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Abstract- Stereo matching based on the Markov random 

field model has a global optimization problem. Solutions of the 
problem can be inferred by the belief propagation (BP) 
algorithm. The BP algorithm effectively estimates global 
solutions, but it takes a very long time to calculate messages. In 
this paper, we implement the hierarchical BP algorithm on a 
graphics processing unit (GPU) using compute unified device 
architecture. We perform memory uploads to the global 
memory of the GPU, and compute messages of all pixels in 
parallel. We analyze the performance according to block and 
image sizes. Experimental results show that our implementation 
is faster than the conventional loopy BP algorithm and the 
hierarchical BP algorithm implemented on CPU. 

 

I. INTRODUCTION 

A depth image represents distances between a camera and 
objects. It is essential for the free-view television system, 
and various techniques have been developed to accurately 
estimate it [1]. Stereo matching is a popular technique for 
depth estimation, and is one of the most heavily investigated 
topics in computer vision [2].  

 

 
Figure 1. Stereo matching for depth estimation 

 
As shown in Fig. 1, stereo matching finds correspondences 

between stereo pairs. With correspondences and camera 
centers, the real positions of the correspondences can be 
calculated. At the beginning of the research, the pixel- or 
block-based stereo matching algorithms whose costs include 
squared intensity differences and absolute intensity 
differences were used. Although they have low-
computational complexity, their performance is not 
guaranteed. The performance significantly depends on 
textures of input stereo pairs. Depth image’s quality 

decreases especially when the input pair contains many 
occlusion and texture-less regions. 

One recent advance involves the use of Markov random 
field (MRF) models to improve the performance in the 
mentioned regions. MRF is a graphical model in which a set 
of random variables have a Markov property described by an 
undirected graph. MRF is similar to a Bayesian network in 
its representation of dependencies. In case of stereo matching, 
MRF considers not only intensity differences between stereo 
pairs but also the relation between neighboring disparity 
values. Since MRF-based methods are formulated in an 
energy-minimization frame work, they face with the global 
optimization problem.  

In the MRF model, a current disparity value at a certain 
position affects its neighbors. Therefore, the conventional 
winner-takes-all algorithm is not able to solve it. In addition, 
it is physically impossible to calculate the exact solution 
from whole candidates. When the size of an input image is 
100 x 100 and the possible disparity range is 10, the number 
of candidates is 1010000. It is a tremendous number. 

In order to simply approximate the solution, various 
algorithms such as the belief propagation (BP) [3], graph cut 
[4], and dynamic programming [5] have been proposed. 
Among them, the BP shows good results and is widely used. 
It has been found to yield accurate results, but despite recent 
advances is often too slow for practical use.  

The execution time leaves still room for improvement. 
Several researches focus on fast computation. Felzenszwalb 
et. al. presented algorithmic techniques that substantially 
improve the running time of the BP approach [6]. They use a 
hierarchical structure to reduce the number of message 
passing iterations to a small constant rather than being 
proportional to the diameter of the image grid graph. 

Petersen et. al. proposed a fast generalized BP algorithm 
for maximum a posterior estimation on 2D and 3D grid-like 
MRF [7]. They developed a caching method that 
significantly reduces the number of multiplications during 
generalized BP inference, and introduced a speed-up for 
computing the MAP estimate of general BP cluster messages 
by presorting its factors and limiting the number of possible 
combinations.  

M. P. Kumar et. al. proposed methods for reducing both 
run time and storage needed by BP for a large class of 
pairwise potentials of the MRF [8]. Further, they show how 



the problem of sub-graph matching can be formulated using 
this class of MRFs.  

Recently, researchers have presents the methods using 
additional hardware such as a graphics processing unit (GPU) 
and field-programmable gate array (FPGA) architecture for 
further improvement [9][10].  

In this paper, we implement the hierarchical BP algorithm 
on a GPU using compute unified device architecture 
(CUDA). It is suitable for practical use. The initial message 
memory in coarse level is uploaded to a global memory in a 
GPU, and the messages for fine level are calculated in 
parallel. The relation between block size and processing time 
is analyzed. 

 

II. PARALLEL PROGRAMMING AND GLOBAL OPTIMIZATION 

We start by briefly reviewing the CUDA and the 
hierarchical BP approach for performing inference on 
Markov random field. 
 
A. CUDA 

Recently, the programmable graphics processor unit has 
evolved into an absolute computing workhorse. With, The 
GPUs offer incredible resources for both graphics and non-
graphics processing, because they have multiple cores driven 
by very high memory bandwidth [11]. 

