
3DTV: Technical Challenges 

for Realistic Experiences 
 

 
Yo-Sung Ho and Eun-Kyung Lee 

 
Gwangju Institute of Science and Technology (GIST) 

261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Korea 
E-mails: {hoyo, eklee78}@gist.ac.kr 

 
 

ABSTRACT 
 
In recent years, various multimedia services have become 
available and the demand for three-dimensional television 
(3DTV) is growing rapidly. Since 3DTV is considered as the 
next generation broadcasting service that can deliver realistic 
and immersive experiences, a number of advanced 3D video 
technologies have been studied. In this paper, we are going to 
explain the fundamental principles of 3DTV. After reviewing 
the basic techniques for 3D image capturing and 3D video 
display systems, we are going to cover several technically 
challenging issues of 3D video processing, such as camera 
calibration, image rectification, illumination compensation 
and color correction. 
 
Keywords: 3DTV; Realistic broadcasting system; 
Multi-view video-plus-depth data; Time-of-flight camera; 
Multi-view camera system; Free viewpoint TV; View 
synthesis. 
 

1. INTRODUCTION 
 
Owing to the rapid growth of various digital technologies, 
broadcasting services [1] has been changed from 
unidirectional services to bidirectional services or interactive 
services, such as stereoscopic TV [2], three-dimensional (3D) 
TV [3], and realistic broadcasting [4]. As shown in Fig. 1, the 
next-generation broadcasting system is supposed to provide a 
variety of user-friendly interactive information, as well as 
high-quality audio-visual broadcasting contents.  

Especially, 3DTV is considered as a main theme for the 
future broadcasting system supporting natural viewing 
experience in the true three dimension. In general, 3D natural 
views are usually created from two 3D video representations: 
multi-view video [5] and video-plus-depth [6]. A multi-view 
video represents the 3D scene with the collection of multiple 
videos generated by capturing the scene at different camera 
locations. Since the multi-view video produces natural 3D 
views with a number of images at the viewing position, we 
can be easily immersed in the 3D content. However, we need 
to put more efforts to control a huge number of cameras at the 
same time. Moreover, since the multi-view camera system 
usually requires complicated coding and transmission 

schemes [7] in proportional to the number of cameras, it is 
hard to send its data to the receiver side within limited 
bandwidth channel environments. 

As an alternative for the 3D video representation, it is 
widely accepted for a monoscopic color video enriched with 
per-pixel depth information, which is often referred as 
video-plus-depth. Since the video-plus-depth representation 
includes depth information as geometry data of the scene, we 
can generate free-viewpoint images using depth image-based 
rendering (DIBR) techniques [8] for the 3D video contents 
service. Although the video-plus-depth approach can support 
narrow-viewing angle views in comparison to the multi-view 
video, it is considered as a suitable 3D video representation 
for 3DTV because it can support both backwards 
compatibility to the current 2D digital systems and easy 
adaptability to a wide range of different 2D and 3D displays. 
Recently, the ISO/ICE JTC/SC29/WG11 Moving Picture 
Experts Group (MPEG) has also been interested in multi-view 
video with depth (MVD), which is the combination of the 
multi-view video and the video-plus-depth approaches, for 
free-viewpoint TV (FTV) and 3DTV[9] [10]. 

With respect to the current 3DTV and FTV research 
activities, it is very important for us to estimate accurate depth 
information from the natural scene. In the field of computer 
vision and image processing, a number of depth estimation 
algorithms have been proposed to generate accurate depth 
maps [11][12]. However, accurate measurement of depth 
information from the natural scene still remains problematic. 

