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In this paper, we present a hybrid camera system combining one time-of-flight depth camera and multi-
ple video cameras to generate multi-view video sequences and their corresponding depth maps. In order
to obtain the multi-view video-plus-depth data using the hybrid camera system, we capture multi-view
videos using multiple video cameras and a single view depth video with the depth camera. After perform-
ing a three-dimensional (3-D) warping operation to obtain an initial depth map at each viewpoint, we
refine the initial depth map using segment-based stereo matching. To reduce mismatched depth values
along object boundaries, we detect the moving objects using color difference between frames and extract
occlusion and disocclusion areas with the initial depth information. Finally, we recompute the depth
value of each pixel in each segment using pairwise stereo matching with a proposed cost function. Exper-
imental results show that the proposed hybrid camera system produces multi-view video sequences with
more accurate depth maps, especially along the boundary of objects. In addition, it is suitable for gener-
ating more natural 3-D views for 3-D TV than previous works..

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

As three-dimensional (3-D) video becomes attractive in a vari-
ety of 3-D multimedia applications, it is essential to obtain mul-
ti-view video sequences with corresponding depth maps, which
are often called as multi-view video-plus-depth data [1]. In near
future, consumers will be able to experience 3-D depth impression
and choose their own viewpoints in the immersive visual scenes
created by 3-D videos. Recently, the ISO/IEC JTC1/SC29/WG11
Moving Picture Experts Group (MPEG) has recognized the impor-
tance of the multi-view video-plus-depth data for free-viewpoint
TV (FTV) or 3-D TV [2], and has investigated the needs for stan-
dardization on 3-D video coding [3,4].

With respect to the current 3-D TV and FTV research activities,
it is important to estimate accurate depth information from real
natural scenes. Although various depth estimation methods have
been developed in the field of computer vision, accurate measure-
ment of depth information from natural scenes still remains
problematic.

In general, depth estimation methods can be classified into two
categories: passive depth sensing and active depth sensing. The
former calculates depth information indirectly from 2-D images
captured by two or more video cameras. Typical examples include
shape from focus [5] and stereo matching [6]. The advantage of
indirect depth estimation is a low price because we can create
ll rights reserved.
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depth maps using cheap off-the-shelf video cameras. However,
accuracy of the depth maps is relatively lower than those produced
from active approaches in occlusion and textureless regions.

On the other hand, active depth sensing methods usually
employ physical sensors, such as laser, infrared ray (IR), or light
pattern, to obtain depth information from natural scenes directly.
Structured light patterns [7] and depth cameras [8–11] are major
examples of these approaches. Although currently available direct
depth estimation tools are quite expensive and support low-reso-
lution depth maps only, they can produce more accurate depth
maps in a short time.

For instance, we can obtain depth maps of natural scenes in real
time using active range depth cameras. They capture color images
and their associated per-pixel depth information simultaneously
by integrating a high-speed pulsed IR light source into a conven-
tional broadcast TV camera [8]. However, even though they can
capture depth values directly in real time, there are crucial disad-
vantages in the currently available depth camera systems. They
only produce low-quality depth maps with optical noises.

To solve those problems, fusion camera systems which con-
sisted of multiple video cameras and one or more time-of-flight
(TOF) camera have been introduced [12,13]. Zhu et al. [14] pre-
sented a calibration method to improve depth quality using a
TOF depth sensor. They used the probability distribution function
of the depth information measured by the TOF depth sensor and
provided a more reliable depth map. Lee et al. [15] enhanced the
depth resolution and accuracy by combining the actual distance
information measured by the depth camera with the disparity
map estimated by the passive depth sensing method. However,
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the previous fusion systems have produced only low-resolution
depth maps and focused on generating depth maps of static 3-D
scenes.

Since forthcoming 3-D multimedia applications are expected to
use high-quality and high-resolution 3-D videos, we need to create
multi-view video-plus-depth data with high quality. In this paper,
we devise a hybrid camera system with one depth camera and
multiple high-definition (HD) video cameras. The proposed camera
system can produce high-resolution multi-view depth maps for
dynamic 3-D scenes by enhancing the low-resolution depth infor-
mation measured by the depth camera. The main contribution of
our work is to propose a practical solution to generate high-quality
depth maps for dynamic 3-D scenes.

The remainder of this paper is organized as follows. In Section 2,
we present the overall architecture of the proposed hybrid camera
system. Section 3 describes preprocessing steps for enhancing
depth maps and Section 4 presents how to generate the multi-view
video sequences with their corresponding depth maps using the
proposed camera system. After showing experimental results in
Section 5, we make conclusions in Section 6.
2. Hybrid camera system

The proposed hybrid camera system is composed of one stan-
dard-definition (SD) depth camera and five high-definition (HD) vi-
deo. Those multiple video cameras are arranged in a one-
dimensional array to construct a multi-view camera system. A
clock generator sends synchronization signals constantly to each
camera and its corresponding personal computer equipped with
a video capture board. Basically, the proposed hybrid camera sys-
tem captures multi-view images by the multiple video cameras
and a depth map from the depth camera at each sampling time.

Fig. 1 illustrates the overall framework to generate multi-view
video sequences with their corresponding depth maps using the
hybrid camera system. After calibrating each camera indepen-
dently, we perform an image rectification to adjust vertical mis-
matches in multi-view images. Then, we apply a color correction
operation to maintain color consistency among multi-view images.
Fig. 1. Overall architecture of the prop
Fig. 2 shows the proposed hybrid camera system and it’s
configuration.

