
Depth-assisted Real-time 3D Object Detection for Augmented Reality ∗

Wonwoo Lee†

GIST U-VR Lab.
Nohyoung Park‡

GIST U-VR Lab.
Woontack Woo§

GIST U-VR Lab.

ABSTRACT

In this paper, we propose a novel method of real-time object de-
tection that can recognize three-dimensional (3D) target objects,
regardless of their texture and lighting condition changes. Our
method computes a set of reference templates of a target object
from both RGB and depth images, which describes the texture and
geometry of the object, and fuses them for robust detection. Com-
bining both pieces of information has advantages over the sole use
of RGB images: 1) the capability of detecting 3D objects with in-
sufficient textures and complex shapes; 2) robust detection under
varying lighting conditions; 3) better identification of a target based
on its size. Our approach is inspired by a recent work on template-
based detection, and we show how to extend it with depth informa-
tion, which results in better detection performance under varying
lighting conditions. Intensive computations are parallelized on a
GPU to achieve real-time speed, and it takes only about 33 mil-
liseconds for detection and pose estimation. The proposed method
can be used for marker-less AR applications using real-world 3D
objects, beyond conventional planar target objects.

1 INTRODUCTION

Computer vision-based target detection techniques have been stud-
ied extensively and have been applied successfully to markerless
augmented reality (AR) applications. A planar object has often
been used as a tracking target due to its simple geometry [4, 13].
Results of recent work have shown that 3D objects can be used in
AR applications with primitive-based modeling [12].

Local feature descriptors have been shown to have good per-
formance for target detection [2, 9, 16] and hence they have been
widely used for target detection. The descriptors are usually com-
puted from local patches centered at keypoints; therefore, these
methods can barely handle a textureless object with few keypoints
on its surface. On the other hand, depth-based object recognition
approaches have focused on a target’s geometrical properties, such
as normals and curvatures. A target object is identified from depth
images by building local feature histograms from those proper-
ties [7, 10]. Local feature descriptors have also been introduced
to depth-based object recognition [3, 15, 8, 1]. As RGB-D cam-
eras, which capture color and depth images, become widespread
recently, the RGB and depth information have been considered to-
gether for object recognition and pose estimation. In [5], depth in-
formation was employed to reduce influences from background and
occlusion, but it was not explicitly used in object recognition. [14]

∗This work was supported in part by the Global Frontier R&D Pro-

gram on <Human-centered Interaction for Coexistence> funded by the

National Research Foundation of Korea grant funded by the Korean Gov-

ernment(MEST) (NRF-M1AXA003-20100029751), and in part by Min-

istry of Culture, Sports and Tourism(MCST) and Korea Creative Content

Agency(KOCCA) in the Culture Technology(CT) Research & Development

Program 2011.
†e-mail: wlee@gist.ac.kr
‡e-mail: npark@gist.ac.kr
§e-mail: wwoo@gist.ac.kr

Figure 1: Detection and pose estimation of a 3D object. Our method
can detect and estimate the pose of a 3D object. It also provides
occlusion between the real and the virtual object based on depth
information.

reported that combination of visual features and shapes achieved
higher performance and individual cues.

In this paper, we propose a novel method of object detection that
can handle 3D target objects, regardless of their texture and light-
ing condition changes. As shown in Figure 1, our method can deal
with a 3D object with a complex shape and insufficient textures in
real-time. To do that, we combined information from both RGB
and depth images to exploit both the texture and the geometry of a
target. We modified a recent template-based detection method [11].
A set of reference templates of a target is computed not only from
RGB images but also from depth images to reflect the target’s tex-
tures and geometrical properties. In runtime, the reference tem-
plates are compared with incoming RGB and depth images, to iden-
tify a target object. Once the target is detected, its pose is estimated
by aligning the 3D points of the current depth image with those of
the reference templates.

By combining the texture and geometry information, a 3D object
can be detected robustly under changing lighting conditions, and
the two objects that have similar shapes and textures but different
sizes can also be distinguished from each other. Both detection and
pose estimation are computationally expensive and can barely run
in real-time on a CPU. We adapted them for the use on a graphics
processing unit (GPU) to achieve real-time speed. In our implemen-
tation, the overall detection and pose estimation take approximately
33 milliseconds.

