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Abstract—Parallel processing is a concurrent operation 

aimed at execution time reduction. Programmers can take 

advantage of equipped multi-core systems by dividing tasks and 
assigning them to multiple threads. In this paper, we explain 
basic concepts of parallel processing: parallel architectures, 

parallel programming models and data race. Subsequently, we 
implement two disparity map estimation algorithms—sum of 
absolute differences (SAD) and adaptive support-weights 

(ASW)—using OpenMP, an API for shared memory parallel 
programming. Experimental results demonstrate that multi-
thread parallel processing reduce execution time significantly 

compared to the default serial processing. 

I. INTRODUCTION 

Parallel processing is an operation that runs several tasks 

simultaneously. The main goal is to accelerate computation. 

In industry, parallel processing can be used in fields that 

process huge amount of data, e.g., data mining, web search 

engines, medical imaging, virtual reality and multimedia 

technologies [1].  

Parallelization can be achieved by exploiting computer-

equipped multiple cores (processors). As technologies 

evolved, hardware manufacturers have released cheaper and 

enhanced multi-core computers, expanding the market size. 

High-end computers even contain thousands of CPUs. 

In theory, ideally, if m processors are used, execution time 

becomes the 1/m-th of single processor execution time [2]. 

However, this would not always be the case since CPUs may 

interfere in practical situations. 

Disparity map estimation is a pixel-matching operation for 

stereo pairs—left and right images. Estimation methods can 

be classified to global and local methods [3]. Global methods 

are generally more computationally expensive than local 

methods. In addition, many difficult-to-determine parameters 

are required. On the other hand, local methods are based on 

similarity measures using a window, which are our focus.  

In this paper, we apply parallel processing to disparity map 

estimation and examine performance. We use OpenMP, an 

API for parallel programming, to parallelize computationally 

expensive portions. Section II reveals several basic concepts 

of parallel processing. In Section III, we describe two 

similarity measures used in disparity map estimation. 

Afterward, we present experimental results in Section IV and 

discuss them in Section V. Finally, we conclude the paper in 

Section VI. 

 

 

II. PARALLEL PROCESSING 

Understanding parallel architectures, parallel programming 

models and data race is crucial to comprehending parallel 

processing. 

A. Parallel Architectures 

Three parallel architectures exist: shared, distributed and 

hybrid (shared/distributed) [4]. Fig. 1 shows the diagrams. 

Initially, shared memory systems allow all processors to 

access the same memory space. A memory location change 

could affect all other processors. Uniform memory access 

(UMA) and non-uniform memory access (NUMA) are the 

two main classes of shared memory. UMA, also known as 

symmetric multi-processor (SMP), allows equal memory 

access time for all CPUs—inputs and outputs are shared 

resources. UMA is easy to administer and efficient in 

resource use but expensive. NUMA is the exact opposite of 

UMA in every way—resources are distributed not shared.  
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(c) Hybrid 

Figure 1. Diagrams of parallel architectures.  

 



Moreover, in distributed memory systems, each CPU has 

its own local memory. Since memories are not connected, a 

local change does not affect other CPUs. If data access to 

another CPU is required, the programmer needs to 

synchronize communication. Distributed memory allows fast 

memory access without interference but designing inter-

processor communication is very difficult.  

Lastly, the hybrid architecture employs both advantages 

and disadvantages of shared and distributed memory 

architectures. The shared and distributed components are 

cache coherent processors and multi-processor networking, 

respectively. Concerning high-end computing, hybrid 

architecture is getting more and more popular. Fig. 1 

contains diagrams of parallel architectures.  

B. Parallel Programming Models 

Five parallel programming models exist: shared memory, 

threads, message passing, data parallel and hybrid. Generally, 

models are not dependent to underlying hardware, i.e., any 

model can be implemented on any hardware. Although it is 

hard to say which model is the finest, there are better 

implemented models over others. The two most well-known 

and widely available implementations are OpenMP and 

message passing interface (MPI). They are de facto standards 

for threads and message passing models, respectively. Both 

support C, C++ and Fortran. 

