSTEM

If the proposed camera setup is built in 3D devices, the 
following steps can be skipped in practical environment. 

Once the camera setup is fixed in the device, parameters 
computed from the preprocessing stage are not changed. 

A. Relative Camera Calibration 
Since the proposed fusion camera system consists of two 

different types of cameras, a depth camera and stereo video 
cameras, it is essential to find out relative camera information 
through camera calibration [17]. For that, we apply a camera 
calibration algorithm to each camera in our camera system 
and obtain projection matrices for the depth camera and each 
video camera. 

]|[ ssss tRKP (1) 

]|[ kkkk tRKP (2) 

where Ps is the projection matrix of the depth camera 
represented by its camera intrinsic matrix Ks, rotation matrix 
Rs, and translation vector ts. Pk means the projection matrices 
of the kth video camera which consisted of its camera intrinsic 
matrix Kk, rotation matrix Rk, and translation vector tk.

We then employ a rectification operation [18]. The 
cameras have geometric errors because they are set manually 
by hand. In order to minimize the geometric errors, we find 
the common baseline, and then apply the rectifying 
transformation to the stereo image. Consequently, the 
projection matrix of video cameras are changed as 

]|[ kkkk tRKP (3) 

where Kk  and Rk are the modified camera intrinsic matrix and 
rotation matrix of the kth video camera, respectively. 
Thereafter, we convert the rotation matrix Rs of the depth 
camera into the identity matrix I by multiplying inverse 
rotation matrix Rs

-1. The translation vector ts of the depth 
camera is also changed into the zero matrix O by subtracting 
the translation vector ts. Hence, we can define new relative 
projection matrices for the stereo camera on the basis of the 
depth camera as 

]|[ OIKP ss (4) 

]|[~ 1
skskkk ttRRKP (5) 
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where Ps  and '~
kP  are final projection matrices of the depth 

camera and the kth video camera, respectively. After relative 
camera calibration, we resolve the color mismatch problem of 
stereo images using a color calibration method [19]. The 
color characteristics of captured images are usually 
inconsistent due to different camera properties and lighting 
conditions even the hardware type and specification of the 
multiple cameras are the same. Thereafter, we perform 
bilateral filtering to reduce optical noises included in the 
depth map acquired from the depth camera [20]. 

B. Depth Calibration 
The depth values measured by the depth camera are very 

sensitive to noises. Their sources are diverse including 
physical limitation of hardware and specific object properties, 
etc. Therefore, depth data are noticeably contaminated with 
random and systematic measurement errors dependent on 
reflectance, angle of incidence, and environmental factors 
like temperature and lighting [21]. To reduce those errors, we 
employ a depth calibration method [17].  

For depth calibration in indoor environments, we compute 
the depth of the planar checker pattern within the limited 
space by increasing the distance from the image pattern to the 
depth camera using our system as shown in Fig. 2. To extract 
the corresponding feature points in two different types of 
cameras efficiently, we use the color checker pattern. The 
pattern image is captured in every 5cm distance. The plane 
pattern is orthogonal to the image plane. 

(b) Pattern images from hybrid camera system(a) Pattern acquisition
Fig. 2. Acquisition of the planar check pattern for depth calibration. 

Thereafter, we make a four dimensional look-up table 
(LUT) mapping 3D positions of the multiple video cameras 
and the depth value from the depth camera. 3D position is 
constructed by x, y position of the feature point and the real 
depth value calculated by the multi-view image. Depth 
accuracy test using the acquired depth map and calibrated 
depth map the real depth value z calculated from the multi-
view image by pairwise stereo matching. Since we have 
already obtained camera parameters, the real depth value is 
calculated by 

),(
),(

yxn
yxn ppD

BKppd (6) 

where K is the focal length of the left camera and B is the 
baseline distance between two video cameras. Dn(px, py) is the 
real depth value corresponding to the measured disparity 
value dn(px, py) at the pixel position (px, py) in the checker 
pattern.

To check the accuracy of the calibrated depth value, we 
perform 3D warping to the stereo camera. Figure 3(a) is the 
3D warping result using the acquired depth map and Fig. 3(b) 
shows that of the calibrated depth map using the LUT. While 
there are many mismatched depth values in Fig. 3(a), most of 
them are correctly matched in the boundaries of the 
rectangular box in Fig. 3(b). The other problem is that even 
though the distance from the depth camera to the object is 
constant, depth information from the depth camera can be 
different depending on the object color and lighting 
conditions.  

