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Non-blind image deconvolution is a process that obtains a sharp latent image from a blurred image when
a point spread function (PSF) is known. However, ringing and noise amplification are inevitable artifacts
in image deconvolution since perfect PSF estimation is impossible. The conventional regularization to
reduce these artifacts cannot preserve image details in the deconvolved image when PSF estimation error
is large, so strong regularization is needed. We propose a non-blind image deconvolution method which
preserves image details, while suppressing ringing and noise artifacts by controlling regularization
strength according to local characteristics of the image. In addition, the proposed method is performed
fast with fast Fourier transforms so that it can be a practical solution to image deblurring problems. From
experimental results, we have verified that the proposed method restored the sharp latent image with
significantly reduced artifacts and it was performed fast compared to other non-blind image deconvolu-
tion methods.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

One of the most common and unpleasant defects in photography
is motion blur caused by camera shake. Especially, if a picture is ta-
ken in the dim light conditions, it takes long time to get enough light
and the camera shake by hands results in a degraded image. If a mo-
tion blur is shift-invariant, recovering a true latent image from the
degraded image reduces to image deconvolution. The blurring pro-
cess is commonly modeled as a convolution of the true latent image
and a point spread function (PSF) with additive noise:

B ¼ K � I þ N; ð1Þ

where B is the degraded image, I is the true latent image, K is the
PSF, and N is additive noise. Image deconvolution is a process to re-
store I from B.

If both the PSF and the latent image are unknown, the problem
is called blind deconvolution. In blind deconvolution, the problem
is challenging since both PSF and the latent image should be esti-
mated from the blurred image. Thus, to facilitate the problem,
early approaches assume simple parametric models for the PSF
such as linear motion blur or out-of focus blur [1,2]. Additional
input was also used in some methods. Ben-Ezra and Nayar
attached a low-resolution video camera to a high-resolution still
camera to help in recording the PSF [3]. Yuan et al. used a pair of
images, a blurred image and a noisy image which was taken with
fast shutter speed, to estimate the PSF and the latent image [4].
ll rights reserved.
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Recently, the PSF was estimated from a single image. Fergus et
al. used a variational Bayesian method with natural image statis-
tics to estimate the PSF [5]. Jia used an alpha matte that describes
transparency changes caused by a motion blur for PSF estimation
[6]. Shan et al. proposed the blind deconvolution method using a
maximum a posteriori (MAP) to estimate both the PSF and the la-
tent image from a single image [7]. However, it is very difficult to
estimate the exact PSF from a single image. For example, the satu-
rated pixels or homogeneous region on the blurred image prevent
the PSF from being estimated correctly.

On the other hand, if the PSF is assumed to be known or esti-
mated in other ways, the problem is reduced to estimate the latent
image alone. This is called non-blind image deconvolution. Wiener
filtering [8] and Richardson–Lucy method [9] are traditional and
popular non-blind image deconvolution methods. Although these
methods were proposed several decades ago, they are still widely
used for image restoration because they are simple, fast, and give
good results in case of the relative small blur. However, non-blind
deconvolution is still an ill-posed problem although the PSF is
known, so it gives rise to artifacts in the deconvolved image. The
main artifacts are ringing and noise amplification. Fig. 1 shows
the deconvolution result. Ringing is the ripple-like artifact that ap-
pears around strong edges in the deconvolved image as shown in
Fig. 1(c). The PSF is often band-limited, so its frequency response
shows zero or near-zero values at the high frequency. Therefore,
the direct inverse of the PSF with the blurred image causes large
signal amplification at the high frequency components and this is
represented as the ringing near the edges and amplified noise.
Especially, PSF estimation errors accelerate the ringing artifacts
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Fig. 1. Ringing artifacts in image deconvolution. (a) Blurred image and estimated PSF. (b) Deconvolution result. (c) Magnified patch.
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and give very unpleasant deconvolved results [7]. Various regular-
ization techniques to reduce these artifacts are proposed. Cham-
bolle and Lions proposed total variation regularization with
Laplacian prior [10]. Levein et al. used a sparse prior with heavy-
tailed distribution that shows quite good results with significantly
reduced artifacts [11]. Shan et al. also exploit the image prior de-
fined on their own to reduce artifacts in the deconvolved image
[7]. Recently, Cho et al. proposed a content-aware image prior
which adapt prior to the image contents. This prior is more effec-
tive to recover the latent image than other fixed image priors since
the gradient profile of the image is changed according to textures
[23]. All of them introduce image prior into the deconvolution, so
they solve the MAP problem instead of maximum likelihood (ML)
estimation. However, all these regularization methods using the
MAP are effective only when the PSF size is small and the esti-
mated PSF has no error. If the PSF size is large and the estimated
PSF is incorrect, then the deconvolved image contains severe ring-
ing or amplified noise. The strong regularization to reduce these
severe artifacts destroys the image details in the deconvolved im-
age, and this is inevitable problem in image deblurring since per-
fect PSF estimation is impossible.