MPI is expedient for distributed memory systems, i.e., 

clusters. The model consists of a cluster of systems. All 

threads have access to its own memory only. Thus, data are 

shared and transferred by exchanging buffers. Benefits 

include flexibility since any size of any cluster can be used. 

In addition, MPI call plug-in procedure allows a 

straightforward approach. However, programmers would be 

burdened with a lot of work due to the complicated 

underlying system.  

In regards to OpenMP, all threads can access global and 

shared memories. Programmers can control the number of 

threads. Optimal performance occurs when the number of 

threads represents the number of processors. A master thread 

exists to assign tasks to threads, i.e., fork-join. Fork-join time 

increases when there are more threads than processors. 

Moreover, data can be labeled with private or shared. In 

particular, private data are visible to one thread while all 

threads can spot shared data. In practical programs, local 

variables which are about to be parallelized should be private. 

Additionally, global variables must be assigned as shared 

data. Unlike MPI, OpenMP requires a compiler. Most IDEs 

today accommodate OpenMP. Numerous benefits exist to 

using OpenMP, e.g., preservation of serial code, simplicity, 

flexibility and portability. Nevertheless, explicit 

synchronization remains as an issue that to be addressed. 

C. Data Race 

Data race is a flaw caused by shared variable updating, 

creating unintended results. If a thread changes a shared 

variable, and then another thread accesses and attempts to 

employ it, the variable would not represent the expected 

value anymore. Thus, with regards to parallel processing, all  

This occurs when a thread updates shared variables. When 

other threads access and use them, the variables will not hold 

expected values due to the previous update. Thus, changing 

variables must be taken carefully in parallel loops. Figure 2 

shows an example of data race. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example of data race. 

III. DISPARITY MAP ESTIMATION 

Disparity map estimation is a process of finding 

corresponding pixels for stereo pair images. Such an 

operation is executed on a pixel-by-pixel basis, i.e., 

procedure is independent. Hence, parallel processing is 

suitable. We briefly explain two disparity map estimation 

methods—sum of absolute differences (SAD) and adaptive 

support-weights (ASW). 

SAD is a widely used matching algorithm. The idea is 

based on accumulating absolute differences of left image and 

right image pixels within a given window [5]. Equation (1) 

describes SAD. The more similar the pixels are, the less the 

SAD value becomes. The   that generates the least SAD is 

determined to be the disparity.  
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Yoon and Kweon have proposed the ASW approach. Such 

a method adjusts pixel-weights by considering both color 

similarity and geometric proximity of pixels within a given 

window. Equations (2), (3) and (4) describe the flow of 

algorithm.  

Support-weight is defined to be dependent on color 

similarity and geometric proximity between center and 

neighboring pixels [6]. w(Ip,Iq) denotes support-weight, Ip 

and Iq being center and neighboring pixels of image I, 

respectively.  

Considering the human visual system, CIELab space is 

selected due to the three-dimensional representation of color 

perception [7]. cpq represents the Euclidean distance between 

two CIELab space colors while gpq is the Euclidean distance 

of p and q. γp is a constant that controls color similarity and 

γp is the radius of window. E(Lp, Rp+d) and e(Lq, Rq+d) denote 

dissimilarity and pixel-based raw matching cost according to 

d, respectively. Similar to SAD, the d that generates the least 

dissimilarity is determined to be the disparity.  



Our main focus is parallelizing pixel-similarity measure 

process. Since this is independent from other pixel measures, 

multi-thread parallel processing fits well for shortening 

computation time. 
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IV. EXPERIMENTAL RESULTS 

We conducted experiments on four stereo image pairs 

using an Intel(R) Core(TM)2 Quad CPU @ 2.40 GHz 

processor. Three stereo image pairs—“Aloe”(427× 370), 

“Cones”(450×375) and “Teddy”(450×375)—provided by 

Middlebury College and “Newspaper”(512× 384) from 

Gwangju Institute of Science and Technology were used as 

test data.  

