
Fast Disparity Map Estimation

Using Multi-thread Parallel Processing

Yunseok Song and Yo-Sung Ho

Gwangju Institute of Science and Technology (GIST)

261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Korea

Telephone: +82-62-715-2258 Fax: +82-62-715-3164

E-mail: {ysong, hoyo}@gist.ac.kr

Abstract—Parallel processing is a concurrent operation

aimed at execution time reduction. Programmers can take

advantage of equipped multi-core systems by dividing tasks and
assigning them to multiple threads. In this paper, we explain
basic concepts of parallel processing: parallel architectures,

parallel programming models and data race. Subsequently, we
implement two disparity map estimation algorithms—sum of
absolute differences (SAD) and adaptive support-weights

(ASW)—using OpenMP, an API for shared memory parallel
programming. Experimental results demonstrate that multi-
thread parallel processing reduce execution time significantly

compared to the default serial processing.

I. INTRODUCTION

Parallel processing is an operation that runs several tasks

simultaneously. The main goal is to accelerate computation.

In industry, parallel processing can be used in fields that

process huge amount of data, e.g., data mining, web search

engines, medical imaging, virtual reality and multimedia

technologies [1].

Parallelization can be achieved by exploiting computer-

equipped multiple cores (processors). As technologies

evolved, hardware manufacturers have released cheaper and

enhanced multi-core computers, expanding the market size.

High-end computers even contain thousands of CPUs.

In theory, ideally, if m processors are used, execution time

becomes the 1/m-th of single processor execution time [2].

However, this would not always be the case since CPUs may

interfere in practical situations.

Disparity map estimation is a pixel-matching operation for

stereo pairs—left and right images. Estimation methods can

be classified to global and local methods [3]. Global methods

are generally more computationally expensive than local

methods. In addition, many difficult-to-determine parameters

are required. On the other hand, local methods are based on

similarity measures using a window, which are our focus.

In this paper, we apply parallel processing to disparity map

estimation and examine performance. We use OpenMP, an

API for parallel programming, to parallelize computationally

expensive portions. Section II reveals several basic concepts

of parallel processing. In Section III, we describe two

similarity measures used in disparity map estimation.

Afterward, we present experimental results in Section IV and

discuss them in Section V. Finally, we conclude the paper in

Section VI.

II. PARALLEL PROCESSING

Understanding parallel architectures, parallel programming

models and data race is crucial to comprehending parallel

processing.

A. Parallel Architectures

Three parallel architectures exist: shared, distributed and

hybrid (shared/distributed) [4]. Fig. 1 shows the diagrams.

Initially, shared memory systems allow all processors to

access the same memory space. A memory location change

could affect all other processors. Uniform memory access

(UMA) and non-uniform memory access (NUMA) are the

two main classes of shared memory. UMA, also known as

symmetric multi-processor (SMP), allows equal memory

access time for all CPUs—inputs and outputs are shared

resources. UMA is easy to administer and efficient in

resource use but expensive. NUMA is the exact opposite of

UMA in every way—resources are distributed not shared.

 (a) Shared (b) Distributed

(c) Hybrid

Figure 1. Diagrams of parallel architectures.

Moreover, in distributed memory systems, each CPU has

its own local memory. Since memories are not connected, a

local change does not affect other CPUs. If data access to

another CPU is required, the programmer needs to

synchronize communication. Distributed memory allows fast

memory access without interference but designing inter-

processor communication is very difficult.

Lastly, the hybrid architecture employs both advantages

and disadvantages of shared and distributed memory

architectures. The shared and distributed components are

cache coherent processors and multi-processor networking,

respectively. Concerning high-end computing, hybrid

architecture is getting more and more popular. Fig. 1

contains diagrams of parallel architectures.

B. Parallel Programming Models

Five parallel programming models exist: shared memory,

threads, message passing, data parallel and hybrid. Generally,

models are not dependent to underlying hardware, i.e., any

model can be implemented on any hardware. Although it is

hard to say which model is the finest, there are better

implemented models over others. The two most well-known

and widely available implementations are OpenMP and

message passing interface (MPI). They are de facto standards

for threads and message passing models, respectively. Both

support C, C++ and Fortran.

MPI is expedient for distributed memory systems, i.e.,

clusters. The model consists of a cluster of systems. All

threads have access to its own memory only. Thus, data are

shared and transferred by exchanging buffers. Benefits

include flexibility since any size of any cluster can be used.

