
CUDA-based GPU Implementation
of Hierarchical Belief Propagation

 for Fast Stereo Matching

Jae-Il Jung and Yo-Sung Ho
Gwangju Institute of Science and Technology (GIST)

261 Cheomdan-gwagiro, Buk-gu, Gwangju, 500-712, Korea
Telephone: +82-62-715-2258, Fax: +82-62-715-3164

E-mail: {jijung, hoyo}@gist.ac.kr

Abstract- Stereo matching based on the Markov random

field model has a global optimization problem. Solutions of the
problem can be inferred by the belief propagation (BP)
algorithm. The BP algorithm effectively estimates global
solutions, but it takes a very long time to calculate messages. In
this paper, we implement the hierarchical BP algorithm on a
graphics processing unit (GPU) using compute unified device
architecture. We perform memory uploads to the global
memory of the GPU, and compute messages of all pixels in
parallel. We analyze the performance according to block and
image sizes. Experimental results show that our implementation
is faster than the conventional loopy BP algorithm and the
hierarchical BP algorithm implemented on CPU.

I. INTRODUCTION

A depth image represents distances between a camera and
objects. It is essential for the free-view television system,
and various techniques have been developed to accurately
estimate it [1]. Stereo matching is a popular technique for
depth estimation, and is one of the most heavily investigated
topics in computer vision [2].

Figure 1. Stereo matching for depth estimation

As shown in Fig. 1, stereo matching finds correspondences

between stereo pairs. With correspondences and camera
centers, the real positions of the correspondences can be
calculated. At the beginning of the research, the pixel- or
block-based stereo matching algorithms whose costs include
squared intensity differences and absolute intensity
differences were used. Although they have low-
computational complexity, their performance is not
guaranteed. The performance significantly depends on
textures of input stereo pairs. Depth image’s quality

decreases especially when the input pair contains many
occlusion and texture-less regions.

One recent advance involves the use of Markov random
field (MRF) models to improve the performance in the
mentioned regions. MRF is a graphical model in which a set
of random variables have a Markov property described by an
undirected graph. MRF is similar to a Bayesian network in
its representation of dependencies. In case of stereo matching,
MRF considers not only intensity differences between stereo
pairs but also the relation between neighboring disparity
values. Since MRF-based methods are formulated in an
energy-minimization frame work, they face with the global
optimization problem.

In the MRF model, a current disparity value at a certain
position affects its neighbors. Therefore, the conventional
winner-takes-all algorithm is not able to solve it. In addition,
it is physically impossible to calculate the exact solution
from whole candidates. When the size of an input image is
100 x 100 and the possible disparity range is 10, the number
of candidates is 1010000. It is a tremendous number.

In order to simply approximate the solution, various
algorithms such as the belief propagation (BP) [3], graph cut
[4], and dynamic programming [5] have been proposed.
Among them, the BP shows good results and is widely used.
It has been found to yield accurate results, but despite recent
advances is often too slow for practical use.

The execution time leaves still room for improvement.
Several researches focus on fast computation. Felzenszwalb
et. al. presented algorithmic techniques that substantially
improve the running time of the BP approach [6]. They use a
hierarchical structure to reduce the number of message
passing iterations to a small constant rather than being
proportional to the diameter of the image grid graph.

Petersen et. al. proposed a fast generalized BP algorithm
for maximum a posterior estimation on 2D and 3D grid-like
MRF [7]. They developed a caching method that
significantly reduces the number of multiplications during
generalized BP inference, and introduced a speed-up for
computing the MAP estimate of general BP cluster messages
by presorting its factors and limiting the number of possible
combinations.

M. P. Kumar et. al. proposed methods for reducing both
run time and storage needed by BP for a large class of
pairwise potentials of the MRF [8]. Further, they show how

the problem of sub-graph matching can be formulated using
this class of MRFs.

Recently, researchers have presents the methods using
additional hardware such as a graphics processing unit (GPU)
and field-programmable gate array (FPGA) architecture for
further improvement [9][10].

