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ABSTRACT schemes [7] in proportional to the number of cameras, it is
hard to send its data to the receiver side within limited
In recent years, various multimedia services have becorandwidth channel environments.
available and the demand for three-dimensional televisionAs an alternative for the 3D video representation, it is
(3DTV) is growing rapidly. Since 3DTV is considered as thavidely accepted for a monoscopic color video enriched with
next generation broadcasting service that can deliver realigbier-pixel depth information, which is often referred as
and immersive experiences, a number of advanced 3D vidadeo-plus-depth. Since the video-plus-depth representation
technologies have been studied. In this paper, we are goingrtdudes depth information as geometry data of the scene, we
explain the fundamental principles of 3DTV. After reviewingcan generate free-viewpoint images using depth image-based
the basic techniques for 3D image capturing and 3D videendering (DIBR) techniques [8] for the 3D video contents
display systems, we are going to cover several technicafigrvice. Although the video-plus-depth approach can support
challenging issues of 3D video processing, such as camemrow-viewing angle views in comparison to the multi-view
calibration, image rectification, illumination compensatiorvideo, it is considered as a suitable 3D video representation
and color correction. for 3DTV because it can support both backwards
compatibility to the current 2D digital systems and easy
Keywords. 3DTV; Realistic broadcasting system;adaptability to a wide range of different 2D and 3D displays.
Multi-view video-plus-depth data; Time-of-flight camera;Recently, the ISO/ICE JTC/SC29/WG11 Moving Picture
Multi-view camera system; Free viewpoint TV, ViewExperts Group (MPEG) has also been interested in multi-view

synthesis. video with depth (MVD), which is the combination of the
multi-view video and the video-plus-depth approaches, for
1. INTRODUCTION free-viewpoint TV (FTV) and 3DTV[9] [10].

With respect to the current 3DTV and FTV research

Owing to the rapid growth of various digital technologiesactivities, it is very important for us to estimate accurate depth
broadcasting services [1] has been changed froimformation from the natural scene. In the field of computer
unidirectional services to bidirectional services or interactivasion and image processing, a number of depth estimation
services, such as stereoscopic TV [2], three-dimensional (3&yorithms have been proposed to generate accurate depth
TV [3], and realistic broadcasting [4]. As shown in Fig. 1, thenaps [11][12]. However, accurate measurement of depth
next-generation broadcasting system is supposed to providmfarmation from the natural scene still remains problematic.
variety of user-friendly interactive information, as well as In general, there are two approaches to acquire depth
high-quality audio-visual broadcasting contents. information: depth from active sensor depth camera system

Especially, 3DTV is considered as a main theme for thend depth estimation from stereo matching. The latter takes a
future broadcasting system supporting natural viewinignger time and is more complex. In spite of its complexity, it
experience in the true three dimension. In general, 3D natudales not guarantee accuracy of the estimated depth. On the
views are usually created from two 3D video representatiorsther hand, as sensor technologies for obtaining depth
multi-view video [5] and video-plus-depth [6]. A multi-view information are developed rapidly, we can capture more
video represents the 3D scene with the collection of multipbecurate per-pixel depth information from the real scene
videos generated by capturing the scene at different camdieectly using a depth camera system. However, the depth
locations. Since the multi-view video produces natural 3Pamera system has disadvantages: high cost and limited
views with a number of images at the viewing position, weiewing range. Therefore, we need to develop a multi-view
can be easily immersed in the 3D content. However, we neeainera system to solve these problems.
to put more efforts to control a huge number of cameras at the To solve these problems, hybrid camera systems have been
same time. Moreover, since the multi-view camera systepnoposed to generate enhanced depth maps by applying a
usually requires complicated coding and transmissiatereo matching algorithm to multi-view images with depth
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Fig. 1: Overall framework of multi-view image geaton.

using the depth information captured by the deptmeara
[13]. However, these systems cannot produce higbhugon
depth maps, because
low-resolution depth camera.

In this paper, we devise a hybrid camera systetin ane

proposed hybrid camera system and configuration.
To obtain depth maps for multi-view images, we perf a

it completely depends on th&D warping operation onto each multi-view cameriagishe

depth map measured by the depth camera. The wdayt
data is used as an initial depth at each cameitqrosAfter

depth camera and multiple video cameras. The pempos we segment each multi-view image, we assign thethdep
system can produce multi-view images for dynamic 3D value of the warped depth data in each segmetiteasitial

scenes by enhancing the low-resolution depth indbion
measured by the depth camera. The main contribafi@ur
work is to provide a practical 3D video generatgmiution
for dynamic 3D scenes, which is applicable to 3Dstoner
devices.