In addition, MPI call plug-in procedure allows a

straightforward approach. However, programmers would be

burdened with a lot of work due to the complicated

underlying system.

In regards to OpenMP, all threads can access global and

shared memories. Programmers can control the number of

threads. Optimal performance occurs when the number of

threads represents the number of processors. A master thread

exists to assign tasks to threads, i.e., fork-join. Fork-join time

increases when there are more threads than processors.

Moreover, data can be labeled with private or shared. In

particular, private data are visible to one thread while all

threads can spot shared data. In practical programs, local

variables which are about to be parallelized should be private.

Additionally, global variables must be assigned as shared

data. Unlike MPI, OpenMP requires a compiler. Most IDEs

today accommodate OpenMP. Numerous benefits exist to

using OpenMP, e.g., preservation of serial code, simplicity,

flexibility and portability. Nevertheless, explicit

synchronization remains as an issue that to be addressed.

C. Data Race

Data race is a flaw caused by shared variable updating,

creating unintended results. If a thread changes a shared

variable, and then another thread accesses and attempts to

employ it, the variable would not represent the expected

value anymore. Thus, with regards to parallel processing, all

This occurs when a thread updates shared variables. When

other threads access and use them, the variables will not hold

expected values due to the previous update. Thus, changing

variables must be taken carefully in parallel loops. Figure 2

shows an example of data race.

Figure 2. Example of data race.

III. DISPARITY MAP ESTIMATION

Disparity map estimation is a process of finding

corresponding pixels for stereo pair images. Such an

operation is executed on a pixel-by-pixel basis, i.e.,

procedure is independent. Hence, parallel processing is

suitable. We briefly explain two disparity map estimation

methods—sum of absolute differences (SAD) and adaptive

support-weights (ASW).

SAD is a widely used matching algorithm. The idea is

based on accumulating absolute differences of left image and

right image pixels within a given window [5]. Equation (1)

describes SAD. The more similar the pixels are, the less the

SAD value becomes. The that generates the least SAD is

determined to be the disparity.

 () ∑ ∑ *

()

()

()

()

 ∑ | () ()| * + +. (1)

Yoon and Kweon have proposed the ASW approach. Such

a method adjusts pixel-weights by considering both color

similarity and geometric proximity of pixels within a given

window. Equations (2), (3) and (4) describe the flow of

algorithm.

Support-weight is defined to be dependent on color

similarity and geometric proximity between center and

neighboring pixels [6]. w(Ip,Iq) denotes support-weight, Ip

and Iq being center and neighboring pixels of image I,

respectively.

Considering the human visual system, CIELab space is

selected due to the three-dimensional representation of color

perception [7]. cpq represents the Euclidean distance between

two CIELab space colors while gpq is the Euclidean distance

of p and q. γp is a constant that controls color similarity and

γp is the radius of window. E(Lp, Rp+d) and e(Lq, Rq+d) denote

dissimilarity and pixel-based raw matching cost according to

d, respectively. Similar to SAD, the d that generates the least

dissimilarity is determined to be the disparity.

Our main focus is parallelizing pixel-similarity measure

process. Since this is independent from other pixel measures,

multi-thread parallel processing fits well for shortening

computation time.

 () (

). (2)

 ()
∑ () () ()

∑ () ()

. (3)

 () {∑ | () ()| * + }. (4)

IV. EXPERIMENTAL RESULTS

We conducted experiments on four stereo image pairs

using an Intel(R) Core(TM)2 Quad CPU @ 2.40 GHz

processor. Three stereo image pairs—“Aloe”(427× 370),

“Cones”(450×375) and “Teddy”(450×375)—provided by

Middlebury College and “Newspaper”(512× 384) from

Gwangju Institute of Science and Technology were used as

test data.

For simplicity, we assumed the image pairs were pre-

processed with rectification. We set maximum disparity to

50 for both methods. 9×9 and 35×35 windows were applied

for SAD and ASW, respectively. The parameter setting for

ASW includes . Figures 3-6 display the

generated disparity maps. Table I-IV exhibit execution time

by number of threads used.

As the number of threads exceeded the number of

processors, performance did not enhance anymore. This is

due to the increased time caused by thread distribution of

master thread.

 (a) Right image (b) Ground truth

 (c) SAD (d) ASW

Figure 3. Disparity maps for “Aloe”.

 (a) Right image (b) Ground truth

 (c) SAD (d) ASW

Figure 4. Disparity maps for “Cones”.