In this paper, we implement the hierarchical BP algorithm
on a GPU using compute unified device architecture
(CUDA). It is suitable for practical use. The initial message
memory in coarse level is uploaded to a global memory in a
GPU, and the messages for fine level are calculated in
parallel. The relation between block size and processing time
is analyzed.

II. PARALLEL PROGRAMMING AND GLOBAL OPTIMIZATION

We start by briefly reviewing the CUDA and the
hierarchical BP approach for performing inference on
Markov random field.

A. CUDA

Recently, the programmable graphics processor unit has
evolved into an absolute computing workhorse. With, The
GPUs offer incredible resources for both graphics and non-
graphics processing, because they have multiple cores driven
by very high memory bandwidth [11].

The GPU is compute-intensive, highly parallel
computation for graphics rendering, and it is designed such
that more transistors are devoted to data processing rather
than data caching and flow control. Therefore, the GPU is
especially suited to address problems. The problem is
expressed as data-parallel computations with high arithmetic
intensity. Data-parallel processing maps data elements to
parallel processing threads. In order to speed up, many
applications that process large data sets use a data-parallel
programming model.

In 3D rendering process, many pixels and vertices are
mapped to parallel threads. Similarly, image and media
processing applications such as post-processing of rendered
images, video encoding and decoding, image scaling, stereo
vision, and pattern recognition can map image blocks and
pixels to parallel processing threads. Therefore, various
applications of image processing are suitable for parallel
processing. Other algorithms outside the field of image
rendering and processing are also accelerated by data-
parallel processing.

Various programming libraries have been developed for
data-parallel processing. Among them, CUDA is a very
popular and powerful library. CUDA is NVIDIA’s parallel
computing architecture that enables dramatic increases in
computing performance by harnessing the power of the GPU.

CUDA gives developers access to the virtual instruction
set and memory of the parallel computational elements in
CUDA GPUs. Using CUDA, the latest NVIDIA GPUs
become accessible for computation like CPUs. Unlike CPUs
however, GPUs have a parallel throughput architecture that
emphasizes executing many concurrent threads slowly,
rather than executing a single thread very quickly. This
approach of solving general purpose problems on GPUs is

known as GPGPU. Figure 2 shows the different structures
between CPU and GPU.

Figure 2. Structures of CPU and GPU

B. Hierarchical Belief Propagation

The general framework of the hierarchical BP

implemented in this paper is defined as follows [6]. The
loopy BP has high memory requirements, storing multiple
distributions at each pixel. In [6], it is presented that a multi-
grid approach for performing BP in a coarse-to-fine manner.
In this approach the number of message passing iterations
can be a small constant, because long range interactions are
captured by short paths in coarse grid graphs.

Let P be the set of pixels in an image. The labels
correspond to disparity values that we want to estimate at
each pixel. A labeling f assigns a label fp to each pixel p. It is
assumed that the disparity values should vary smoothly
almost everywhere but may change dramatically at some
places such as object boundaries. The quality of a labeling is
given by an energy function,

åå
ÎÎ

+=
Pp

pp
Nqp

qp fDffVfE),(),()(
,

 (1)

where N are the edges in the four-connected image grid
graph. V(fp, fq) is the cost of assigning labels fp and fq to two
neighboring pixels, and is normally referred to as the
discontinuity cost. Dp(fp) is the cost of assigning label fp to
pixel p, which is referred to as the data cost. Finding a
labeling with minimum energy corresponds to the MAP
estimation problem for an appropriately defined MRF.