In general, there are two approaches to acquire depth 
information: depth from active sensor depth camera system 
and depth estimation from stereo matching. The latter takes a 
longer time and is more complex. In spite of its complexity, it 
does not guarantee accuracy of the estimated depth. On the 
other hand, as sensor technologies for obtaining depth 
information are developed rapidly, we can capture more 
accurate per-pixel depth information from the real scene 
directly using a depth camera system. However, the depth 
camera system has disadvantages: high cost and limited 
viewing range. Therefore, we need to develop a multi-view 
camera system to solve these problems. 
 To solve these problems, hybrid camera systems have been 
proposed to generate enhanced depth maps by applying a 
stereo matching algorithm to multi-view images with depth 
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Fig. 1: Overall framework of multi-view image generation. 
 

using the depth information captured by the depth camera 
[13]. However, these systems cannot produce high-resolution 
depth maps, because it completely depends on the 
low-resolution depth camera. 
 In this paper, we devise a hybrid camera system with one 
depth camera and multiple video cameras. The proposed 
system can produce multi-view images for dynamic 3D 
scenes by enhancing the low-resolution depth information 
measured by the depth camera. The main contribution of our 
work is to provide a practical 3D video generation solution 
for dynamic 3D scenes, which is applicable to 3D consumer 
devices. 
 

2. HYBRID CAMERA SYSTEM 
 
The proposed hybrid camera system is composed of one 
depth camera and five high-definition (HD) video. Those 
multiple video cameras are arranged in a one-dimensional 
array to construct a multi-view camera system. A clock 
generator sends synchronization signals constantly to each 
camera and its corresponding personal computer equipped 
with a video capture board. Basically, the proposed hybrid 
camera system captures multi-view images by the multiple 
video cameras and a depth map from the depth camera at 
each sampling time. 

Figure 1 illustrates the overall framework to generate 
multi-view video sequences with their corresponding depth 
maps using the hybrid camera system. After calibrating each 
camera independently, we perform an image rectification to 
adjust vertical mismatches in multi-view images. Then, we 
apply a color correction operation to maintain color 
consistency among multi-view images. Figure 2 shows the 

proposed hybrid camera system and configuration. 
To obtain depth maps for multi-view images, we perform a 

3D warping operation onto each multi-view camera using the 
depth map measured by the depth camera. The warped depth 
data is used as an initial depth at each camera position. After 
we segment each multi-view image, we assign the depth 
value of the warped depth data in each segment as the initial 
depth of the segment. In order to improve the depth accuracy 
of object boundaries, we separate the moving objects and 
detect occlusion and disocclusion regions. Then, the depth of 
each segment is refined by a color segmentation-based stereo 
matching method. Finally, we obtain multi-view depth maps 
by conducting a pixel-based depth map refinement using a 
proposed cost function in each segment. 
 

Fig. 2: Proposed hybrid camera system.. 
 
2.1 Relative Camera Calibration 
 
Since the proposed fusion camera system consists of two 
different types of cameras, a depth camera and stereo video 
cameras, it is essential to find out relative camera information 
through camera calibration. For that, we apply a camera 
calibration algorithm to each camera in our camera system 

Camera n

Camera 1

Color Image n

Color Image 1

Relative
Camera  

Calibration

Block-based 
Color 

Segmentation

Block-based 
Color 

Segmentation

Image
Rectification

Stereo 
Matching

Depth Camera

Camera
Calibration

...
......

Camera
Calibration

...

Camera
Calibration

3-D Warping

Depth 
Calibration

...

Stereo 
Matching

...

Region Separation

Region Separation

Search 
Range

Decision

...

Depth Map 
Refinement

Depth Map 
Refinement

...

Color Image and Depth Map 1

3-D Video

Occlusion
Disocclusion

Detection

Proposed
Cost Function

Color
Correction

Depth Map
Enhancement

Acquired 
Depth Map

Color Image and Depth Map n

Depth to Disparity 
Conversion

Depth Map
Enhancement

Moving Object 
Detection



and obtain projection matrices for the depth camera and each 
video camera. 

]|[ ssss tRKP =  (1) 

]|[ kkkk tRKP =
 

(2) 

where Ps is the projection matrix of the depth camera 
represented by its camera intrinsic matrix Ks, rotation matrix 
Rs, and translation vector ts. Pk means the projection matrices 
of the kth video camera which consisted of its camera intrinsic 
matrix Kk, rotation matrix Rk, and translation vector tk.  