In the remainder of the paper, we provide background informa-
tion in Section 2 and describe our approach to target detection and
pose estimation in Section 3. Experimental results are presented in
Section 4. Finally, we offer our conclusions in Section 5.

2 BACKGROUND

2.1 Overview
Figure 2, shows typical examples of when the sole use of an RGB
image fails to detect a specific target. In Figure 2(a), an object with

The 21st International Conference on Artificial Reality and Telexistence
November 28-30, 2011, Osaka, Japan
ISSN: 1345-1278 C© 2011 The Virtual Reality Society of Japan

126

(a) (b)

Figure 2: Examples where the sole use of an RGB image is unsuc-
cessful in detection: (a) a target object is under different lighting con-
ditions; (b) two objects have almost the same shapes and textures,
but their sizes are different.

insufficient texture is under very different lighting conditions. It
is difficult to handle these cases using RGB images only because
the target’s appearances look very different. The objects shown in
Figure 2(b) have almost the same shapes and textures, while they
have different sizes. It is also difficult to identify one of them solely
using RGB images.

Thus, we attempted to overcome these limitations in 3D target
detection by combining the shape and texture information. We
modified a recent template-based detection method [11] to consider
the texture and shape of a 3D object for robust detection We com-
pute a set of reference templates from both RGB and depth images
taken from different viewpoints. The gradients in both images are
considered for template computation; the reference templates are
built from the gradients with large magnitudes or frequent appear-
ances in local patches. In runtime, the same gradient features are
computed from incoming RGB and depth images and compared
with the reference templates. As a result, a target’s ID and 2D lo-
cation in both images are retrieved, and a reference template with
the greatest similarity is chosen as a match. Then, the detected tar-
get’s pose is estimated by aligning the 3D points that are computed
from the incoming depth image and those of the reference template
chosen as a match. After point registration, the target’s identity is
finally verified from the registration error. Computationally expen-
sive procedures in detection and pose estimation are parallelized by
GPU programming for real-time speed. Figure 3 shows the overall
procedure of our method.

2.2 RGB-Depth Calibration
The RGB-D camera we used consists of two cameras: an RGB
camera for capturing color images and a depth camera for captur-
ing depth images. The depth camera provides depth information as
discretized values in a certain range, rather than actual distances.
Depth-to-distance calibration is required to convert raw depth val-
ues into real distances before using depth information. On the other
hand, the RGB and depth cameras have different characteristics,
such as field of views and focal lengths; consequently, two pixels
at the same location in RGB and depth images do not correspond
to the same location in a scene. Thus, the RGB and depth images
should be aligned to determine the depth of pixels in the RGB im-
age. We first calibrated the RGB and depth cameras through a typi-
cal camera calibration method [19] using a chessboard pattern, and
as a result, intrinsic parameter matrices of RGB and depth cameras,
Kc and Kd, were estimated. Then, we performed the depth-to-
distance calibration and the RGB-depth alignment.

Depth-to-distance calibration: We captured RGB and depth
images of the chessboard pattern from different viewpoints, chang-
ing the distance between the pattern and the camera from 50 cen-
timeters to 2.5 meters. Then, the actual depth values of the corners
of the chessboard pattern were computed from extrinsic parameters.
The raw depth values at the corner locations in the depth images
were also collected. Finally, we estimated a polynomial of the 6-th
degree from the collected data to represent a mapping between the

Gradient Computation

Image & Depth
Template Matching

3D Point Registration

Pose computation

Image & Depth
Templates

RGB
Image

Depth
Image

Is registration error
small ?

Yes

No

Figure 3: Overall procedure of the proposed method. The steps
marked in shade runs in parallel on a GPU.

raw depth values and the real distances.

RGB-depth alignment: Let us denote by Md→c the relative
transformation between the RGB camera and the depth camera.
The depth of a pixel in an RGB image is computed as follows. First,
a pixel, pd, in the depth image is back-projected based on its depth
value, zp, to calculate a corresponding 3D point, Pd.

Pd = zpK
−1
d pd (1)

Then, Pd is transformed to the RGB camera’s coordinate frame and
projected onto the RGB image plane.