The hierarchical BP reduces the time required to compute
a single message update from O(k2) to O(k). Each message is
represented by

))f(h)f,f(V(min)f(m pqpfq
t
pq

p

+= (2)

The standard way of computing the messages is to
explicitly minimize over fp for each choice of fq. This takes
O(k2) time, where k is the number of labels. However, in
stereo matching the cost V(fp, fq) is generally based on some
measure of the difference between the labels fp and fq rather
than on the particular pair of labels. In such cases the
messages can often be computed in O(k) time. BP can be
performed more efficiently for a bipartite graph with node A
and B as

.
)(

1 otherwise
BpifApif

m
m

m t
pq

t
pqt

pq

ÎÎ

ïî

ï
í
ì

= - (3)

Figure 3 shows the hierarchical BP structure, and the
hierarchical structure reduces the number of message passing
iterations.

Figure 3. Hierarchical structures of BP

III. HIERARCHICAL BELIEF PROPAGATION ON GPU

We do not implement the part calculating data terms
because it takes a short time compared with the hierarchical
BP part. The computed data terms on the CPU are uploaded
to the global memory of the GPU, and the initial messages
are also uploaded. With the data, we calculate and update the
further messages on the GPU in parallel.

In our implementation, each scale level has the similar
process. For each scale, eight textures are used to store the
smoothness term. The four textures are from the previous
iteration, and other four textures are from current iteration.

To reduce the bottleneck effects of conditional parts, we
replace them with simple calculations. In addition, the CPU
and GPU do not exchange unnecessary data, because the
speed of data exchange between Host and Device units is
very slow. Figure 4 shows the strucure of kernels, blocks and
threads. The arrangement of threads in blocks and blocks
into grids of blocks is up to the developer. We divide an
input image into rectangular blocks, and find the optimal
block size for hirarchical BP.

Figure 4. Structures of CPU and GPU

IV. EXPERIMENTAL RESULTS

The hierarchical BP algorithm implemented by CUDA is
based on the algorithm introduced in [6]. At first, we
measured processing time with various block sizes. Table I

shows the result with three test images. The test image is
Newspaper, and it was down-sampled for different
experimental conditions.

TABLE I

PROCESSING TIME ACCORDING TO BLOCK SIZES
Image size Block size Time(s)

320 x 240
(disparity range: 30)

1 x 1 0.99
2 x 2 0.44
3 x 3 0.35
4 x 4 0.32
5 x 5 0.38

640 x 480
(disparity range: 40)

1 x 1 4.77
2 x 2 1.59
3 x 3 1.02
4 x 4 0.91
5 x 5 0.94

1024 x 768
(disparity range: 50)

1 x 1 9.42
2 x 2 4.84
3 x 3 4.02
4 x 4 3.26
5 x 5 3.35

The block size which shows the best performance is 4 x 4,

and the optimal block size does not depend on the input
image size. The larger block sizes decrease the performance
or stop operating. We set the block size with 4 x 4, and had
the next experiments.

Figure 5(a), Fig. 6(a), and Fig. 7(a) show the input stereo
pairs: the first is the 320 x 240 Tsukuba image, the second is
the 640 x 480 Cone, and the third is the 1024 x 768
Newspaper. Tsukuba and Cone images are downloaded from
the Middlebury site, and they are resized for quantitative
experiments. We use five hierarchical levels and five
iterations per level.

TABLE II
COMPARISON OF PROCESSING TIME

Image size Methods Processing Time (s)

Tsukuba
320 x 240

(disparity range: 20)

Loopy BP 7.02

Hierarchical
BP on CPU

0.81

Hierarchical
BP on GPU

0.34

Cone
640 x 480

(disparity range: 80)

Loopy BP 295.02

Hierarchical
BP on CPU

10.01

Hierarchical
BP on GPU

2.29

Newspaper
1024 x 768

(disparity range: 60)

Loopy BP 475.64

Hierarchical
BP on CPU

20.37

Hierarchical
BP on GPU

5.17

As shown in Table II, our implementation provides the
fastest processing time compared with the loop BP and the
hierarchical BP algorithms on CPU. For the experiment, we
use the desktop computer which is equipped with an Intel
Core 2 Quad CPU running at 2.4 GHz and nVidia Geforce
GTX 470 GPU. The GPU has 488 CUDA cores and 1280
MB standard memory.