We then employ a rectification operation. The cameras 
have geometric errors because they are set manually by hand. 
In order to minimize the geometric errors, we find the 
common baseline, and then apply the rectifying 
transformation to the stereo image. Consequently, the 
projection matrix of video cameras are changed as 

]|[ kkkk tRKP ′′′=′  (3) 

where Kk
′ and Rk

′ are the modified camera intrinsic matrix and 
rotation matrix of the kth video camera, respectively. 
Thereafter, we convert the rotation matrix Rs of the depth 
camera into the identity matrix I by multiplying inverse 
rotation matrix Rs

-1. The translation vector ts
 of the depth 

camera is also changed into the zero matrix O by subtracting 
the translation vector ts. Hence, we can define new relative 
projection matrices for the stereo camera on the basis of the 
depth camera as 

]|[ OIKP ss =′
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where Ps
′ and 

kP′~  are final projection matrices of the depth 
camera and the kth video camera, respectively. After relative 
camera calibration, we resolve the color mismatch problem 
of stereo images using a color calibration method. The color 
characteristics of captured images are usually inconsistent 
due to different camera properties and lighting conditions 
even the hardware type and specification of the multiple 
cameras are the same. Thereafter, we perform bilateral 
filtering to reduce optical noises included in the depth map 
acquired from the depth camera. 
 
2.2 Depth Calibration 
 
The depth values measured by the depth camera are very 
sensitive to noises. Their sources are diverse including 
physical limitation of hardware and specific object properties, 
etc. Therefore, depth data are noticeably contaminated with 
random and systematic measurement errors dependent on 
reflectance, angle of incidence, and environmental factors 
like temperature and lighting. To reduce those errors, we 
employ a depth calibration method.  

For depth calibration in indoor environments, we compute 
the depth of the planar checker pattern within the limited 
space by increasing the distance from the image pattern to the 

depth camera using our system as shown in Fig. 3. To extract 
the corresponding feature points in two different types of 
cameras efficiently, we use the color checker pattern. The 
pattern image is captured in every 5cm distance. The plane 
pattern is orthogonal to the image plane. 

Since the proposed fusion camera system consists of two 
different types of cameras, a depth camera and stereo video 
cameras, it is essential to find out relative camera information 
through camera calibration. For that, we apply a camera 
calibration. 

Fig. 3: Acquisition of the planar check pattern for depth 
calibration. 

 
Thereafter, we make a four dimensional look-up table 

(LUT) mapping 3D positions of the multiple video cameras 
and the depth value from the depth camera. 3D position is 
constructed by x, y position of the feature point and the real 
depth value calculated by the multi-view image. Depth 
accuracy test using the acquired depth map and calibrated 
depth map the real depth value z calculated from the 
multi-view image by pairwise stereo matching. Since we 
have already obtained camera parameters, the real depth 
value is calculated by 

),(
),(

yxn
yxn ppD

BK
ppd

⋅=  (6) 

where K is the focal length of the left camera and B is the 
baseline distance between two video cameras. Dn(px, py) is 
the real depth value corresponding to the measured disparity 
value dn(px, py) at the pixel position (px, py) in the checker 
pattern. 
 
2.2 Radial Distortion Correction 
 
Depth map from the depth camera have a large amount of 
lens radial distortion. There are two types lens distortion 
which are barrel distortion and pincushion distortion. In this 
case, the barrel distortion is occurred by the intrinsic problem 
of the depth camera. This distortion causes not only the shape 
mismatch between the color image and the corresponding 
depth image but also the errors in the results of some feature 
point based processing such as camera calibration. 

In order to avoid that situation, we have to perform radial 
distortion correction to the obtained depth images. In general, 
there are two main categories of radial distortion correction. 
Methods in the first category use the point correspondences 
between two or more views. The second category also has 

(b) Pattern images from hybrid camera system(a) Pattern acquisition



lots of approaches which are based on the distorted straight 
line components in the image. 

In the proposed fusion camera system, we use one of the 
second approaches to correct the radial distortion in the depth 
images. After finding the curved straight line component in 
the captured image, we estimate the distortion center and the 
distortion parameter. With the distortion information, we can 
reconstruct the image from the distorted image. Figure 4 
shows the depth and intensity images before and after the 
correction. 

Fig. 4: Radial distortion correction. 
 