Pc =Md→cPd (2)

pc =KcPc (3)

Finally, the depth of a pixel at pc in the RGB image is determined
as the depth of Pc. If two or more Pds correspond to the same
pc, the closest one is chosen. As a result of the RGB-depth align-
ment, we obtain a depth image whose pixels correspond to the RGB
image’s 1.

3 DEPTH-ASSISTED 3D OBJECT DETECTION AND POSE
ESTIMATION

3.1 Definitions

We define OI and OD as a target’s reference patches taken from
an RGB image and a depth image, respectively 2. We denote by TI

and TD the templates computed from OI and OD , respectively. We
call TI ‘image template’ and TD ‘depth template’.

When computing a template, T , related to a specific viewpoint,
we also store its pose, H, and depth. T is defined as

T = {TI , TD,H,OD} , (4)

1In the remainder of the paper, ‘depth image’ means an aligned depth

image instead of a raw depth image.
2Although we use grayscale images instead of color images, we keep

calling it ‘RGB image’ to distinguish it from a depth image.

127

DO (OI ,Ri) = 00100010

DO (OD,Mi) = 01010000

Ri Mi

OI OD

Orientations at strong gradients
Orientations at weak gradients

Frequent orientations

Figure 4: Building the image and depth templates from gradients

3.2 Building Templates

Our image and depth templates are inspired by Dominant Orien-
tation Template (DOT) algorithm [11]. The image and depth tem-
plates are computed from gradients in OI and OD but they repre-
sent different properties of the target object. Figure 4 depicts how
image and depth templates are built from gradients.

Image templates are computed in the same way in [11]. The
region of OI is divided into m×n subregions, Ri, and the orienta-
tions of strong gradients, whose magnitude is larger than a thresh-
old, are collected from each Ri. When gathering orientations, Ri is
translated in a certain range to improve the robustness of detection
to small deformations [11]. The collected orientations in Ri are
denoted by DO (OI ,Ri). The orientations of gradients are dis-
cretized to 7 bins to represent DO (OI ,Ri) as an 8-dimensional
binary vector. Each element of the vector indicates that strong gra-
dients exist in a specific direction. The remaining 8-th element is
set to 1 if there are no strong gradients in Ri. Finally, an image
template, TI , is represented as:

TI = {DO (OI ,Ri) |Ri ∈ OI} (5)

A depth template TD is computed in a similar way as TI , but
we consider the orientations that appear frequently in OD , rather
than those of strong gradients because we are interested in the ge-
ometrical changes on the target’s surface. In a depth image, strong
gradients usually appear on the boundary between a target and the
background, and thus, strong gradients barely provide useful infor-
mation about the target’s surface.

Given a depth patch, OD , and its subregions, Mi, we build a his-
togram by accumulating orientations of gradients in Mi. Orienta-
tions are discretized to 7 bins, and Mi is also translated to improve
the robustness to small deformations, as we do for an image tem-
plate. The histogram is then binarized by applying a threshold δh.
Typically, δh is set to 30% of the number of subregions in OD . TD

is represented as an 8-dimensional vector from the resulting binary
values. Each element indicates that a specific orientation appears
frequently in Mi. In case of the depth template, the remaining 8-th
element represents the existence of a strong gradient in Mi, where
depth information is unreliable. A depth template, TD , is defined
as:

TD = {FO (OD,Mi) |Mi ∈ OD} , (6)

where FO (OD,Mi) represents orientations that frequently ap-
pear in Mi.

S

Ddk

sk

d′
k

DDetph map of

1

2

3 4

Figure 5: Point-to-plane registration: 1) a source point, sk is pro-
jected onto the destination depth map; 2) a point on D, dk, is deter-
mined by back-projecting the projection of sk; 3) a plane tangent to
D on dk is computed; 4) a match, d′

k, is determined by projecting sk
onto the tangent plane.

3.3 Template matching
When there is an incoming RGB image patch, PI , the similarity
between an image template, TI , and PI is defined as

Sim (PI , TI) =
∑
Ri

δ (do (PI ,Ri) , DO (OI ,Ri)) , (7)

where do (PI ,Ri) computes only the orientation of the strongest
gradient in Ri. The function δ (·) is an element-wise AND opera-
tion between two 8-dimensional vectors.