(a)

(b) (c)

Figure 5. Tsukuba: (a) input and disparity maps
from hierarchical BP on (b) CPU and (c) GPU

(a)

(b) (c)

Figure 6. Cone: (a) input and disparity maps
from hierarchical BP on (b) CPU and (c) GPU

(a)

+
(b) (c)

Figure 7. Newspaper: (a) input and disparity maps
from hierarchical BP on (b) CPU and (c) GPU

The ratio of speed rapidly increases when the image size
and disparity range are large. In case of the small image, the
data exchanging time between Host and Device units
occupies the relatively large portion. The data exchanging
time is a weak point of the parallel processing on GPU.

Figure 5(b) and Fig. 5(c) are the disparity maps calculated
by hierarchical BP on CPU and GPU, respectively. Despite
the processing time difference, our implementation provides
the disparity maps of similar quality. Figure 6 and Fig. 7 are
the additional results of Cone and Newspaper images.

V. CONCLUSION

The BP algorithm effectively infers global solutions, but it
takes a very long time to calculate messages. In this paper,
we implemented the hierarchical BP algorithm on GPU using
CUDA. We upload data terms and initial messages to the
global memory of the GPU, and compute whole messages in
parallel. To reduce processing time, we minimize
unnecessary date exchanges between Host and Device units.
We analyzed the processing time according to grid and block
sizes. Experimental results show that our implementation is
faster than the loopy BP algorithm and the hierarchical BP
algorithm on CPU.

ACKNOWLEDGMENT

This research is supported by Ministry of Culture, Sports and
Tourism (MCST) and Korea Creative Content Agency
(KOCCA) in the Culture Technology (CT) Research &
Development Program 2010.

REFERENCES
[1] E. Lee and Y. Ho, “Generation of High-quality Depth Maps using

Hybrid Camera System for 3-D Video,” Journal of Visual
Communication and Image Representation, vol. 22, issue 1, pp. 73-84,
Jan. 2010.

[2] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation of Dense
Two-Frame Stereo Correspondence Algorithms,” International Journal
of Computer Vision, vol. 47, no. 1-3, pp. 7-42, April 2002.

[3] J. Sun, N. Zheng, and H. Shum, “Stereo Matching Using Belief
Propagation,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 25, no. 7, pp. 787-800, July 2003.

[4] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy
Minimization via Graph Cuts,” IEEE Transactions on pattern analysis
and machine intelligence, vol. 23, no. 11, pp. 1222-1239, Nov. 2001.

[5] O. Velsler, “Stereo Correspondence by Dynamic Programming on a
Tree,” Computer Vision and Pattern Recognition, vol. 2, pp. 384-390.
June 2005.

[6] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient Belief
Propagation for Early Vision,” International Journal of Computer
Vision, vol. 70, no. 1, pp. 41-54. Oct. 2006.

[7] K. Petersen, J. Fehr, and H. Burkhardt, “Fast Generalized Belief
Propagation for MAP Estimation on 2D and 3D Grid-Like Markov
Random Fileds,” Deutsche-Arbeitsgemeinschaft-fur-Mustererkennung
Symposium on Pattern Recognition, pp. 10-13, June 2008.

[8] M. P. Kumar and P. Torr, “Fast Memory-Efficient Generalized Belief
Propagation,” European Conference on Computer Vision, pp. 451-463,
May 2006.

[9] J. Pérez, P. Sánchez, and M. Martinez, “High memory throughput
FPGA architecture for High-Definition Belief-Propagation Stereo
Matching,” International Conference on Signals, Circuits and Systems,
pp. 1-6, Nov. 2009.

[10] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, “Real-
time Global Stereo Matching Using Hierarchical Belief Propagation,”
The British Machine Vision Conference, pp.1-8, Sept. 2006.

[11] CUDA Reference Manual, Nvidia, July 2009.