The GPU is compute-intensive, highly parallel 
computation for graphics rendering, and it is designed such 
that more transistors are devoted to data processing rather 
than data caching and flow control. Therefore, the GPU is 
especially suited to address problems. The problem is 
expressed as data-parallel computations with high arithmetic 
intensity. Data-parallel processing maps data elements to 
parallel processing threads. In order to speed up, many 
applications that process large data sets use a data-parallel 
programming model.  

In 3D rendering process, many pixels and vertices are 
mapped to parallel threads. Similarly, image and media 
processing applications such as post-processing of rendered 
images, video encoding and decoding, image scaling, stereo 
vision, and pattern recognition can map image blocks and 
pixels to parallel processing threads. Therefore, various 
applications of image processing are suitable for parallel 
processing. Other algorithms outside the field of image 
rendering and processing are also accelerated by data-
parallel processing. 

Various programming libraries have been developed for 
data-parallel processing. Among them, CUDA is a very 
popular and powerful library. CUDA is NVIDIA’s parallel 
computing architecture that enables dramatic increases in 
computing performance by harnessing the power of the GPU. 

CUDA gives developers access to the virtual instruction 
set and memory of the parallel computational elements in 
CUDA GPUs. Using CUDA, the latest NVIDIA GPUs 
become accessible for computation like CPUs. Unlike CPUs 
however, GPUs have a parallel throughput architecture that 
emphasizes executing many concurrent threads slowly, 
rather than executing a single thread very quickly. This 
approach of solving general purpose problems on GPUs is 

known as GPGPU. Figure 2 shows the different structures 
between CPU and GPU. 

 

 
Figure 2. Structures of CPU and GPU 

 

B. Hierarchical Belief Propagation 
 
The general framework of the hierarchical BP 

implemented in this paper is defined as follows [6]. The 
loopy BP has high memory requirements, storing multiple 
distributions at each pixel. In [6], it is presented that a multi-
grid approach for performing BP in a coarse-to-fine manner. 
In this approach the number of message passing iterations 
can be a small constant, because long range interactions are 
captured by short paths in coarse grid graphs.  

Let P be the set of pixels in an image. The labels 
correspond to disparity values that we want to estimate at 
each pixel. A labeling f assigns a label fp to each pixel p. It is 
assumed that the disparity values should vary smoothly 
almost everywhere but may change dramatically at some 
places such as object boundaries. The quality of a labeling is 
given by an energy function, 
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where N are the edges in the four-connected image grid 
graph. V(fp, fq) is the cost of assigning labels fp and fq to two 
neighboring pixels, and is normally referred to as the 
discontinuity cost. Dp(fp) is the cost of assigning label fp to 
pixel p, which is referred to as the data cost. Finding a 
labeling with minimum energy corresponds to the MAP 
estimation problem for an appropriately defined MRF. 

The hierarchical BP reduces the time required to compute 
a single message update from O(k2) to O(k). Each message is 
represented by 
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The standard way of computing the messages is to 
explicitly minimize over fp for each choice of fq. This takes 
O(k2) time, where k is the number of labels. However, in 
stereo matching the cost V(fp, fq) is generally based on some 
measure of the difference between the labels fp and fq rather 
than on the particular pair of labels. In such cases the 
messages can often be computed in O(k) time. BP can be 
performed more efficiently for a bipartite graph with node A 
and B as 
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Figure 3 shows the hierarchical BP structure, and the 
hierarchical structure reduces the number of message passing 
iterations. 

 
Figure 3. Hierarchical structures of BP 

 

III. HIERARCHICAL BELIEF PROPAGATION ON GPU 

We do not implement the part calculating data terms 
because it takes a short time compared with the hierarchical 
BP part. The computed data terms on the CPU are uploaded 
to the global memory of the GPU, and the initial messages 
are also uploaded. With the data, we calculate and update the 
further messages on the GPU in parallel. 

In our implementation, each scale level has the similar 
process. For each scale, eight textures are used to store the 
smoothness term. The four textures are from the previous 
iteration, and other four textures are from current iteration. 

To reduce the bottleneck effects of conditional parts, we 
replace them with simple calculations. In addition, the CPU 
and GPU do not exchange unnecessary data, because the 
speed of data exchange between Host and Device units is 
very slow. Figure 4 shows the strucure of kernels, blocks and 
threads. The arrangement of threads in blocks and blocks 
into grids of blocks is up to the developer. We divide an 
input image into rectangular blocks, and find the optimal 
block size for hirarchical BP. 