For simplicity, we assumed the image pairs were pre-

processed with rectification. We set maximum disparity to 

50 for both methods. 9×9 and 35×35 windows were applied 

for SAD and ASW, respectively. The parameter setting for 

ASW includes              . Figures 3-6 display the 

generated disparity maps.  Table I-IV exhibit execution time 

by number of threads used. 

As the number of threads exceeded the number of 

processors, performance did not enhance anymore. This is 

due to the increased time caused by thread distribution of 

master thread.  

 

 

 

 

 

 

 

 

 

                (a) Right image                                 (b) Ground truth 

 

 

 

 

 

 

 

 

 

                    (c) SAD                                                (d) ASW 

Figure 3. Disparity maps for “Aloe”. 

 

 

 

 

 

 

 

 

 

 

                     (a) Right image                                 (b) Ground truth 

 

 

 

 

 

 

 

 

 

                         (c) SAD                                               (d) ASW 

Figure 4. Disparity maps for “Cones”. 

 

 

 

 

 

 

 

 

 

                     (a) Right image                                 (b) Ground truth 

 

 

 

 

 

 

 

 

 

                        (c) SAD                                                (d) ASW 

Figure 5. Disparity maps for “Teddy”. 

For both SAD and ASW, 4-thread execution time was 

about 3.9× faster than that of serial processing. Such results 

are due to the quad-core processor use. 

V. CONCLUSIONS 

In this paper, we presented basic concepts of 

parallelization and applied multi-thread parallel processing to 

disparity map estimation using OpenMP. Since SAD and 

ASW are both based on independent window operations and 

require massive computation, parallel processing is suitable 

for fast execution. We experimented on four stereo image 

pairs with varying number of threads. Our quad-core 

processor allowed maximum performance when four threads 

were used. By using the 4-thread parallel processing, we 

observed that execution became faster by a factor of about 



3.9. Hence, parallel processing is greatly effective for 

computationally expensive tasks. 

 

 

 

 

 

 

 

 

                                              (a) Right image 

 

 

 

 

 

 

 

 

                 (b) SAD                                                 (c) ASW 

Figure 4. Disparity maps for “Newspaper”. 

TABLE I 
EXECUTION TIME: “ALOE” 

 
using SAD 

(sec) 

using ASW 

(sec) 

Serial 189.70 16982.64 

Parallel: 

Number of threads 

1 190.33 16980.55 

2 102.21 8910.89 

3 70.91 6541.59 

4 48.22 4310.04 

5 58.13 5211.22 

6 49.15 4811.83 

Speed Factor: 

4-thread / Serial 
3.93 3.94 

TABLE II 
EXECUTION TIME: “CONES” 

 
using SAD 

(sec) 

using ASW 

(sec) 

Serial 186.55 17030.59 

Parallel: 

Number of threads 

1 188.27 17112.81 

2 94.06 8966.04 

3 67.44 6809.77 

4 47.58 4310.39 

5 59.21 5119.95 

6 48.30 4515.27 

Speed Factor: 

4-thread / Serial 
3.92 3.95 

 

 

 

 

TABLE III 
EXECUTION TIME: “TEDDY” 

 
using SAD 

(sec) 

using ASW 

(sec) 

Serial 188.71 17136.10 

Parallel: 

Number of threads 

1 188.82 17139.73 

2 94.85 8922.58 

3 63.24 6211.48 

4 47.89 4370.77 

5 56.98 5188.91 

6 48.95 4529.03 

Speed Factor: 

4-thread / Serial 
3.94 3.92 

TABLE IV 
EXECUTION TIME: “NEWSPAPER” 

 
using SAD 

(sec) 

using ASW 

(sec) 

Serial 217.90 19921.87 

Parallel: 

Number of threads 

1 218.28 19930.66 

2 119.51 10217.29 

3 76.19 6920.48 

4 55.82 5106.54 

5 69.37 6481.09 

6 64.19 5582.33 

Speed Factor: 

4-thread / Serial 
3.90 3.90 
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