We propose a non-blind image deconvolution method with
adaptive regularization that controls the regularization strength
adaptively according to the local characteristics. It reduces ringing
and noise in a smooth region effectively and preserves image de-
tails in a textured region simultaneously. For adaptive regulariza-
tion, we make reference maps that give right edge information so
that textured region and smooth region can be distinguished well.
Regularization strength is controlled adaptively referring to these
reference maps. There are other several methods exploiting pilot
images like reference maps in our algorithm to improve quality
of deconvolution. Lou et al. use the deconvolved image with Tikho-
nov regularization as their pilot image for computing weights of
non-local operator [24]. Takeda et al. also estimate the pilot image
by Wiener filtering followed by kernel regression to compute
weight matrix [25]. Dabov et al. use the regularized inversion using
BM3D filter to estimate the pilot image [26]. All these pilot images
are the estimates of the deconvolution results, so they give impor-
tant information for deconvolution, and enable better deconvolu-
tion results to be achieved. However, since all pilot images in
these methods are estimated using very simple method for compu-
tational advantage, they suffer from ringing artifacts when the esti-
mated PSF is not correct and these artifacts in pilot images have
bad influence on the final results. In our algorithm, the reference
maps are elaborated using both blurred image and deconvolved
image by adaptive regularization with hyper-Laplacian image
prior. Thus, they give well-defined edge and texture information.
Furthermore, proposed image deconvolution with adaptive regu-
larization is performed very fast in the frequency domain using
the fast Fourier transforms (FFTs). The experimental results show
that the latent image with high-quality is recovered very fast from
the blurred image compared to other various non-blind image
deconvolution methods.

The rest of this paper is organized as follows. In the next Sec-
tion, we will briefly review the conventional regularization tech-
niques and present its limitations on recovering the high-quality
latent image. In Section 3, we will introduce the high-quality
non-blind image deconvolution with adaptive regularization. In
Section 4, performance of the proposed method will be verified
and the paper will be completed with conclusions in Section 5.

2. Conventional regularization methods

The most basic form of regularization is the Tikhonov regulari-
zation [12]. It is given as follows:

I� ¼ arg min
I

XN

i¼1

ððI � K � BÞ2i þ gjIij2Þ; ð2Þ

where i is the pixel index, and g is the regularization weighting fac-
tor that controls strength of regularization. Tikhonov regularization
reduces artifacts quite well, but since it assumes the image to be
smooth and continuous, it produces smooth results and fails to re-
cover the sharper edges.

More advanced regularization techniques are proposed using
the image prior. According to Bayes’ theorem, the posteriori for
the latent image is written as:

pðIjBÞ / pðBjIÞpðIÞ; ð3Þ
where p(BjI) denotes the likelihood of the blurred image given the
latent image, and p(I) represents the image prior. The MAP solution
of I can be obtained by minimizing the following energy:

I� ¼ arg min
I

EðIÞ; ð4Þ

where

EðIÞ ¼ � log pðIjBÞ ¼ � log pðBjIÞ � log pðIÞ: ð5Þ
The likelihood is based on noise, N = B � I � K, and it can be as-
sumed to follow Gaussian distribution [11] or Poisson distribution
[13]. If the noise model is Gaussian and the image prior is assumed
that the first derivative of image follows Laplacian distribution, Eq.
(5) can be represented as:

EðIÞ ¼
XN

i¼1

ððI � K � BÞ2i þ gðjðI � f1Þij þ jðI � f2ÞijÞÞ; ð6Þ

where f1 = [1 � 1], f2 = [1 � 1]T, and g is the regularization weight-
ing factor. This regularization technique is called total variation,
and it takes into consideration the information that the image data
set is blocky and discontinuous [10]. This method helps to obtain
the discontinuities or steep gradients in the restored image.