2. HYBRID CAMERA SYSTEM

The proposed hybrid camera system is composed ef
depth camera and five high-definition (HD) videohoEe
multiple video cameras are arranged in a one-dilneak
array to construct a multi-view camera system. Ackl
generator sends synchronization signals constdatlgach
camera and its corresponding personal computerppadi
with a video capture board. Basically, the propobkgdrid
camera system captures multi-view images by thetiphail

video cameras and a depth map from the depth caatera

each sampling time.

Figure 1 illustrates the overall framework to geter
multi-view video sequences with their correspondiepth
maps using the hybrid camera system. After calibgatach
camera independently, we perform an image rectifinato
adjust vertical mismatches in multi-view images.efihwe

or

depth of the segment. In order to improve the deptiuracy
of object boundaries, we separate the moving objaod
detect occlusion and disocclusion regions. Thendépth of
each segment is refined by a color segmentatioaebstereo
matching method. Finally, we obtain multi-view dephaps
by conducting a pixel-based depth map refinemeitgua
proposed cost function in each segment.

Depth Cameras

Fig. 2: Proposed hybrid camera system..
2.1 Relative Camera Calibration
Since the proposed fusion camera system consistsvaf

different types of cameras, a depth camera anéasté@deo
cameras, it is essential to find out relative canmeformation

apply a color correction operation to maintain colo through camera calibration. For that, we apply anem

consistency among multi-view images. Figure 2 shdtives

calibration algorithm to each camera in our canmsrstem



and obtain projection matrices for the depth caraeheach
video camera.

R =KJR 1] 1)

R = KRl

where Ps is the projection matrix of the depth camera
represented by its camera intrinsic maiix rotation matrix
R, and translation vectdg. P, means the projection matrices
of thek™ video camera which consisted of its camera initrins
matrix Ky, rotation matrixR,, and translation vectay.

We then employ a rectification operation. The caser
have geometric errors because they are set mariyahgand.
In order to minimize the geometric errors, we fitlie
common baseline, and then apply the rectifying
transformation to the stereo image. Consequenthg t
projection matrix of video cameras are changed as

P = Ki[R 1]

(@)

®3)

whereK, andR, are the modified camera intrinsic matrix and
rotation matrix of thek™ video camera, respectively.
Thereafter, we convert the rotation matRx of the depth
camera into the identity matrik by multiplying inverse
rotation matrixRs’. The translation vectot, of the depth
camera is also changed into the zero madriy subtracting
the translation vectot,. Hence, we can define new relative
projection matrices for the stereo camera on theishaf the
depth camera as

R =K O] (4)

P = K [RR ™It —t,] (5)

whereP, and |5'k are final projection matrices of the depth
camera and th&" video camera, respectively. After relative
camera calibration, we resolve the color mismataiblem
of stereo images using a color calibration methdte color
characteristics of captured images are usually nsistent
due to different camera properties and lighting ditions
even the hardware type and specification of thetipial
cameras are the same. Thereafter, we perform talate
filtering to reduce optical noises included in tthepth map
acquired from the depth camera.

2.2 Depth Calibration

The depth values measured by the depth cameraesye v
sensitive to noises. Their sources are diverseudiig
physical limitation of hardware and specific objpobperties,
etc. Therefore, depth data are noticeably contamethaith
random and systematic measurement errors depermhent
reflectance, angle of incidence, and environmefdators
like temperature and lighting. To reduce those rerrave
employ a depth calibration method.

For depth calibration in indoor environments, wenpate
the depth of the planar checker pattern within lihdted
space by increasing the distance from the imagenpato the

depth camera using our system as shown in Figo &xfract
the corresponding feature points in two differeypets of
cameras efficiently, we use the color checker patté&he
pattern image is captured in evergnbdistance. The plane
pattern is orthogonal to the image plane.

Since the proposed fusion camera system consisigoof
different types of cameras, a depth camera anéastéadeo
cameras, it is essential to find out relative canieformation
through camera calibration. For that, we apply anea
calibration.