The similarity between a depth image patch, PD , and a depth
template, TD , is defined as

Sim (PD, TD) =
∑
Mi

δ (fo (PD,Mi) , FO (OD,Mi)) , (8)

where fo (PD,Mi) computes the most frequent orientation in a
region Mi.

From both similarity measures, the similarity function between
a 2-tuple patch P = (PI ,PD) and a template, T , is defined as

Sim (P,) = (1− α)Sim (PI , TI) + αSim (PD, TD) , (9)

where α controls the weights of similarity values. In practice, we
set α = 0.4, which was experimentally determined.

All possible image regions are compared with the reference tem-
plates by changing the location of P , and the most similar template
is chosen as a match:

(P∗, T ∗) = argmax
i,j

Sim
(
Pi, T j

)
, (10)

where Pi and T j represent a 2-tuple patch at i-th locations of RGB
and depth images and the reference template corresponding to the
j-th viewpoint, respectively.

As a result of the template matching, the location of a target,
P∗ = (P∗

I ,P∗
D), and a matching reference template T ∗ are ob-

tained.

3.4 Pose Estimation of a 3D Object
We assume the target’s pose is initially identical to the pose of T ∗.
The initial pose is refined by aligning 3D points computed from
the current depth region, P∗

D , with those of the reference template,
T ∗. We adopt the point-to-projection approach for point registra-
tion because it is faster than the other iterative closest points (ICP)
methods [18]. Let us denote by S the 3D points on a source surface,
D a 3D points on the destination surface, and ΔW = [ΔR|Δt] an
incremental transformation between the source surface and the des-
tination surface. In our problem, S and D correspond to the 3D

128

550 600 650 700 750 800 850 900 950 1000
500

1000

1500

2000

2500

Depth value

D
is
ta

n
c
e
(m

m
)

Measured

 6th degree

(a)

(b)

Figure 6: RGB-depth calibration: (a) Mapping between the raw depth
values and real distances through the 6-th order polynomial; (b)
RGB-depth alignment result (from left to right: RGB image, raw depth
image, and aligned depth image).

points of T ∗ and those of P∗
D , respectively. The initial pose is H∗

of T ∗ and ΔW is initialized as [I|0].
In the point-to-projection algorithm, a point sk of S is projected

onto the depth map of D. The projection of sk is back-projected,
and a 3D point, dk, on D is determined from the depth map. Then,
a plane that is tangent to D on dk is computed from dk’s normal
vector. Finally, sk is projected onto the tangent plane, and its pro-
jection, d′

k, is considered as a match. Figure 5 illustrates this proce-
dure. After matches for all sks are found, we obtain a new surface
D′ consisting of d′

ks.

A correlation matrix, H , relating S and D′ is defined as

H =
∑
k

(
d′
k − cd′

)
(sk − cs)

T , (11)

where cs and cd′ represent the centroids of S and D′, respectively.

ΔW between S and D′ is computed from H:

ΔR = V U�
(12)

Δt = cs −Rcd′ , (13)

where V and U are determined by applying singular value decom-
position (SVD) to H (H = UΣV T).

By iteratively estimating and accumulating the incremental
transformation, ΔW , the refined pose after the i-th iteration, Wi,
is computed as

Wi = ΔRiΔRi−1 +ΔRiΔti−1 +Δti . (14)

The iteration is terminated if the difference between Wi−1 and Wi

is small.

The target’s identity is verified based on the registration error
defined as the average distance between points on S and D′. If the
registration error is smaller than a threshold, detection is considered
successful. Typically, the threshold is set to 7 millimeters in our
experiments.

3.5 Parallelization on a GPU

To increase the speed of detection, we parallelized the gradient
computation and template comparison steps. As pixel- or patch-
wise operations, they are suitable for running in parallel on a GPU.

Gradient computation consists of two steps. First, the magnitude
and the orientation of each pixel’s gradient is computed from both
RGB and depth images. In the GPU, a thread is assigned to a pixel
location, and gradients are computed by a 3× 3 Sobel mask in par-
allel. Then, do (·) and fo (·) are computed from the gradients in
RGB and depth patches that would be compared with the reference
templates. In the second step, each region is independently pro-
cessed in a thread. The resulting do (·) and fo (·) are stored as an
array of 2D vectors in the GPU’s memory to use them in template
matching on the GPU.