Recently, various studies on global images have shown that the
image gradients have heavier tails than a Gaussian or Laplacian
distribution. Roth and Black modeled image statistics with a prod-
uct of potentials defined on filter outputs [14]. Weiss and Freeman



Fig. 2. Deconvolution results with conventional regularization. (a) Blurred image and estimated PSF (b) Strong regularization result. (c) Weak regularization result.
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used Gaussian Scale Mixture Fields of Experts (GSM FOE) model for
image prior [15]. A simpler form of the heavy-tailed distribution of
image gradients is the hyper-Laplacian model. Hyper-Laplacian
image priors have been often used in image deblurring [11,16].
The hyper-Laplacian image prior can be modeled as:

pðIÞ / e�kjOIja with 0:5 6 a 6 0:8: ð7Þ

With the Gaussian noise model and the hyper-Laplacian image
prior, Eq. (5) can be represented by

EðIÞ ¼
XN

i¼1

ððI � K � BÞ2i þ gðjðI � f1Þij
a þ jðI � f2Þij

aÞÞ; ð8Þ

where g is the regularization weighting factor.
On the other hand, Yuan et al. also proposed a regularization

technique using a bilateral filter [17]. Although this regularization
technique shows excellent results with preserved edges and re-
duced artifacts, it takes too much time to obtain a final result
due to repetitive intra- and inter-scaling and filtering operation
in each scale.

In all above conventional regularization techniques, the regular-
ization weighting factor, g is applied to all pixels with the same
intensity. Fig. 2 represents the deconvolution results with conven-
tional regularization. The left one shows the deconvolution result
with strong regularization and the right one is that of weak regu-
larization. Levin’s method was used for image deconvolution, and
the regularization weighting factors of 0.1 � 10�1 and 0.1 � 10�9

were used for strong regularization and weak regularization
respectively. Strong regularization in the image deconvolution
helps to reduce the artifacts in the smooth region, but it blurs
the edges in the textured region. Weak regularization preserves
image details well, but it does not remove artifacts effectively.
Therefore, the conventional regularization has limitations if the
PSF estimation error is large or image noise is too severe to be ig-
nored. Large PSF estimation error and severe noise give rise to se-
vere ringing and noise amplification and those severe artifacts
require strong regularization which destroys image details.

Furthermore, Eq. (8) is not a convex function, so it is difficult to
get a solution optimizing Eq. (8). Commonly used method is an
iteratively reweighted least squares (IRLS) method that solves a
series of weighted least-squares problems with conjugate gradient
(CG) [11]. In this method, since typically hundreds of CG iterations,
each involving an expensive convolution of the current image esti-
mate and the PSF, are needed, it takes too much time to process.

3. High-quality non-blind image deconvolution with adaptive
regularization

The main idea of our algorithm is to change strength of regular-
ization based on the reference map which indicates the smoothed
region and textured region. In the smooth region, strong regulari-
zation is performed to suppress the artifacts and in the textured re-
gion, weak regularization is applied to preserve image details. The
first reference map is estimated from the blurred image and the
first adaptive regularization is performed based on the first refer-
ence map. Since the blurred image does not show right edge infor-
mation, the first adaptive regularization does not work well. Thus,
the second reference map is estimated using the first deconvolved
image, and the second adaptive regularization is executed with the
second reference map. All adaptive regularizations are performed
in the frequency domain for fast computation. However this com-
putation in the frequency domain causes boundary artifacts at the
deconvolved image boundaries and these artifacts need to be re-
moved. In this Section, we will cover each step of our algorithm
in detail. Reference map estimation, adaptive regularization, fast
computation of adaptive regularization, and how to reduce the
boundary artifacts will be described thoroughly. The overall algo-
rithm for high-quality non-blind image deconvolution with adap-
tive regularization is outlined in Algorithm 1.