=

&

(a) Patterracquisition (b) Pattern images from hybrid camera system

Fig. 3: Acquisition of the planar check pattern depth
calibration.

Thereafter, we make a four dimensional look-up gabl
(LUT) mapping 3D positions of the multiple videonoaras
and the depth value from the depth camera. 3D ipnosis
constructed by x, y position of the feature poind @he real
depth value calculated by the multi-view image. thep
accuracy test using the acquired depth map antratdd
depth map the real depth value z calculated from th
multi-view image by pairwise stereo matching. Singe
have already obtained camera parameters, the ezhd
value is calculated by

KB

d.(P, Py) :m
n\Mx» My

(6)

whereK is the focal length of the left camera aBds the

baseline distance between two video camebgf,, p) is

the real depth value corresponding to the meastisghrity

value du(py, p,) at the pixel positiongg, p,) in the checker
pattern.

2.2 Radial Distortion Correction

Depth map from the depth camera have a large anmfunt
lens radial distortion. There are two types lenstadtion
which are barrel distortion and pincushion distortiln this
case, the barrel distortion is occurred by thdrisic problem
of the depth camera. This distortion causes not thd shape
mismatch between the color image and the correspgnd
depth image but also the errors in the resultoofesfeature
point based processing such as camera calibration.

In order to avoid that situation, we have to perfoadial
distortion correction to the obtained depth imadegeneral,
there are two main categories of radial distortionrection.
Methods in the first category use the point coroesiences
between two or more views. The second category ladso



lots of approaches which are based on the distatimight
line components in the image.

In the proposed fusion camera system, we use orleeof
second approaches to correct the radial distoiidhe depth
images. After finding the curved straight line campnt in
the captured image, we estimate the distortionecearid the
distortion parameter. With the distortion infornoettj we can
reconstruct the image from the distorted image.ur€ig4
shows the depth and intensity images before arat #fie
correction.

Distorted

Fig. 4: Radial distortion correction.

3. MULTI-VIEW DEPTH MAP
GENERATION

3.1 3D Warping of Depth Map

We generate initial depth of the multi-view image b
performing 3D warping of the depth values obtaifredch the
depth camera. First, we project pixels of the dap#p into
the 3D world coordinate using the depth values. thém
reproject the 3D points into each view.

Let us assume th&@y(ps, Psy) is the depth intensity at the
pixel position g, Psy) in the depth mapPy(Xsy, Ysy Z7) is a
3D point corresponding t®.. The backward projection for
moving Ds to the world coordinate is carried out by

R=K; O, ™

whereKgtindicates the intrinsic matrix of the depth camera.

In the backward 3D warping, since rotation and station
matrices of the depth camera are the identity matand

zero matrixO as Eq. 4, we have only to consider its intrinsic

matrix. Thereafter, we project the 3D poiftsinto the each
view to get its corresponding pixel positipp (u, Vi) of the
K"-view image by

(8)

whereP, indicates the projection matrix of thE-view video
camera. Figure 5 shows the result of 3D warpingigushe
acquired depth maps.

(a) Warped depth image

(b) Matched to color image

Fig. 5: 3D warped depth map.
3.2 Region Separation

To estimate depth maps of multiple video camerasguhe
warped depth information, we segment the multi-vimage
by a mean-shift color segmentation algorithm. Hosvewe
cannot control the maximum segment size because ike
no parameter to control the maximum segment size.

When we perform the segment-based stereo matohinag,
segment has one depth value. If the size of segimeta
large, we cannot get a smooth depth map. The ethgr if
the size of segment is too small, it is hard toroome
textureless problem during the stereo matchingsdlee this
problem, we split one image into 16x16 block segsieso
that we can limit the maximum segment size.

Figure 6 shows the procedure of the segment merding
block can have two or more color segments. Befoeeging
the segment, we split the segmented image intokkased
segment again. If each segment is smaller than diegf of
the block, we merge it into one segment by seagchin
adjoined blocks to find the same indexed segmétitel size
of the merged block is larger than threshold, thergimg
procedure is finished; otherwise we repeat the sproeess
until merging condition is satisfied.

BLOCK_SIZE =16
_

count_pixels>Th

if (count_pixels > Th)
color_index++

else if (count_pixels < Th)
seg_merging( );

Fig. 6: Block-based segment merging.