 

 
Figure 4. Structures of CPU and GPU 

 

IV. EXPERIMENTAL RESULTS 

The hierarchical BP algorithm implemented by CUDA is 
based on the algorithm introduced in [6]. At first, we 
measured processing time with various block sizes. Table I 

shows the result with three test images. The test image is 
Newspaper, and it was down-sampled for different 
experimental conditions.  

 
TABLE I 

PROCESSING TIME ACCORDING TO BLOCK SIZES 
Image size Block size Time(s) 

320 x 240 
(disparity range: 30) 

1 x 1 0.99 
2 x 2 0.44 
3 x 3 0.35 
4 x 4 0.32 
5 x 5 0.38 

640 x 480 
(disparity range: 40) 

1 x 1 4.77 
2 x 2 1.59 
3 x 3 1.02 
4 x 4 0.91 
5 x 5 0.94 

1024 x 768 
(disparity range: 50) 

1 x 1 9.42 
2 x 2 4.84 
3 x 3 4.02 
4 x 4 3.26 
5 x 5 3.35 

 
The block size which shows the best performance is 4 x 4, 

and the optimal block size does not depend on the input 
image size. The larger block sizes decrease the performance 
or stop operating. We set the block size with 4 x 4, and had 
the next experiments. 

Figure 5(a), Fig. 6(a), and Fig. 7(a) show the input stereo 
pairs: the first is the 320 x 240 Tsukuba image, the second is 
the 640 x 480 Cone, and the third is the 1024 x 768 
Newspaper. Tsukuba and Cone images are downloaded from 
the Middlebury site, and they are resized for quantitative 
experiments. We use five hierarchical levels and five 
iterations per level. 

TABLE II 
COMPARISON OF PROCESSING TIME  

Image size Methods Processing Time (s) 

Tsukuba 
320 x 240 

(disparity range: 20) 

Loopy BP 7.02 

Hierarchical 
BP on CPU 

0.81 

Hierarchical 
BP on GPU 

0.34 

Cone 
640 x 480 

(disparity range: 80) 

Loopy BP 295.02 

Hierarchical 
BP on CPU 

10.01 

Hierarchical 
BP on GPU 

2.29 

Newspaper 
1024 x 768 

(disparity range: 60) 

Loopy BP 475.64 

Hierarchical 
BP on CPU 

20.37 

Hierarchical 
BP on GPU 

5.17 

 



As shown in Table II, our implementation provides the 
fastest processing time compared with the loop BP and the 
hierarchical BP algorithms on CPU. For the experiment, we 
use the desktop computer which is equipped with an Intel 
Core 2 Quad CPU running at 2.4 GHz and nVidia Geforce 
GTX 470 GPU. The GPU has 488 CUDA cores and 1280 
MB standard memory.  

 

 
(a) 

 
(b)                                (c) 

Figure 5. Tsukuba: (a) input and disparity maps  
from hierarchical BP on (b) CPU and (c) GPU 

 

 
(a) 

 
(b)                                (c) 

Figure 6. Cone: (a) input and disparity maps  
from hierarchical BP on (b) CPU and (c) GPU 

 

 
(a) 

+  
(b)                                (c) 

Figure 7. Newspaper: (a) input and disparity maps  
from hierarchical BP on (b) CPU and (c) GPU 

The ratio of speed rapidly increases when the image size 
and disparity range are large. In case of the small image, the 
data exchanging time between Host and Device units 
occupies the relatively large portion. The data exchanging 
time is a weak point of the parallel processing on GPU. 

Figure 5(b) and Fig. 5(c) are the disparity maps calculated 
by hierarchical BP on CPU and GPU, respectively. Despite 
the processing time difference, our implementation provides 
the disparity maps of similar quality. Figure 6 and Fig. 7 are 
the additional results of Cone and Newspaper images. 

 

V. CONCLUSION 

The BP algorithm effectively infers global solutions, but it 
takes a very long time to calculate messages. In this paper, 
we implemented the hierarchical BP algorithm on GPU using 
CUDA. We upload data terms and initial messages to the 
global memory of the GPU, and compute whole messages in 
parallel. To reduce processing time, we minimize 
unnecessary date exchanges between Host and Device units. 
We analyzed the processing time according to grid and block 
sizes. Experimental results show that our implementation is 
faster than the loopy BP algorithm and the hierarchical BP 
algorithm on CPU. 
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