Projection to left image

Projection to left image

Acquired depth map

3D warping

Calibrated depth map

3D warping

(a) Before Depth Calibration 

(b) After Depth Calibration

Fig. 3. Depth accuracy test using acquired depth map and calibrated 
depth map.

To analyze the depth sensitivity of a static object in the 
dynamic scene, we check the depth values of a black hair, as 
shown in Fig. 4. We can notice the inconsistent depth value 
changes of the static object caused by object movement and 
material properties. Especially, the depth value of the dark 
color region measured by the depth camera is very unstable 
and unreliable. The black hair has to sustain a near-constant 
depth in the scene; however, the acquired depth values are 
unpredictable and random. The reason is that dark or black 
colors absorb light of all frequencies and the depth camera 
uses near IR rays. 
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Fig. 4. Depth inconsistency for static object. 
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Although we perform the depth calibration to correct the 
acquired depth map, there are still limitations in the depth 
values acquired from the depth camera. To obtain the high-
quality multi-view depth maps, we need to refine the acquired 
depth value using an efficient stereo matching algorithm. 

C. Radial Distortion Correction for Depth Images 
Depth map from the depth camera have a large amount of 

lens radial distortion. There are two types lens distortion 
which are barrel distortion and pincushion distortion. In this 
case, the barrel distortion is occurred by the intrinsic problem 
of the depth camera. This distortion causes not only the shape 
mismatch between the color image and the corresponding 
depth image but also the errors in the results of some feature 
point based processing such as camera calibration. 

In order to avoid that situation, we have to perform radial 
distortion correction to the obtained depth images. In general, 
there are two main categories of radial distortion correction. 
Methods in the first category use the point correspondences 
between two or more views. The second category also has 
lots of approaches which are based on the distorted straight 
line components in the image. 

In the proposed fusion camera system, we use one of the 
second approaches to correct the radial distortion in the depth 
images [22]. After finding the curved straight line component 
in the captured image, we estimate the distortion center and 
the distortion parameter. With the distortion information, we 
can reconstruct the image from the distorted image. Figure 5 
shows the depth and intensity images before and after the 
correction.

Original Corrected

Fig. 5. Radial distortion correction.

IV. DEPTH MAP GENERATION

A. 3D Warping of Depth Camera Data 
We generate initial depth of the multi-view image by 

performing 3D warping of the depth values obtained from the 
depth camera. First, we project pixels of the depth map into 
the 3D world coordinate using the depth values. We then 
reproject the 3D points into each view. 

Let us assume that Ds(psx, psy) is the depth intensity at the 
pixel position (psx, psy) in the depth map. Ps(xsx, ysy, zsz) is a 
3D point corresponding to Ds. The backward projection for 

moving Ds to the world coordinate is carried out by 

sss pKP 1 (7) 

where Ks
-1 indicates the intrinsic matrix of the depth camera. 

In the backward 3D warping, since rotation and translation 
matrices of the depth camera are the identity matrix I and 
zero matrix O, we have only to consider its intrinsic matrix. 
Thereafter, we project the 3D points Ps into the each view to 
get its corresponding pixel position pk (uk, vk) of the kth-view 
image by 

skk PPp '~ (8) 

where Pk  indicates the projection matrix of the kth-view video 
camera. Figure 6 shows the result of 3D warping using the 
acquired depth maps. 

(a) Warped depth image

(b) Matched to color image
Fig. 6. 3D warped depth map. 

B. Region Separation 
To estimate depth maps of stereo video cameras using the 

warped depth information, we segment the multi-view image 
by a mean-shift color segmentation algorithm [23]. However, 
we cannot control the maximum segment size because there 
is no parameter to control the maximum segment size. 

When we perform the segment-based stereo matching, one 
segment has one depth value. If the size of segment is too 
large, we cannot get a smooth depth map. The other way, if 
the size of segment is too small, it is hard to overcome 
textureless problem during the stereo matching. To solve this 
problem, we split one image into 16 16 block segments, so 
that we can limit the maximum segment size. 

count_pixels > Th

count_pixels < Th

if (count_pixels > Th)
color_index++

else if (count_pixels < Th)
seg_merging( );

BLOCK_SIZE = 16

16

Segment A_1

Segment B_1

Segment A

Fig. 7. Block-based segment merging. 
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Figure 7 shows the procedure of the segment merging. A 
block can have two or more color segments. Before merging 
the segment, we split the segmented image into block-based 
segment again. If each segment is smaller than half size of the 
block, we merge it into one segment by searching adjoined 
blocks to find the same indexed segment. If the size of the 
merged block is larger than threshold, the merging procedure 
is finished; otherwise we repeat the same process until 
merging condition is satisfied. 