3. MULTI-VIEW DEPTH MAP 
GENERATION 

 
3.1 3D Warping of Depth Map 
 
We generate initial depth of the multi-view image by 
performing 3D warping of the depth values obtained from the 
depth camera. First, we project pixels of the depth map into 
the 3D world coordinate using the depth values. We then 
reproject the 3D points into each view. 

Let us assume that Ds(psx, psy) is the depth intensity at the 
pixel position (psx, psy) in the depth map. Ps(xsx, ysy, zsz) is a 
3D point corresponding to Ds. The backward projection for 
moving Ds to the world coordinate is carried out by 

sss pKP ⋅= −1  (7) 

where Ks
-1 indicates the intrinsic matrix of the depth camera. 

In the backward 3D warping, since rotation and translation 
matrices of the depth camera are the identity matrix I and 
zero matrix O as Eq. 4, we have only to consider its intrinsic 
matrix. Thereafter, we project the 3D points Ps into the each 
view to get its corresponding pixel position pk

′ (uk, vk) of the 
kth-view image by 

skk PPp ⋅=′ '
~  (8) 

where Pk
′ indicates the projection matrix of the kth-view video 

camera. Figure 5 shows the result of 3D warping using the 
acquired depth maps. 

Fig. 5: 3D warped depth map. 
 

3.2 Region Separation 
 
To estimate depth maps of multiple video cameras using the 
warped depth information, we segment the multi-view image 
by a mean-shift color segmentation algorithm. However, we 
cannot control the maximum segment size because there is 
no parameter to control the maximum segment size. 

When we perform the segment-based stereo matching, one 
segment has one depth value. If the size of segment is too 
large, we cannot get a smooth depth map. The other way, if 
the size of segment is too small, it is hard to overcome 
textureless problem during the stereo matching. To solve this 
problem, we split one image into 16×16 block segments, so 
that we can limit the maximum segment size. 

Figure 6 shows the procedure of the segment merging. A 
block can have two or more color segments. Before merging 
the segment, we split the segmented image into block-based 
segment again. If each segment is smaller than half size of 
the block, we merge it into one segment by searching 
adjoined blocks to find the same indexed segment. If the size 
of the merged block is larger than threshold, the merging 
procedure is finished; otherwise we repeat the same process 
until merging condition is satisfied. 

 

Fig. 6: Block-based segment merging. 
 
The searching order of connected blocks is right, bottom, 

left, and top including the diagonal directions because left 
and top blocks are merged block and right and bottom block 
will be merged blocks. For example, Segment A divide into 
many block-based segments and Block (i, j) have two 
segments: Segment A_1 and Segment B_1. Since the size of 
Segment A_1 is smaller than the predefined threshold value 
in Fig. 8, the same indexed segment of Segment A_1  is the 
blocks in (i+1 , j), (i, j+1), and (i+1 , j+1). We merge the 
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current Segment A_1 and the same indexed segment in (i+1 , 
j) by the searching order. 

 
3.3 Segment-based Depth Estimation 
 
We define the initial depth of each segment as 3D warped 
depths in the segment; the assumption is that each segment 
has one depth value. However, there is one problem to set the 
initial depth using warped depth value. The 3D warping is 
performed from the small resolution depth map to the HD 
image in our system. Since there are many errors such as 
camera calibration error and depth error acquired from the 
depth camera, the warped result is not exactly matched with 
the HD image. 

To obtain the accurate initial depth value, we use the 
warped results as multiple initial depth values for stereo 
matching. However, if the given initial depth is the error 
value, we could find wrong areas which has local minimum. 
Therefore, the assignment of the correct initial depth is 
crucial in using the depth camera. Because there are correct 
initial depths around the currently warped position, which are 
not exactly matched with the original image, we increase the 
candidates of the initial depth value to resolve this problem. 
By using the multiple initial depths, we can set initial depth 
for the depthless regions in the boundary of objects.  