The searching order of connected blocks is righttam,
left, and top including the diagonal directions dese left
and top blocks are merged block and right and botitock
will be merged blocks. For exampl8egment Adivide into
many block-based segments amdock (i, j) have two
segmentsSegment A_hAnd Segment B .1Since the size of
Segment A_1s smaller than the predefined threshold value
in Fig. 8, the same indexed segmenSefyment A_1is the
blocks in {+1, j), (i, j+1), and {+1, j+1). We merge the



currentSegment A_and the same indexed segmenti#i (
i) by the searching order.

3.3 Segment-based Depth Estimation

We define the initial depth of each segment as 3Dped
depths in the segment; the assumption is that sagment
has one depth value. However, there is one protdeset the
initial depth using warped depth value. The 3D wagps
performed from the small resolution depth map te HD
image in our system. Since there are many erroth si$
camera calibration error and depth error acquiredhfthe
depth camera, the warped result is not exactly meatavith
the HD image.

To obtain the accurate initial depth value, we tise
warped results as multiple initial depth values &bereo
matching. However, if the given initial depth isetkerror
value, we could find wrong areas which has localimum.
Therefore, the assignment of the correct initiaptteis
crucial in using the depth camera. Because thereamect
initial depths around the currently warped positiwhich are
not exactly matched with the original image, weréase the
candidates of the initial depth value to resolis firoblem.
By using the multiple initial depths, we can satiah depth
for the depthless regions in the boundary of object

For determining the disparity of each segment,
calculate the mean of absolute difference (MAD)ueal
between the segment in the current view image aed i
matched region in the left and right view images by

FG _d, (InitDisp) = min(min(za: MAD(j), min(zb: MAD(k))

j=0 k=0

9)

wherei is the index of the segmentandk means index of
the multiple initial deptha andb are the number of the initial
depth in the horizontal and vertical regions, resigely.
FG_d(InitDisp) is the refined initial depth value from
pairwise stereo matching. Search range to estidigparities
of the current view image is frommitDisp-5 to InitDisp+5.
The disparity with the minimum MAD in the searcinge is
chosen as the refined initial disparity of the segtrin the
current view image.

d, (InitDisp) = min(FG _d, (InitDisp), BG _ d, (InitDisp)) (11)

3.4 Depth Refinement

In stereo matching, depth refinement usually enbsnepth
accuracy through iteration at the cost of long pssing time,
lots of memory requirement, and heavy computation.
However, it has challenges when our target is toegge
high-resolution 3D video based on multi-view depthps.
We therefore propose a simplified depth refinenagroach
using the proposed cost function for the depth map
refinement, which has the following features: lovemory
consumption, fast processing time, and no iteragteps.

In order to enhance the multi-view depth map altmg
boundary of the objects, we refine it for two regiomoving
region and static region. We have already defihedhoving
regions using color difference between frames asvshin
Fig. 9. If there is no variance of a pixel in tlme domain,
we assume that pixel is static. In that case, wereger the
previous depth value for the static pixel. Othenyige just
use the refined disparity value without referrihg previous
one.

W E(x yd(x y)+ w § (xy.ds y)) if obj _moux y)=1

=] ol
we VDT w00y Ao+ w 00y a0+ w0y, Gy) it obi_ mowxy) =0

(12)
where ws, Wy, W, are the weighting factors for depth
refinement. f(X, y, dy{Xy) is the smoothness term with
gradient of the refined depth value in this refiesinstep.
fa(x, ¥, dy(X, y) is the data term for the refined initial depth
value in the segment-based stereo matching sted,(@ng,
di(x)y) is the temporal term for depth value of the poesi
frame for the static pixel. From our experimentthe
weighting factors of the cost functiom, wy, w; are 0.3, 0.5,
and 0.2.obj_moyxy) indicates the result of the moving
object detection. 16bj_moyx,y) is 0, this pixel is not moved.
Then, we can refer the depth value of the previarse.
fa(x, ¥, d¢(X, y) means the minimum MAD with the refined
initial depth value in the search range franitDisp-5 to
InitDisp+5. f{X, y, dyxy) is the depth difference with