The searching order of connected blocks is right, bottom, 
left, and top including the diagonal directions because left 
and top blocks are merged block and right and bottom block 
will be merged blocks. For example, Segment A divide into 
many block-based segments and Block (i, j) have two 
segments: Segment A_1 and Segment B_1. Since the size of 
Segment A_1 is smaller than the predefined threshold value in 
Fig. 8, the same indexed segment of Segment A_1  is the 
blocks in (i+1, j), (i, j+1), and (i+1, j+1). We merge the 
current Segment A_1 and the same indexed segment in (i+1,
j) by the searching order.  

Before we estimate depth maps, we separate moving object 
using color difference between frames. To extract the moving 
object in the current frame, we calculate color differences 
between the previous frame n-1 and the current frame n by 
using the threshold which indicates the current position is 
foreground or not. We cannot directly use the segment-based 
moving object detection because shape of each segment can 
be varied in the temporal domain as shown in Fig. 8. 

Fig. 8. Segmentation results in temporal domain. 

Since color segmentation is performed frame by frame, it is 
hard to find the same segment in the temporal domain. 
Therefore, we use the Euclidean distance between frames to 
extract the moving objects as 

2
1

2
1

2
1 )),(),(()),(),(()),(),((),( yxByxByxGyxGyxRyxRyxE nnnnnnn

(9) 

where R, G, and B indicate the pixel values in RGB color 
domain. To find the moving object, we compute the En(x, y) at 
each pixel location for all pixels. If we subtract the RGB value 
between frames, camera noises can be mixed up. To remove 
them, we calculate the average RGB value for 3 3 block. If the 
average is larger than the threshold value, we set the center pixel 
of each 3 3 block as the foreground pixel. Figure 9 shows the 
result of moving objects for 78th frame images in the left camera. 

Fig. 9. Moving object detection using color difference between frames. 

Segment-based Multi-view Depth Estimation 
We define the initial depth of each segment as 3D warped 

depths in the segment; the assumption is that each segment 
has one depth value [7]. However, there is one problem to set 
the initial depth using warped depth value. The 3D warping is 
performed from the small resolution depth map to the stereo 
image in our system. Since there are many errors such as 
camera calibration error and depth error acquired from the 
depth camera, the warped result is not exactly matched with 
the stereo image as shown in Fig. 10.  

3D warping

Boundary mismatching

Acquired depth map

Warped initial depth result

Fig. 10. Boundary mismatching problem. 

To obtain the accurate initial depth value, we use the 
warped results as multiple initial depth values for stereo 
matching. If we start the stereo matching with the initial 
depth, we can reduce the search range for finding the matched 
region. In addition, depending on search range reduction, we 
can overcome the mismatched problem in the textureless 
regions. However, if the given initial depth is the error value, 
we could find wrong areas which has local minimum. 
Therefore, the assignment of the correct initial depth is 
crucial in using the depth camera. Because there are correct 
initial depths around the currently warped position, which are 
not exactly matched with the original image, we increase the 
candidates of the initial depth value to resolve this problem.  

Figure 11 shows the position of the initial depth in two 
directional regions, horizontal and vertical regions. One or more 
initial depth values usually exist in a 10 10 area because of the 
difference of the resolution. In this case, we set the horizontal 
search region as 80 20 and the vertical search region as 20 80. 
By using the multiple initial depths, we can set initial depth for the 
depthless regions in the boundary of objects as shown in Fig. 11. 

Vertical 
search range

Horizontal 
search range

Current position for 
stereo matching

Fig. 11. Set of multiple initial depth values.
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Since stereo matching measures the difference between the 
corresponding points of two images, called as the disparity, 
we convert the initial depth into its disparity for stereo 
matching by 

),(
),(

yxInitDepth
BKyxInitDisp (10) 

where InitiDisp(x, y) is the converted disparity at the pixel 
position (x, y) from the corresponding initial depth 
InitDepth(x, y). B and K are the distance between two video 
cameras and the focal length of the current video camera, 
respectively. After performing stereo matching with the 
initial disparity, we convert again the calculated disparity into 
its depth value to produce the depth map. Before performing 
bi-directional stereo matching, we need to set the candidate of 
the initial depth value.  