 (a) Right image (b) Ground truth

 (c) SAD (d) ASW

Figure 5. Disparity maps for “Teddy”.

For both SAD and ASW, 4-thread execution time was

about 3.9× faster than that of serial processing. Such results

are due to the quad-core processor use.

V. CONCLUSIONS

In this paper, we presented basic concepts of

parallelization and applied multi-thread parallel processing to

disparity map estimation using OpenMP. Since SAD and

ASW are both based on independent window operations and

require massive computation, parallel processing is suitable

for fast execution. We experimented on four stereo image

pairs with varying number of threads. Our quad-core

processor allowed maximum performance when four threads

were used. By using the 4-thread parallel processing, we

observed that execution became faster by a factor of about

3.9. Hence, parallel processing is greatly effective for

computationally expensive tasks.

 (a) Right image

 (b) SAD (c) ASW

Figure 4. Disparity maps for “Newspaper”.

TABLE I
EXECUTION TIME: “ALOE”

using SAD

(sec)

using ASW

(sec)

Serial 189.70 16982.64

Parallel:

Number of threads

1 190.33 16980.55

2 102.21 8910.89

3 70.91 6541.59

4 48.22 4310.04

5 58.13 5211.22

6 49.15 4811.83

Speed Factor:

4-thread / Serial
3.93 3.94

TABLE II
EXECUTION TIME: “CONES”

using SAD

(sec)

using ASW

(sec)

Serial 186.55 17030.59

Parallel:

Number of threads

1 188.27 17112.81

2 94.06 8966.04

3 67.44 6809.77

4 47.58 4310.39

5 59.21 5119.95

6 48.30 4515.27

Speed Factor:

4-thread / Serial
3.92 3.95

TABLE III
EXECUTION TIME: “TEDDY”

using SAD

(sec)

using ASW

(sec)

Serial 188.71 17136.10

Parallel:

Number of threads

1 188.82 17139.73

2 94.85 8922.58

3 63.24 6211.48

4 47.89 4370.77

5 56.98 5188.91

6 48.95 4529.03

Speed Factor:

4-thread / Serial
3.94 3.92

TABLE IV
EXECUTION TIME: “NEWSPAPER”

using SAD

(sec)

using ASW

(sec)

Serial 217.90 19921.87

Parallel:

Number of threads

1 218.28 19930.66

2 119.51 10217.29

3 76.19 6920.48

4 55.82 5106.54

5 69.37 6481.09

6 64.19 5582.33

Speed Factor:

4-thread / Serial
3.90 3.90

ACKNOWLEDGMENTS

This research was supported by the IT R&D

program of MKE/KEE/KEIT. [KI001932,

Development of Next Generation DTV Core

Technology].

REFERENCES

[1] B. Barney, “Introduction to Parallel Computing,” May 25, 2010.
[Online]. Available: https://computing.llnl.gov/tutorials/parallel_comp.
[Accessed: Aug. 18, 2010]

[2] R. van der Pas, “Basic Concepts of Parallelization,” July 13, 2010.
[Online]. Available: http://openmp.org/wp/. [Accessed: Aug. 12, 2010]

 [3] K.-J. Yoon and I.S. Kweon, “Adaptive Support-Weight Approach for
Correspondence Search,” IEEE Transactions on Pattern Analysis
Machine Intelligence, vol. 28, no. 4, pp. 650-656, April 2006.

[4] “Parallel Computing and Data Parallelism - CodeProject,”
 Feb. 2, 2010. [Online]. Available: http://www. codeproject.com/KB/
 /cpp/Loop_Parallelizing.aspx. [Accessed: Aug. 15, 2010]
[5] K. Muhlmann, D. Maier, J. Hesser and R. Manner, “Calculating Dense

Disparity Maps from Color Stereo Images, an Efficient
Implementation,” International Journal of Computer Vision, vol. 47,
no. 1-3, pp. 79-88, April 2002.

[6] C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray and Color
Images,” Proceedings of International Conference on Computer
Vision, pp. 839-846, Jan. 1998.

[7] J.-I. Jung and Y.-S. Ho, “Color-compensated Stereo Matching
Algorithm for Color Inconsistent Stereo Pair,” International Technical
Conference on Circuits/Systems, Computers and Communications, pp.
717-720, July 2009.

[8] D. Scharstein, “vision.middlebury.edu,” July 27, 2007. [Online].
Available: https://vision.middlebury.edu/stereo/data. [Accessed: July
14, 2010]