Algorithm 1. High-quality non-blind image deconvolution
with adaptive regularization

Require: Blurred image B, PSF K
Require: Expansion width T, smoothness window radius r
Require: Threshold for 1st reference image estimation Ta

Require: Threshold for 2nd reference image estimation Tb

Require: Regularization weighting factor for smooth region
g1

Require: Regularization weighting factor for textured region
g2

1: B_ex = img_exp(B,T,r) %Expand blurred image for RBA
2: Y = rgb2ycbcr(B)
3: Y = Y(:, :,1) %Extract luma from blurred image
4: for i = 1 to 2
5: if (i = 1) then
6: Ref1 = issmooth1(Y,Ta) %Estimate 1st reference

map
7: I1 = deconv_adapregu(B_ex,K,g1,g2,Ref1) %1st

adaptive regularization
8: else
9: Ref2 = issmooth2(B, I1,Tb) %Estimate 2nd reference

map
10: I2 = deconv_adapregu(B_ex,K,g1,g2,Ref2) %2nd

adaptive regularization
11: end if
12: end for
13: I = I2(1:size(B,1), 1:size(B,2), :)
14: output: I
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3.1. Reference map estimation

The reference map is for classifying the smooth region and the
textured region correctly. The estimated reference map is used
for adaptive regularization. It is difficult to obtain right edge infor-
mation from the blurred image directly, so the reference map is
estimated twice.

The first reference map is estimated from the blurred image.
Since the smooth region which has no edges in the blurred image
is still the smooth region in the recovered image, the smooth re-
gion, X, is defined as follows:

p 2 X if EgðpÞ < Ta and

EgðpÞ ¼
X

h2Wx

hþ
X

h2Wy

v

0
@

1
A,Ntotal; ð9Þ

where Eg(p) is the edge strength at the pixel location p on the
blurred image, Wx = W � [1 � 1], Wy = W � [1 � 1]T, W is the 3 � 3
window whose center is located on p, and Ntotal is the total number
of pixels in W. Ta = 0.3 � 10�2 is used for the experiment. The tex-
tured region is the region outside X. The first estimated reference
map with Eq. (9) is represented in Fig. 3. The white pixels mean
the smooth region and dark pixels the textured region.

The first adaptive regularization is performed with the esti-
mated first reference map. We will explain adaptive regularization
in detail in Section 3.2. The second reference map is estimated
from the deconvolved image with the first adaptive regularization.
The deconvolved image with the first adaptive regularization
shows much better edge information than the blurred image, so
better reference map can be estimated from it. Shan et al. also de-
fine a locally smooth region in their algorithm which functions
similarly to our reference map [7]. They constrain the blurred im-
age gradient to be similar to the unblurred image gradient in the
smooth region. However, since they define the locally smooth re-
gion based on only blurred image where edge information is not
correct, their anti-ringing effect is not good near the edges.

At the second reference map estimation, we use other criterion
to distinguish the textured region from the smooth region elabo-
rately instead of Eq. (9). Fig. 4 represents step signals in the blurred
Fig. 4. Step signal characteristics of blurred image and deconvolved image. (a) Ste

Fig. 3. First reference map estimation. (a) B
image and the deconvolved image. The derivative of step signal in
the deconvolved image is larger than that in the blurred image.
Thus, the derivative of p on the blurred image, OB(p), and the deriv-
ative of p on the deconvolved image, OI(p), are compared, and if the
difference, OI � OB, is larger than the predefined threshold, Tb, the
pixel p is defined to be in the textured region. Otherwise, the pixel
is defined to be in the smooth region. We used 0.025 as a Tb value
for the experiments. The deconvolved image with the first adaptive
regularization and the estimated second reference map are repre-
sented in Fig. 5. In the second reference map, the white pixels
mean the smooth region and the dark pixels the textured region
as the first reference map. The second reference map distinguishes
the textured region from the smooth region much better than the
first reference map.

3.2. Adaptive regularization

Adaptive regularization is performed based on the estimated
reference map. We use the MAP solution as a basic frame for image
deconvolution. For convenience, MAP solution is represented again
in Eq. (10).

I� ¼ arg min
I

XN

i¼1

ððI � K � BÞ2i þ gðjðI � f1Þij
a þ jðI � f2Þij

aÞÞ: ð10Þ

In the conventional regularization, the same value of g is applied to
all pixels, but the proposed method controls g value adaptively
according to the local characteristics. In the textured region, small
g value is applied, and in the smooth region, large g value is applied.
Furthermore, we use the model of the spatially random distribution
of image noise as an image noise model, N = I � K � B [7]. This mod-
el states that not only image noise but also its higher-order partial
derivatives follow Gaussian distributions with different standard
deviations. This model is helpful to restore finer details in the
deconvolved image than the normal distribution model. Based on
these, we modify Eq. (10) as follows:

I� ¼ arg min
I

XN

i¼1

X
@�2H

skð@�Þð@�I � K � @�BÞ2i þ gpðjðI � f1Þij
a þ jðI � f2Þij

aÞ
 !