For determining the disparity of each segment, we 
calculate the mean of absolute difference (MAD) values 
between the segment in the current view image and its 
matched region in the left or right view images by 

a

j

b

k
i kMADjMADInitDispdFG

0 0
))(min(),(min(min()(_ (11) 

where i is the index of the segment, j and k means index of 
the multiple initial depth. a and b are the number of the initial 
depth in the horizontal and vertical regions, respectively. 
FG_di(InitDisp) is the refined initial depth value from 
pairwise stereo matching. Search range to estimate disparities 
of the current view image is from InitDisp-5 to InitDisp+5.
The disparity with the minimum MAD in the search range is 
chosen as the refined initial disparity of the segment in the 
current view image. 

Since the acquired depth map is only for foreground 
regions, there is no depth information for background areas. 
We define that the background has no initial depth or the 
number of the included initial depth in the segment is less 
than 10% of the size of the segment. In estimating depth of 
background, we set the minimum and maximum 
depth/disparity value. We then find the minimum MAD as the 
initial disparity of the current  segment  in  the background  by 

Disp

Dispi
i iMADInitDispdBG

max

min
))(min()(_ (12) 

where BG_di(InitDisp) is the disparity for background, 
minDisp and maxDisp mean minimum and maximum 
disparity search range for background. The disparity with the 
minimum MAD is chosen as the initial disparity di(Initdisp)
of the segment i in the current view image n by 

))(_),(_min()( InitDispdBGInitDispdFGInitDispd iii (13) 

C. Multi-view Depth Map Refinement 
In stereo matching, depth refinement usually enhances 

depth accuracy through iteration at the cost of long 

processing time, lots of memory requirement, and heavy 
computation. However, it has challenges when our target is to 
generate high-quality multi-view video based on depth maps. 
We therefore propose a simplified depth refinement approach 
using the proposed cost function for the depth map 
refinement, which has the following features: low memory 
consumption, fast processing time, and no iteration steps.  

In order to enhance the depth map along the boundary of 
the objects, we refine it for two regions: moving region and 
static region. We have already defined the moving regions 
using color difference between frames as shown in Fig. 9. If 
there is no variance of a pixel in the time domain, we assume 
that pixel is static. In that case, we can refer the previous 
depth value for the static pixel. Otherwise, we just use the 
refined disparity value without referring the previous one. 

0),(_)),(,,()),(,,()),(,,(
1),(_)),(,,()),(,,(

),,(
yxmovobjifyxdyxfwyxdyxfwyxdyxfw

yxmovobjifyxdyxfwyxdyxfw
dyxE

tttdddsss

dddsss

(14) 

where ws, wd, wt are the weighting factors for depth 
refinement. fs(x, y, ds(x,y) is the smoothness term with 
gradient of the refined depth value in this refinement step. fd(x,
y, dd(x, y) is the data term for the refined initial depth value in 
the segment-based stereo matching step and ft(x, y, dt(x,y) is 
the temporal term for depth value of the previous frame for 
the static pixel. obj_mov(x,y) indicates the result of the 
moving object detection. If obj_mov(x,y) is 0, this pixel is not 
moved. Then, we can refer the depth value of the previous 
frame. 

fd(x, y, dd(x, y) means the minimum MAD with the refined 
initial depth value in the search range from InitDisp-5 to 
InitDisp+5. fs(x, y, ds(x,y) is the depth difference with 
neighborhood depth in the same segment and calculated by 

)),(),,(),,((),(,,( yxsyxsyxsmedyxdyxf cbass (15) 

We can calculate the smoothness value as shown in Fig. 12. 
sa(x,y) is the refined depth difference at positions between (x -
1, y-1) and (x-1, y). sb(x, y) is the refined depth difference at 
positions between (x-1, y-1) and (x, y-1). sc(x, y) is the refined 
depth difference at positions between (x, y-1) and (x+1, y-1). 
The function med( ) takes the median value among arguments 
to avoid the wrong depth selection, so that it maintains depth 
continuity along the vertical and horizontal direction. If the 
selected smoothness gradient is a vertical direction, this depth 
difference is calculated from (x, y-1). Otherwise, the depth 
difference is computed from (x-1, y).  