When conducting template matching on the GPU, the reference
templates of a target are copied to the GPU’s memory as a 2D im-
age block, where each row corresponds to a template related to
a viewpoint. A thread is assigned to an image region and com-
pares the previously computed orientations, do (·) and fo (·), with
the reference templates. The threads in the same thread block are
synchronized and they access the same reference template concur-
rently. After all of the reference templates are compared, the index
of the most similar reference template and the similarity value are
stored as a 2D vector in the memory for each image region.

Pose estimation step was also implemented on the GPU for real-
time speed because point registration is computationally expensive
and can barely run in real-time on a CPU. We parallelized two steps
of the registration procedure, finding matches and computing the
correlation matrix, H .

When computing point matches, each match is computed inde-
pendently; therefore, it is also good to be parallelized. The source
points converted to 3-channels image and the depth map of the des-
tination surface are copied to the GPU’s memory. In the GPU, a
thread is assigned to each source point, sk, and the matches to sks
are computed in parallel. The resulting matches, sks and d′

ks, are
kept in the GPU for computing the correlation matrix, H . Sum-
mation is a major operation in computing the centroids, cd′ and
cs, and in calculating the correlation matrix H from the centroids
as well. Summations in those computations were accelerated by a
memory reduction technique [17]. The reduction consists of two
steps. In the first step, we launch 100 thread blocks, each contain-
ing 256 threads. The summation of the 256 elements is computed
in each block. Then, in the second step, 100 threads are launched
in a block to compute the final sum from the 100 partial sums.

4 EXPERIMENTAL RESULTS

4.1 Setup

We performed experiments on a PC with a 2.93GHz CPU and an
NVIDIA Geforce GTX580 GPU. For GPU programming, we used
NVIDIA’s CUDA. The Microsoft KINECT sensor was employed to
capture RGB and depth images (in 640 × 480 at 30 Hz). The size
of a reference template was 154×154 and the number of total tem-
plates was 256. The size of a subregion was 7×7 as it was reported
that good performance was achieved with it [11]. The maximum
number of iterations in the point registration step was 50.

Reference template acquisition When building reference
templates from a 3D object, we placed the target object on a flat
surface. A simple background subtraction method was applied to
identify the image regions that belonged to the object. We took im-
age patches from different viewpoints and computed the image and
depth templates from them. The poses of the reference templates
were computed from a known planar tracking target, which was lo-
cated beside the object and used as a reference coordinate frame.

129

0

0.2

0.4

0.6

0.8

1

0 0.5 1

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

Bunny

0
0.2
0.4
0.6
0.8
1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

Cart

0
0.2
0.4
0.6
0.8
1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

Bear

0
0.2
0.4
0.6
0.8
1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

Speaker

0
0.2
0.4
0.6
0.8
1

Figure 7: ROC curve with the varying scale factor α.

RGB-Depth calibration Figure 6(a) shows the relationship
between the depth values of a raw depth image and those computed
from extrinsic parameters. The 6-th order polynomial function es-
timated from them represents the relationship between raw depth
values and actual distances quite well. Note that the estimated map-
ping function is effective only in the distance range where the data
were obtained. In Figure 6(b), the result of RGB-depth alignment
is depicted. The raw depth image was misaligned with the RGB
image due to the parallax and different characteristics of the cam-
eras. After the alignment, we acquired a new depth image that was
correctly aligned with the RGB image.

4.2 Results

Fig 7 shows detection performance with varying α values. We
recorded a video sequences under a varying lighting conditions and
measured the performance. The α varied from 0 to 1 by the step of
0.2. When using depth only (α = 0), detection performance was
worse than using RGB only, and many false detection cases were
observed. Thus, the depth template is not much discriminate. How-
ever, when both information is fused, it was comparable or better
than single cue cases, i.e., using RGB or depth only. Depending
on the target object, the best result is achieved with differnt alpha
values ranging from 0.4 to 0.6.

We show the target detection results under changing lighting
conditions in Figure 9. Detection was unsuccessful when using
RGB images only, because gradients of the target’s textures largely
changed due to spotlights and strong shadows. In case of the RGB-
only detection, the similarity values decreased when the spotlights
were projected or the shadows were drawn. In contrast, our method
detected the targets successfully by taking advantages from the
depth information, which is not disturbed by changing lighting con-
ditions. The similarity values were maintained high when the depth
information was combined with the RGB information.