; ð11Þ
p signal in blurred image. (b) Step signal in deconvolved image. (c) OI � OB.

lurred image. (b) First reference map.



Fig. 5. Second reference map estimation. (a) Blurred image. (b) Deconvolved image with first adaptive regularization. (c) Second reference map.

Fig. 6. Effect of adaptive regularization. (a) Blurred image. (b) Deconvolution result without adaptive regularization. (c) Deconvolution result with adaptive regularization.
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where @⁄ denotes the operator of any partial derivative with k(@⁄) =
q representing its order. @⁄N = @⁄(I � K � B) follows a Gaussian dis-
tributions with standard deviation rq = r0, where r0 denotes the
standard deviation of N. H = {@0,@x,@y,@xx,@xy,@yy} represents a set
of partial derivative operators [7]. The gp is equal to 0.5 � 10�2 if
the pixel p is located on the smooth region and 2.5 � 10�4 in the
textured region. The effect of adaptive regularization in the image
deconvolution is represented in Fig. 6. The middle image is decon-
volved result by Eq. (11) with the same gp equal to 2.5 � 10�4 for
all pixels. The right image is deconvolved result with different gp

values according to the local characteristics as defined above. The
artifacts noticeable in the deconvolved result with the conventional
regularization are removed significantly in the deconvolved result
with the adaptive regularization while preserving image details.
3.3. Fast adaptive regularization

Adaptive regularization can be performed fast in the frequency
domain with the alternating minimization. The alternating mini-
mization was originally proposed by Geman et al. [18,19] and this
technique was used for image deconvolution in various algorithms
[7,20,21]. We simply modified Krishnan’s fast algorithm using hy-
per-Laplacian image prior for our adaptive regularizaiton [20]. If
we substitute I � f1 and I � f2 with x1 and x2 respectively, Eq.
(11) can be modified as follows:

I� ¼ arg min
I;x

XN

i¼1

X
@�2H

skð@�Þð@�I � K � @�BÞ2i þ
b
2
ððI � f1 �x1Þ2i

 

þ ðI � f2 �x2Þ2i Þ þ
kp

2
ðjðx1Þij

2=3 þ jðx2Þij
2=3Þ
�
: ð12Þ

For convenient calculation, gp is replaced with kp/2, and this does
not affect the performance of the algorithm. (I � fj �xj)2 term is
for constraint of I � fj = xj and we use 2/3 for a. b is a weight that
is varied during the optimization. As b becomes large, the solution
of Eq. (12) is converges to that of Eq. (11). The b is varied from
0.1 � 10�2 to 256 by integer powers of

ffiffiffi
2
p

, and for each b,
x = [x1,x2] and I are calculated alternatively. First, the initial I is
set to B, and x is calculated. If fixed I is given, Eq. (12) is reduced
to the problem of solving for x.

x� ¼ arg min
x

kp

2
jxj2=3 þ b

2
ðx� mÞ2

� �
; ð13Þ

where m = I � fj. x⁄ satisfying the above equation is the solution of
the following quartic equation.

x4 � 3mx3 þ 3m2x2 � m3xþ
k3

p

27b3 ¼ 0: ð14Þ

The x satisfying Eq. (14) can be obtained by Ferrari’s method. Since
the derivatives m of the image normalized to 1 are usually placed
from �0.6 to 0.6, x values are tabulated for the specific kp, b and
10,000 different values of m within the range of �0.6 and 0.6. Thus,
x are obtained very fast using the table for the input images.