For determining the disparity of each segment, we 
calculate the mean of absolute difference (MAD) values 
between the segment in the current view image and its 
matched region in the left and right view images by 

∑ ∑
= =

=
a

j

b

k
i kMADjMADInitDispdFG

0 0

))(min(),(min(min()(_  
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where i is the index of the segment, j and k means index of 
the multiple initial depth. a and b are the number of the initial 
depth in the horizontal and vertical regions, respectively. 
FG_di(InitDisp) is the refined initial depth value from 
pairwise stereo matching. Search range to estimate disparities 
of the current view image is from InitDisp-5 to InitDisp+5. 
The disparity with the minimum MAD in the search range is 
chosen as the refined initial disparity of the segment in the 
current view image. 

Since the acquired depth map is only for foreground 
regions, there is no depth information for background areas. 
In estimating depth of background, we set the minimum and 
maximum disparity value. We then find the minimum MAD 
as the initial disparity of the current segment in the 
background by 

∑
=

=
Disp

Dispi
i iMADInitDispdBG
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min

))(min()(_  
(10) 

where BG_di(InitDisp) is the disparity for background, 
minDisp and maxDisp mean minimum and maximum 
disparity search range for background. The disparity with the 
minimum MAD is chosen as the initial disparity di(Initdisp) 
of the segment i in the current view image n by 

))(_),(_min()( InitDispdBGInitDispdFGInitDispd iii =  (11) 

3.4 Depth Refinement 
 
In stereo matching, depth refinement usually enhances depth 
accuracy through iteration at the cost of long processing time, 
lots of memory requirement, and heavy computation. 
However, it has challenges when our target is to generate 
high-resolution 3D video based on multi-view depth maps. 
We therefore propose a simplified depth refinement approach 
using the proposed cost function for the depth map 
refinement, which has the following features: low memory 
consumption, fast processing time, and no iteration steps.  

In order to enhance the multi-view depth map along the 
boundary of the objects, we refine it for two regions: moving 
region and static region. We have already defined the moving 
regions using color difference between frames as shown in 
Fig. 9. If there is no variance of a pixel in the time domain, 
we assume that pixel is static. In that case, we can refer the 
previous depth value for the static pixel. Otherwise, we just 
use the refined disparity value without referring the previous 
one. 
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where ws, wd, wt are the weighting factors for depth 
refinement. fs(x, y, ds(x,y) is the smoothness term with 
gradient of the refined depth value in this refinement step. 
fd(x, y, dd(x, y) is the data term for the refined initial depth 
value in the segment-based stereo matching step and ft(x, y, 
dt(x,y) is the temporal term for depth value of the previous 
frame for the static pixel. From our experimental, the 
weighting factors of the cost function ws, wd, wt are 0.3, 0.5, 
and 0.2. obj_mov(x,y) indicates the result of the moving 
object detection. If obj_mov(x,y) is 0, this pixel is not moved. 
Then, we can refer the depth value of the previous frame. 
fd(x, y, dd(x, y) means the minimum MAD with the refined 
initial depth value in the search range from InitDisp-5 to 
InitDisp+5. fs(x, y, ds(x,y) is the depth difference with 
neighborhood depth in the same segment and calculated by 

)),(),,(),,((),(,,( yxsyxsyxsmedyxdyxf cbass =
 

(13) 

We can calculate the smoothness value as shown in Fig. 13. 
sa(x,y) is the refined depth difference at positions between (x 
-1, y-1) and (x-1, y). sb(x, y) is the refined depth difference at 
positions between (x-1, y-1) and (x, y-1). sc(x, y) is the refined 
depth difference at positions between (x, y-1) and (x+1, y-1). 
The function med() takes the median value among arguments 
to avoid the wrong depth selection, so that it maintains depth 
continuity along the vertical and horizontal direction. If the 
selected smoothness gradient is a vertical direction, this 
depth difference is calculated from (x, y-1). Otherwise, the 
depth difference is computed from (x-1, y). 



Fig. 7: Smoothness definition with gradient of the refined 
depth values. 