Thanks to the depth information, the two objects that had almost
the same shape and textures but different sizes could also be dis-
tinguished successfully as depicted in Figure 8. RGB-only detec-
tion failed to identify one of them due to their similar textures, and
hence, false detection and wrong pose estimation occurred. More
target detection and augmentation results are shown in Figure 10.
Most of targets have poor textures (e.g., Speaker, Building, Cart,
and Bunny). Our method successfully detected them and estimated
their poses. It also worked well with a target with sufficient textures
as shown in row 4 (Harubang). The last row demonstrates that the
capability of multiple target detection.

Table 1 shows the overall speed of template matching running
on both a CPU and a GPU. In the case of CPU implementation,
template clustering was applied to increase the speed of template
matching as in [11]. As we can see, template matching ran much
faster on the GPU than on the CPU. In the template comparison
step, the GPU version was approximately 4 times faster than the
CPU version. Without template clustering, template matching took
about 80 ms on the CPU. In the 3D registration, the GPU imple-
mentation was approximately 25 times faster than the CPU version

Figure 8: Detection of targets that have almost the same textures and
shapes: (top row) False detection occurs when using RGB images
only, and hence the estimated poses are wrong; (bottom row) two
objects are identified correctly by our method.

(see Table 2). A major speed improvement was achieved in the
point match step. The speed of correlation matrix computation was
also improved on the GPU, but it became slower than the point
match step due to multiple launches of GPU kernels for reduction.
Note that the [R|t] computation was conducted on the CPU, and
consequently, its speed was the same on both cases. The overall
speed of single target detection and pose estimation was 33.5 ms,
which was adequate for real-time AR applications. In the case of
multiple targets, our method was able to handle up to 3 targets in
real-time.

The accuracy of point registration was measured under smooth
camera motions by computing the average distance between points
of the source and destination surfaces. As we can see in Table 3,
the registration quality was good and the pose estimation result
could be used for overlaying virtual objects on video sequences. In
our experiments, 3D point registration tended to be more accurate
with the objects having planar geometries (e.g., Cart and Building),
than those with more complex shapes (e.g., Bunny, Harubang, and
Bear).

The RGB-D camera used in our experiments was unable to com-
pute the depth of a location that was excessively close to the camera.
The distance between the camera and a target object should be more
than approximately 60 centimeters. Depth information provided by
the camera was noisy, which caused jittering in the estimated pose.
Applying noise reduction filters [6] can be a possible solution to
reduce the noise. On the other hand, the depth information became
inaccurate and unstable if a target had thin structures; therefore, it
was difficult to estimate the pose of such a target.

5 CONCLUSIONS AND FUTURE WORKS

We proposed a novel 3D target detection method that exploits both
the target’s texture and geometry information. Our method can
handle 3D objects with complex shapes and insufficient textures,
and detects targets under changing lighting conditions by combin-
ing information from RGB and depth images. Real-time speed

130

0
0.2
0.4
0.6
0.8

1

1 30 59 88 117 146 175 204 Te
m

pl
at

e
m

at
ch

in
g

si
m

ila
rit

y
(N

or
m

al
iz

ed
)

Frames

RGB
RGB+D

(a)

0
0.2
0.4
0.6
0.8

1

1 30 59 88 117 146 175 204 Te
m

pl
at

e
m

at
ch

in
g

si
m

ila
rit

y
(N

or
m

al
iz

ed
)

Frames

RGB
RGB+D

(b)

Figure 9: Template matching results under changing lighting conditions: (a) the target is under a moving spotlight; (b) the target is under shadow.

is achieved by parallelizing computationally expensive steps on a
GPU. In the current method, jitters occur in the estimate pose when
a target’s surface is occluded by other objects. Consequently, we
will focus on stable pose estimation under partial occlusion in the
future.

Table 1: Template matching speed on a CPU and a GPU (unit: ms)
Procedure CPU GPU

Gradient computation 10.7 0.5
Template comparison 39 10.2

Total 49.7 10.7

REFERENCES

[1] P. Bariya and K. Nishino. Scale-hierarchical 3d object recognition

in cluttered scenes. In Proceedings of the Conference on Computer
Vision and Pattern Recognition, pages 1657–1664, 2010.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. VanGool. Speeded-Up Robust

Features. Computer Vision and Image Understanding, 110(3):346–

359, June 2008.