Given a fixed value of x from the previous iteration, Eq. (12) is
quadratic in I. The optimal I is:

X
@�2H

2sk @�ð ÞA
T
@�A@�A

T
k Ak þ b AT

f1
Af1 þ AT

f2
Af2

� � !
i

¼
X
@�2H

2skð@�ÞA
T
@�A@�A

T
k bþ b AT

f1
x1 þ AT

f2
x2

� �
; ð15Þ

where A@� , Ak, Af1 , and Af2 are the matrix forms of @⁄, K, f1, and f2

respectively, and i and b are vector forms of I and B such that the
product of the matrix and vector is equal to the convolution of
the originals. Applying 2D FFTs, we can obtain I directly as follows:

I� ¼ F�1 Numer
Denom

� �
; ð16Þ

where

Numer ¼
X
@�2H

skð@�ÞFf@�g � Ff@�g � FfKg � FfBg þ b
2
ðFff1g

� Ffx1g þ Fff2g � Ffx2gÞ ð17Þ
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and

Denom ¼
X
@�2H

skð@�ÞFf@�g � Ff@�g � FfKg � FfKg þ b
2
ðFff1g

� Fff1g þ Fff2g � Fff2gÞ: ð18Þ

Here, Ff�g and F�1{�} represent Fourier and inverse Fourier trans-
form respectively, f�gmeans complex conjugate, and � means
element-wise multiplication.

3.4. Reducing boundary artifacts

In the blurring process, the blurred pixels are generated with
not only the image inside the Field of View (FOV) of the observa-
tion but also part outside the FOV. The part outside the FOV cannot
be used in the deconvolution and this missing information causes
ringing artifacts around the image boundary when the image is
deconvolved using the FFT. Discrete Fourier Transform (DFT) as-
sumes the periodicity of the data, so the missing information will
be taken from opposite side of the image when performing FFT.
However, since this data taken from the opposite side is not the
same as the original data, the boundary artifacts are occurred.
Fig. 7. Expansion of the blurred image for reducing boundary artifacts O: blurred
image A, B, C: padding blocks.

Fig. 8. Reducing boundary artifacts. (a) Blurred image and estimated PSF. (b) Deconvol

Fig. 9. Comparison of reducing boundary art
The main idea to reduce the boundary artifacts is as follows. We
expand the original blurred image such that the intensity and gra-
dient are maintained at the border between the original image and
the expanded part. The basic concept to solve the problem is sim-
ilar to Liu and Jia’s algorithm [22], but our algorithm is faster and
requires lower memory achieving comparable quality since the
number of padding blocks is smaller. Fig. 7 represents the ex-
panded image for reducing boundary artifacts. O is the original
blurred image, and A, B, and C are the three padding blocks. Each
padding block is constructed such that the periodicity of the image
is guaranteed and pixels in the padding block have smooth inten-
sities not to cause ringing artifacts. We first start with the con-
struction for the padding block A.

Let X(i, :) and X(:, j) denote the ith row and jth column in a image
block X. The size of the original image is M � N and the size of the
padding block A is T � N, where T is the expansion width. The first
row and the last row of the block A is filled first with the last row
and the first row of the original blurred image respectively.

Að1; :Þ ¼ OðM; :Þ; ð19Þ
AðT; :Þ ¼ Oð1; :Þ: ð20Þ

Next, the most outer two rows of the unpadded rectangular begin to
be padded alternatively. The upper line is padded according to:

Aði; jÞ ¼
Pr

k¼�rðw1kAði� 1; jþ kÞþw2kAðT � iþ 2; jþ kÞÞPr
k¼�rðw1k þw2kÞ

; ð21Þ

where w1k and w2k are distances from (i, j) to (T � i + 2, j + k) and
from (i, j) to (i � 1, j + k) respectively, and k 2 {�r, . . . , r}, and r is a
window radius that controls the smoothness in the horizontal
direction. The lower line is padded according to:

AðT � iþ 1; jÞ ¼
Pr

k¼�rðw3kAði; jþ kÞþw4kAðT � iþ 2; jþ kÞÞPr
k¼�rðw3k þw4kÞ

; ð22Þ

where w3k and w4k are distances from (T � i + 1, j) to (T � i + 2, j + k)
and from (T � i + 1, j) to (i, j + k) respectively. This procedure is
repeated for i = 2 to T/2. The block B is constructed with the similar
ution result without RBA algorithm. (c) Deconvolution result with RBA algorithm.

ifacts algorithm. (a) Liu et al.’s. (b) Ours.
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manner to the block A. The only difference is the padded direction.
The pixels in the block B are padded column by column.