Since the acquired depth map is only for foregroundneijghborhood depth in the same segment and cadciitat

regions, there is no depth information for backgibareas.
In estimating depth of background, we set the mimmand
maximum disparity value. We then find the minimunADi

as the initial disparity of the current segment time

background by

BG _d, (InitDisp) = min( maxZrilsls/IAD(i )

i=min Disp

(10)

where BG_di(InitDisp) is the disparity for background,
minDisp and maxDisp mean minimum and maximum
disparity search range for background. The dispavith the
minimum MAD is chosen as the initial disparitInitdisp)
of the segmeritin the current view image by

fi(xy,d(x y)=med(s,( x ¥, (%Y, s(xY) (13)

We can calculate the smoothness value as showig.il®
si(x,y) is the refined depth difference at positions leetw &
-1, y-1) and (x-1, y)s,(X, y) is the refined depth difference at
positions betweerx{1, y-J and &, y-1). s«(x, y) is the refined
depth difference at positions betweeany-1) and &+1, y-1).
The functionmed) takes the median value among arguments
to avoid the wrong depth selection, so that it n@ains depth
continuity along the vertical and horizontal difent If the
selected smoothness gradient is a vertical dinectibis
depth difference is calculated from, (y-1). Otherwise, the
depth difference is computed from 1, y).



Sy SKY) compare the depth quality of the proposed methoth wi
previous works, we have shown the disparity mapegead

by the DERS software for the“3view image of the 93

(Ly1) |y | (L y-1) _ frame of Café as shown in Fig. 10. We can obsdraestome

S B Refineddepth regions of the depth maps generated by the previwtsod

V) O curentposition have noticeable errors in concave areas. Furtherntbe
Ly | ) mismatched disparities in black hair were remankabl

reduced by the proposed method.

Fig. 7: Smoothness definition with gradient of théned
depth values.

4. EXPERIMENTAL RESULTSAND
ANALYSIS

In order to generate the high-quality multi-vieepth maps,
we have constructed a hybrid camera system with D
cameras and one depth camera. The measuring damibk r
of the depth camera is from 0.50m to 5.00m. Theelbes
distance among multi-view HD cameras are 6.5cmlelab
lists the specification of the hybrid camera syst&igure 8
shows the multi-view test sequences, Café, capthyethe
hybrid camera system. The resolution of the tedtiimiew
images is 1920x1080, and that of the depth mapgas144.

(a) Multiview color sequence

Table 1: Specification of hybrid camera system. '(b)Mumviewdept’h' sequence

Devices Specifications Details

Multi-view cameras NTSC or PAL Fig. 9: Generated multi-view depth video.
Output format . !
(pcA1900-32gc) (16:9 ratio, HD)

Measured

depth range 0.50m to 5.00m

Depth camera | ciog ot view | 43.6° (h) x 34.6° (v)

(SR400)
. . QCIF
Pixel Array Size (176 (h) x 144 (v))
Sync. Generator SD/HD Video
(NI Trigger Box) Output format Generation

(a) Depth map from DERS (b) Depth map from the pemgbsystem

Fig. 10: Depth comparison with the previous work.

From Fig. 9 and Fig. 10, we notice that depths tfa
overlapped regions in foreground Gfafé were generated
successfully, though the boundaries of the bladk ware
noisy. In addition, the yellow table expresses gehdiepth
difference despite the monotonous color of theetallls a
result, we could overcome the two main problempasfsive
depth sensing efficiently, depth estimation on ¢ieeluded
and textureless regions, using the depth camem akathe
supplementary information.

To evaluate the subjective quality of the propasethod,
we have synthesized views with the computed depih. rAs
, shown in Fig. 11, the generated intermediate viewsing

Fig. 8: Test multi-view image and its depth map. depth maps obtained by the proposed method arenable
in the aspect of subjective quality. For objectbeanparison,

Figure 9 shows the final multi-view color imagesiaheir we list the PSNR result of the synthesized viewgetausing
corresponding depth maps for the 1st frame of Cafié. the previous method and the proposed one in Table 2




(a) View 2 using depth map 1 and 3

; (a) View 4 usingflemap 3 and 5 ’ [1]
Fig. 11: Synthesized images using generated degfts.m 2]

Table 2: Average PSNR of synthesized images for

CAMERA3 3]
Average PSNR
SEQUENCE (4]
DERS Proposed method
Café 34.89 35.18
(5]

Table 3 shows the comparison of the processing time
the depth refinement step. Since each algorithme hav
different processing step to generate the depth maphard
to measure the exact processing time in the sameitom. (6]
Therefore, we compare the processing time for #pgrdmap
refinement step. As shown in Table 3, the propasethod
is faster than others without the accuracy redadio depth
map generation. From the result, it is useful foe t [7]
high-resolution multi-view depth map generation.