(x-1, y-1) (x, y-1) (x+1, y-1)

(x-1, y) (x, y)

Refined depth

Current position

Sb(x, y) Sc(x, y)

Sa (x, 
y)

Fig. 12. Smoothness definition with gradient of the refined depth values. 
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V. EXPERIMENTAL RESULTS AND ANALYSIS 
In order to generate the high-quality depth maps, we have 

constructed a fusion camera system with two cameras and 
one depth camera. The measuring depth range of our depth 
camera is from 0.50m to 5.00m. The baseline distance 
between two video cameras is 6.5cm. The proposed camera 
system's baseline distance depends on the physical volume of 
our video cameras and the depth camera. However, it is 
possible to reduce the baseline between cameras in other 
system configurations. Figure 13 shows the acquired test 
sequence captured by the fusion camera system. The 
resolution of our test stereo images is 1920×1080, and that of 
the depth maps is 176×144. From our experimental, the 
weighting factors of the cost function ws, wd, wt are 0.3, 0.5, 
and 0.2 and the threshold value of Euclidean distance, 10 is 
used. 

(a) Stereo Image

(b) Acquired Depth Map
Fig. 13. Test multi-view image and its depth map 

Figure 14 shows the final stereo color images and their 
corresponding depth maps for the 1st frame. To compare the 
depth quality of the proposed method with previous works, 
we have shown the disparity map generated by Zhu’s method. 
method for the left image of the 93rd frame as shown in Fig. 
15. We can observe that some regions of the depth maps 
generated by the previous method have noticeable errors in 
concave areas. Furthermore, the mismatched disparities in 
black hair were remarkably reduced by the proposed method. 

(a) Stereo Image

(b) Stereo depth map

Fig. 14. Generated depth maps 

From Fig. 14 and Fig. 15, we notice that depths for the 
overlapped regions in foreground were generated 
successfully, though the boundaries of the black hair 
were noisy. In addition, the yellow table expresses 
gradual depth difference despite the monotonous color of 
the table. As a result, we could overcome the two main 
problems of passive depth sensing efficiently, depth 
estimation on the occluded and textureless regions, using 
the depth camera data as the supplementary information. 
Figure 16 presents the computed depth maps from 30th to 
270th in every 30 frames. 

(a) Depth map from Zhu’s method (b) Depth map from the proposed system

Fig. 15. Depth comparison with the previous work. 

Fig. 16. Generated depth map sequences. 

To evaluate the subjective quality of the proposed 
method, we have synthesized intermediate views with the 
computed depth map using VSRS software [24]. As shown 
in Fig. 17, the generated intermediate views using depth 
maps obtained by the proposed method are reasonable in 
the aspect of subjective quality. From the aforementioned 
results, the proposed approach outperforms the previous 
method. 
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(a) Zhu’s method (b) Proposed system

Fig. 17. Intermediate images comparasion.

Fig. 18. Generated intermediate images using generated depth maps.

Figure 18 shows the generated multi-view images usign the 
generated depth maps. Table I shows the comparison of the 
processing time in the depth refinement step. Since each 
algorithm have different processing step to generate the depth 
map, it is hard to measure the exact processing time in the 
same condition. Therefore, we compare the processing time 
for the depth map refinement step. As shown in Table I, the 
proposed method is faster than others without the accuracy 
reduction for depth map generation. From the result, it is 
useful for the high-quality multi-view video generation. 

TABLE I
COMPARISON OF THE PROCESSING TIME

Processing time (sec) 
SEQUENCE

Zhu’s method Proposed method 

Café 836.26 337.21 

VI. CONCLUSION

In this paper, we have presented a new approach to generate 
depth maps corresponding to color images using the proposed 
fusion camera system. We have used depth information 

acquired by a depth camera to generate the initial depth maps 
for stereo matching. We then have generated the final depth 
maps using segmentation-based stereo matching and the 
proposed cost functions. Experimental results have shown that 
our scheme produced more reliable depth maps and multi-view 
images compared with previous methods. With the proposed 
fusion camera system, we could solve the two main problems 
in the current passive depth sensing, which is depth estimation 
on occluded and textureless regions. Finally, we have 
generated high-quality multi-view images from our system. 
Therefore, our proposed system could be useful for various 3D 
multimedia applications and displays. 
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