[3] N. Bayramoglu and A. A. Alatan. Shape index sift: Range image

recognition using local features. In Proceedings of the International
Conference on Pattern Recognition, pages 352–355, 2010.

[4] S. Benhimane and E. Malis. Homography-Based 2d Visual Tracking

and Servoing. International Journal of Robotics Research, 26(7):661–

676, 2007.

[5] N. Burrus, M. Abderrahim, J. Garcia, and L. Moreno. Object re-

construction and recognition leveraging an rgb-d camera. In The

Table 2: 3D Registration speed on a CPU and a GPU (unit: ms)
Procedure CPU GPU

Point match 422.8 6.3
Correlation matrix computation 160 15.6

[R|t] computation 0.9 0.9
Total 583.7 22.8

Table 3: Point registration error (unit: millimeters)
Object Mean Stdev

Speaker 3.75 0.43
Building 3.13 0.44

Cart 2.15 0.54
Bunny 4.49 0.55

Harubang 3.89 0.32
Bear 4.21 0.29

12th IAPR Conference on Machine Vision Applications, June 2011 (in

press).

[6] D. Chan, H. Buisman, C. Theobalt, and S. Thrun. A Noise-Aware Fil-

ter for Real-Time Depth Upsampling. In Workshop on Multi-camera
and Multi-modal Sensor Fusion Algorithms and Applications 2008,

2008.

[7] H. Chen and B. Bhanu. 3d free-form object recognition in range

images using local surface patches. Pattern Recogn. Lett., 28:1252–

1262, July 2007.

[8] B. Drost, M. Ulrich, N. Navab, and S. Llic. Model globally, match

locally: Efficient and robust 3d object recognition. In Proceedings of
the Conference on Computer Vision and Pattern Recognition, pages

998–1005, 2010.

[9] D. G. Lowe. Distinctive Image Features from Scale-Invariant Key-

points. International Journal of Computer Vision, 60(2):91–110,

2004.

[10] G. Hetzel, B. Leibe, P. Levi, and B. Schiele. 3d object recognition

from range images using local feature histograms. In Proceedings of
CVPR 2001, pages 394–399, 2001.

[11] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N. Navab. Domi-

nant Orientation Templates for Real-Time Detection of Texture-Less

Objects. In Proceedings of the Conference on Computer Vision and
Pattern Recognition, 2010.

[12] K. Kim, V. Lepetit, and W. Woo. Keyframe-based Modeling and

Tracking of Multiple 3D Objects. In Proceedings of the International
Symposium on Mixed and Augmented Reality, 2010.

[13] K. Kim, V. Lepetit, and W. Woo. Scalable real-time planar targets

tracking for digilog books. Vis. Comput., 26:1145–1154, June 2010.

131

Figure 10: Target detection examples: (from rows 1 to 5) Speaker, Building, Cart, Bunny, Harubang; (row 6) multiple target detection. Our
method handles the targets with complex shapes and insufficient textures successfully.

[14] K. Lai, L. Bo, X. Ren, and D. Fox. Sparse distance learning for object

recognition combining rgb and depth information. In IEEE Interna-
tional Conference on Robotics and Automation, 2011.

[15] T.-W. R. Lo and J. P. Siebert. Local feature extraction and matching

on range images: 2.5d sift. Comput. Vis. Image Underst., 113:1235–

1250, December 2009.

[16] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast Keypoint

Recognition Using Random Ferns. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(3):448–461, March 2010.

[17] D. Roger, U. Assarsson, and N. Holzschuch. Efficient stream reduc-

tion on the GPU. In 1st Workshop on General Purpose Processing on
Graphics Processing Units (GPGPU), 2007.

[18] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algo-

rithm. In Third International Conference on 3D Digital Imaging and
Modeling (3DIM), pages 145–152, June 2001.

[19] Z. Zhang. Flexible camera calibration by viewing a plane from un-

known orientations. In Computer Vision, IEEE International Confer-
ence on, volume 1, page 666, 1999.

132