Table 3: Comparison of the processing time.

Processing time (sec) 8]
SEQUENCE
DERS Proposed method
. [9]
Café 836.26 337.21

5. CONCLUSIONS

ACKNOWLEDGEMENTS

This research was supported by the MKE(The Ministfy
Knowledge Economy), Korea, under the ITRC(Informati
Technology Research Center) support program sigeehhy
the
(NIPA-2010-( C1090-1011-0003)).

NIPA(National IT Industry Promotion Agency)

REFERENCES

Ministry of Science and Technology of Korea, Na&bn
Technology Roadmap, 2003.

K. Balasubramanian, “On the Realization of Constriie-
Stereo Television,IEEE Trans. on Consumer Electroniesl.
50, no. 3, pp. 895-902, 2004.

C. Fehn, E. Barre, and S. Pastoor, “Interactive 3Daw&pts
and Key TechnologiesProceedings of the IEEEoI. 94, no.
3, pp. 524-538, 2006.

J. Cha, S.M. Kim, S.Y. Kim, S. Kim, I. Oakley, J. RyK.H.
Lee, W. Woo, and Y.S. Ho, “Client System for Redatisti
Broadcasting: a First Prototypel’ecture Notes in Computer
Sciencevol. 3768, pp. 176-186, 2005.

P. Merkle, A. Smolic, K. Muller, and T. Wiegand, ffigient
Prediction Structures for Multiview Video Coding/EEE
Trans. on Circuit and Systems for Video Technqlegy. 17,
no. 11, pp. 1461-1473, 2007.

C. Fehn, “Depth-image-based Rendering (DIBR), Compassi
and Transmission for a New Approach on 3D T¥sbc. of
SPIE Stereoscopic Displays and Virtual Reality &ystvol.
5291, pp. 93-104, 2004.

K. Yamamoto, M. Kitahara, H. Kimata, T. Yendo, Tjik M.
Tanimoto, S. Shimizu, K. Kamikura, and Y. Yashima,
“Multiview Video Coding Using New Interpolation an@olor
Correction,” IEEE Trans. on Circuit and Systems for Video
Technologyvol. 17, no. 11, pp. 1436-1448, 2007.

A. Ignatenko and A. Konushin, “A Framework for Diept
Image-based Modeling and Renderingfoc. of Graphicon
pp. 169-172, 2003.

P. Kauff, N. Atzpadin, C. Fehn, M. Muller, O. Schre@.
Smolic, and R. Tanger, “Depth Map Creation and Imaaged
Rendering for Advanced 3DTV Services Providing
Interoperability and Scalability,"Signal Processing Image
Communicationvol. 22, no. 2, pp. 217-234, 2007.

[10] S.U. Yoon and Y.S. Ho, “Multiple Color and Depth ¥

In this paper, we have presented a new approagknerate
depth maps corresponding to color images using the
proposed hybrid camera system. We have used depth
information acquired by a depth camera to gendhaténitial
depth maps for stereo matching. We then have gekethe
final depth maps using segmentation-based stergohing
and the proposed cost functions. Experimental tedwdve
shown that our scheme produced more reliable deyaths
and multi-view images compared with previous meghod
With the proposed hybrid camera system, we coulksthe
two main problems in the current passive depth isgns
which is depth estimation on occluded and textseele
regions. Therefore, our proposed system could eéulfor
various 3D multimedia applications and displays.

Coding Using a Hierarchical Representatiof;EE Trans. on
Circuit and Systems for Video Technolpggl. 17, no. 11, pp.
1450-1460, 2007.

[11] D. Scharstein and R. Szeliski, “A Taxonomy and Estan of

Dense Two-frame,’International Journal Computer Vision
vol. 3768, pp. 164-175, 2005.

[12] C. Zitnick and T. Kanade, “A Cooperative Algorithmr fo

Stereo Matching and Occlusion DetectiolfEE Trans. on
Pattern Analysis and Machine Intelligenceol. 22, no. 7,
pp.675-684, 2000.

[13] E. Lee , Y. Kang, Y. Jung and Y. Ho, “Three-dimemsil

Video Generation using Foreground Separation and
Disocclusion Detection,” 3DTV Conference 2010, pp(164),

2010.