 
4. EXPERIMENTAL RESULTS AND 

ANALYSIS 
 
 In order to generate the high-quality multi-view depth maps, 
we have constructed a hybrid camera system with five HD 
cameras and one depth camera. The measuring depth range 
of the depth camera is from 0.50m to 5.00m. The baseline 
distance among multi-view HD cameras are 6.5cm. Table 1 
lists the specification of the hybrid camera system. Figure 8 
shows the multi-view test sequences, Café, captured by the 
hybrid camera system. The resolution of the test multi-view 
images is 1920×1080, and that of the depth maps is 176×144. 
 

Table 1: Specification of hybrid camera system. 

Devices Specifications Details 

Multi-view cameras 
(pcA1900-32gc) 

Output format 
NTSC or PAL 
 (16:9 ratio, HD) 

Depth camera 
(SR400) 

Measured  
depth range 

0.50m to 5.00m 

Field of View  43.6° (h) x 34.6° (v)  

Pixel Array Size 
QCIF  
(176 (h) x 144 (v)) 

Sync. Generator 
(NI Trigger Box) 

Output format 
SD/HD Video 
Generation  

 

Fig. 8: Test multi-view image and its depth map. 
 

Figure 9 shows the final multi-view color images and their 
corresponding depth maps for the 1st frame of Café. To 

compare the depth quality of the proposed method with 
previous works, we have shown the disparity map generated 
by the DERS software for the 3rd view image of the 93rd 
frame of Café as shown in Fig. 10. We can observe that some 
regions of the depth maps generated by the previous method 
have noticeable errors in concave areas. Furthermore, the 
mismatched disparities in black hair were remarkably 
reduced by the proposed method. 

 
Fig. 9: Generated multi-view depth video. 

 

Fig. 10: Depth comparison with the previous work. 
 
From Fig. 9 and Fig. 10, we notice that depths for the 

overlapped regions in foreground of Café were generated 
successfully, though the boundaries of the black hair were 
noisy. In addition, the yellow table expresses gradual depth 
difference despite the monotonous color of the table. As a 
result, we could overcome the two main problems of passive 
depth sensing efficiently, depth estimation on the occluded 
and textureless regions, using the depth camera data as the 
supplementary information.  

To evaluate the subjective quality of the proposed method, 
we have synthesized views with the computed depth map. As 
shown in Fig. 11, the generated intermediate views using 
depth maps obtained by the proposed method are reasonable 
in the aspect of subjective quality. For objective comparison, 
we list the PSNR result of the synthesized view images using 
the previous method and the proposed one in Table 2. 

(x-1, y-1) (x, y-1) (x+1, y-1)

(x-1, y) (x, y)

Refined depth

Current position

Sb(x, y) Sc(x, y)

Sa (x, 
y)

(a) Multiview color sequence

(b) Multiview depth sequence

(a) Depth map from DERS (b) Depth map from the proposed system



 
Fig. 11: Synthesized images using generated depth maps. 
 

Table 2: Average PSNR of synthesized images for 
CAMERA3 

SEQUENCE 
Average PSNR 

DERS Proposed method 

Café 34.89 35.18 

 
Table 3 shows the comparison of the processing time in 

the depth refinement step. Since each algorithm have 
different processing step to generate the depth map, it is hard 
to measure the exact processing time in the same condition. 
Therefore, we compare the processing time for the depth map 
refinement step. As shown in Table 3, the proposed method 
is faster than others without the accuracy reduction for depth 
map generation. From the result, it is useful for the 
high-resolution multi-view depth map generation. 

 
Table 3: Comparison of the processing time. 

SEQUENCE 
Processing time (sec) 

DERS Proposed method 

Café 836.26 337.21 

 
 

5. CONCLUSIONS 
 
In this paper, we have presented a new approach to generate 
depth maps corresponding to color images using the 
proposed hybrid camera system. We have used depth 
information acquired by a depth camera to generate the initial 
depth maps for stereo matching. We then have generated the 
final depth maps using segmentation-based stereo matching 
and the proposed cost functions. Experimental results have 
shown that our scheme produced more reliable depth maps 
and multi-view images compared with previous methods. 
With the proposed hybrid camera system, we could solve the 
two main problems in the current passive depth sensing, 
which is depth estimation on occluded and textureless 
regions. Therefore, our proposed system could be useful for 
various 3D multimedia applications and displays. 
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