The block C is computed after the block A and the block B are
constructed. First, the most outer pixels of the block C are padded
according to:

Cð:;1Þ ¼ Að:;NÞ; ð23Þ
Cð:; TÞ ¼ Að:;1Þ; ð24Þ
Cð1; :Þ ¼ BðM; :Þ; ð25Þ
CðT; :Þ ¼ Bð1; :Þ: ð26Þ

Next, the inner pixels are padded:

Cði; jÞ ¼
Pr

k¼�rðw1kC1k þw2kC2k þw3kC3k þw4kC4kÞPr
k¼�rðw1k þw2k þw3k þw4kÞ

; ð27Þ

where C1k, C2k, C3k, and C4k are reference pixel values from the
upper, bottom, left, and right directions respectively. The weighting
factors w1k, w2k, w3k, and w4k are defined according to the distance
from the current pixel location to the reference pixel location from
each direction. This procedure is repeated until all the other pixels
inside the block C are padded.
Fig. 10. Pooh. (a) Blurred image and estimated PSF. (b) Richardson–Lucy method. (c) T
This expanded blurred image is used for image deconvolution
instead of the original blurred image. After image deconvolution,
the result image is cropped to the original size.

Fig. 8 shows the effect of our reducing boundary artifacts (RBA)
algorithm. The middle and the right images are the results of our
method with the same parameter setting, but the middle one used
the general blurred image and the right one used the expanded
blurred image formed according to the RBA algorithm followed
by cropping to the original size after deconvolution. The boundary
artifacts in the deconvolved image without RBA algorithm are re-
duced significantly with the RBA algorithm.

Fig. 9 shows the comparison of result from our RBA algorithm
and Liu et al.’s. Shan et al.’s algorithm was used for image deconvo-
lution [7]. Even though we use smaller number of padding blocks
with smaller size than Liu et al.’s method, our result shows compa-
rable performance.
4. Experimental results and analysis

We applied our algorithm to the synthesized image and the
real blurred image. The synthesized image was generated by
V regularization. (d) Levin’s. (e) Shan’s. (f) Proposed. (g) Close-up views of (a)–(f).



Fig. 11. Beer. (a) Blurred image and estimated PSF. (b) Richardson–Lucy method. (c) TV regularization. (d) Levin’s. (e) Shan’s. (f) Proposed. (g) Close-up views of (a)–(f).
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convolving the artificial PSF and the original sharp image. For the
synthesized image, both objective quality and subjective quality
were checked. For the real blurred image, only subjective quality
was measured. For testing the performance of our algorithm, we
compared the results of our algorithm to those of four other
non-blind image deconvolution methods, the standard Richard-
son–Lucy (RL) method [9], Total variation (TV) regularization
[10], Levin’s method [11] and Shan’s non-blind deconvolution
method [7]. They are popular non-blind image deconvolution
methods due to their outstanding performances. For fare
Table 1
Comparison of SNRs for the Pooh image.

Method SNR_R (dB) SNR_G (dB) SNR_B (dB) SNR_Y(dB)

RL 8.92 12.25 6.68 11.48
TV 6.14 9.86 4.04 9.55
Levin’s 20.76 20.05 17.95 19.75
Shan’s 19.82 19.36 17.47 18.88
Proposed 21.10 20.54 18.31 20.49
comparison, we tuned the regularization parameters of all algo-
rithms to produce the best results.

Fig. 10 shows the comparison of the subjective quality for the
synthesized Pooh image. The PSF is estimated by Shan’s non-blind
image deconvolution algorithm [7]. The estimated PSF size is
37 � 37, and the size of blurred image is 664 � 489. The RL method
preserves edges well but produces the severe ringing and noise
since it does not exploit regularization. Besides, it is performed in
the frequency domain, so it gives rise to severe boundary artifacts
in the deconvolved image. The TV regularization reduces ringing
Table 2
Comparison of SNRs for the Beer image.

Method SNR_R (dB) SNR_G (dB) SNR_B (dB) SNR_Y(dB)

RL 8.65 6.41 5.82 7.76
TV 7.98 5.44 3.92 6.75
Levin’s 15.63 15.49 15.11 15.59
Shan’s 14.74 15.20 14.95 14.96
Proposed 16.06 15.79 15.38 16.09



Fig. 12. Statue. (a) Blurred image and estimated PSF. (b) Richardson–Lucy method. (c) TV regularization. (d) Levin’s. (e) Shan’s. (f) Proposed. (g) Close-up views of (a)–(f).
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and noise significantly, but image details are also reduced. The
reduced details are the effect of using the Laplacian image prior
instead of the hyper-Laplacian image prior. The TV regularization
also generates the boundary artifacts due to FFT calculation. The
Levin’s algorithm and the Shan’s algorithm reduce ringing and
Table 3
Comparison of complexities.

RL (secs) TV (secs) Levin’s (secs) Proposed (secs)

Pooh 91.26 75.03 329.88 66.91
Beer 91.16 55.02 329.52 66.99
Statue 208.86 187.98 1110.54 121.94
noise effectively without large image details loss due to advanced
image priors, but they show limitations in case of large PSF errors
since the regularization weighting factors with the same intensi-
ties are applied to all pixels of the image. However, our algorithm
shows the excellent result with reduced ringing and noise in
smooth region, while preserving image edges well by adjusting
the regularization weighting factor according to the local
characteristics.

Fig. 11 shows other results for the synthesized Beer image. The
characters in the image are clear and the artifacts such as ringing
and noise in the background are reduced significantly with our
algorithm.

For the synthesized images, the objective quality is also
measured. Tables 1 and 2 show the comparison of objective quality



Fig. 13. Picasso. (a) Blurred image and estimated PSF. (b) Shan’s. (c) Proposed. (d) Close-up views of (a)–(c).

Fig. 14. Red tree. (a) Blurred image and estimated PSF. (b) Richardson–Lucy method. (c) Shan’s. (d) Proposed. (e) Close-up views of (a)–(d). (For interpretation of the
references in colour in this figure legend, the reader is referred to the web version of this article.)
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for Pooh and Beer images respectively. We used Eq. (28) for the
comparison metric. We calculated and compared the SNR for R,
G, B channels and luminance component of the deconvolved
images. Our algorithm shows the best performance when com-
pared to other non-blind image deconvolution methods.

SNRðdBÞ ¼ 10log10
kI � lðIÞk2

kI � I�k2

 !
; ð28Þ

where I is the original image, l(I) is the mean of I, and I⁄ is the
deconvolved image.

Next, we made an experiment with the real blurred image. We
tested the performance with the image used in [7], and the test
image was obtained from author’s website.1 The size of the blurred
image is 903 � 910, and the size of the PSF is 25 � 25. The PSF is
estimated by the Fergus’ algorithm [5]. The results of our algorithm
and other non-blind image deconvolution methods are
1 http://www.cse.cuhk.edu.hk/�leojia/projects/motion_deblurring/index.html.
represented in Fig. 12. The proposed method preserves fine image
details, while suppressing artifacts.

Furthermore, we compared the complexity of our algorithm to
other non-blind image deconvolution methods. All source codes
are programmed with the MATLAB, and they are tested in AMD
Athlon II X2 250 processor 3.23 GHz with 2.0 GB RAM. Since the
image prior used in the proposed method is hyper-Laplacian, the
energy function is non-convex and is not easy to optimize. How-
ever, with the alternating minimization and FFTs, the proposed
algorithm shows faster speed than not only IRLS used in Levin’s
method which is the commonly-used optimization method to
solve the non-convex problem but also other popular non-blind
image deconvolution methods. The operation times for the pro-
posed method and other non-blind image deconvolution methods
are compared in Table 3.

Figs. 13 and 14 show other results of the images from [7]. In
Fig. 13, ringing artifacts are not observed in the wall and fine de-
tails of the face are clear in our result when they are compared
to the Shan’s result. In Fig. 14, it can be verified that our method

http://www.cse.cuhk.edu.hk/~leojia/projects/motion_deblurring/index.html
http://www.cse.cuhk.edu.hk/~leojia/projects/motion_deblurring/index.html
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shows superior edge-preserving ability compared to other non-
blind image deconvolution methods.
5. Conclusion

In this paper, we propose a high-quality non-blind image
deconvolution method with adaptive regularization. The most
notorious artifacts at image deconvolution are ringing and noise
amplification. These artifacts can be reduced by regularization
using the image prior that represents global statistics of the image,
but strong regularization for reducing severe artifacts at image
deconvolution does not preserve image details well. In the image
deconvolution, we controlled regularization strength referring to
the reference map indicating the textured region and the smooth
region to preserve image details, while suppressing artifacts. In
addition, the proposed method is practical considering complexity
by fast FFT operations. The experimental results show that our ap-
proach restores the high-quality latent image from the blurred im-
age very fast compared to other non-blind image deconvolution
methods.
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