To obtain depth maps for multi-view images, we perform a 3-
D warping operation onto each multi-view camera using the
depth map measured by the depth camera. The warped depth
data is used as an initial depth at each camera position. After
we segment each multi-view image, we assign the depth value
of the warped depth data in each segment as the initial depth
of the segment. In order to improve the depth accuracy of object
boundaries, we separate the moving objects and detect occlusion
and disocclusion regions. Then, the depth of each segment is re-
fined by a color segmentation-based stereo matching method.
Finally, we obtain multi-view depth maps by conducting a pix-
el-based depth map refinement using a proposed cost function
in each segment.
3. Preprocessing for depth enhancement

3.1. Relative camera calibration

Since the proposed hybrid camera system consists of two dif-
ferent types of cameras, a depth camera and multiple HD video
cameras, it is essential to find out relative camera information
through camera calibration [16]. For that, we apply a camera cal-
ibration algorithm [17] to each camera in our camera system and
obtain projection matrices for the depth camera and each video
camera.

Ps ¼ Ks½Rsjts� ð1Þ
Pk ¼ Kk½Rkjtk� ð2Þ

where Ps is the projection matrix of the depth camera represented
by its intrinsic matrix Ks, rotation matrix Rs, and translation vector
ts. Pk indicates the projection matrices of the kth video camera
which consisted of its intrinsic matrix Kk, rotation matrices Rk,
and translation vector tk. We then employ a multi-view rectification
operation [18]. The multi-camera array have geometric errors
because they are set manually by hand. In order to minimize the
geometric errors, we find the common baseline, and then apply
osed 3-D video generation system.



Fig. 2. The proposed hybrid camera system.
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the rectifying transformation to the multi-view image. Conse-
quently, the projection matrix of video cameras is changed as

P0k ¼ K 0k½R
0
kjt0k� ð3Þ

where K 0k and R0k are the modified camera intrinsic matrix and rota-
tion matrix of the kth video camera, respectively. Thereafter, we
convert the rotation matrix Rs of the depth camera into the identity
matrix I by multiplying inverse rotation matrix R�1

s . The translation
vector ts of the depth camera is also changed into the zero matrix O
by subtracting the translation vector ts. Hence, we can define new
relative projection matrices for the multi-view cameras on the basis
of the depth camera as

P0s ¼ Ks½IjO� ð4Þ
~P0k ¼ K 0k R0kR�1

s jtk � ts

h i
ð5Þ

where P0s and ~P0k are final projection matrices of the depth camera
and the kth video camera, respectively. After relative camera cali-
bration, we resolve the color mismatch problem of multi-view
images using a color calibration method [19]. The color characteris-
tics of captured images are usually inconsistent due to different
camera properties and lighting conditions even the hardware type
and specification of the multiple cameras are the same. Thereafter,
we perform bilateral filtering to reduce optical noises included in
the depth map acquired from the depth camera [20].

3.2. Depth calibration

The depth values measured by the depth camera are very sen-
sitive to noises. Their sources are diverse including physical limita-
tion of hardware and specific object properties, etc. Therefore,
depth data are noticeably contaminated with random and system-
atic measurement errors dependent on reflectance, angle of inci-
dence, and environmental factors like temperature and lighting
[21]. To reduce those errors, we employ a depth calibration method
[14].

For depth calibration in indoor environments, we compute the
depth of the planar checker pattern within the limited space by
increasing the distance from the image pattern to the depth cam-
era using our system as shown in Fig. 3. To extract the correspond-
ing feature points in two different types of cameras efficiently, we
use the color checker pattern. The pattern image is captured in
every 10 cm distance. The plane pattern is orthogonal to the image
plane.

Thereafter, we make a four dimensional look-up table (LUT)
mapping 3-D positions of the multiple video cameras and the
depth value from the depth camera. 3-D position is constructed
by x, y position of the feature point and the real depth value z
calculated from the multi-view image by pairwise stereo matching.
Since we have already obtained camera parameters, the real depth
value is calculated by

Dnðpx;pyÞ ¼
K � B

dnðpx;pyÞ
ð6Þ

where K is the focal length of the center camera, Camera 3, and B is
the baseline distance between three neighboring video cameras,
Camera 2, Camera 3, and Camera 4. Since we have rectified the mul-
ti-view image, the baseline B between neighboring cameras is the
same [18]. Dn(px, py) is the real depth value corresponding to the
measured disparity value dn(px, py) at the pixel position (px, py) in
the checker pattern. To reduce the depth error, we use mean dispar-
ity value between disparity from Camera 2 and Camera 3 and that
from Camera 3 and Camera 4.

To check the accuracy of the calibrated depth value, we perform
3-D warping to the HD camera. Fig. 4(a) is the 3D warping result
using the acquired depth map and Fig. 4(b) shows that of the cal-
ibrated depth map using the LUT. While there are many mis-
matched depth values in Fig. 4(a), most of them are correctly
matched in the boundaries of the rectangular box in Fig. 4(b).
The other problem is that even though the distance from the depth
camera to the object is constant, depth information from the depth
camera can be different depending on the object color and lighting
conditions.

To analyze the depth sensitivity of a static object in the dynamic
scene, we check the depth values of a black cup, as shown in Fig. 5.
We can notice the inconsistent depth value changes of the static
object caused by object movement and material properties. Espe-
cially, the depth value of the dark color region measured by the
depth camera is very unstable and unreliable. The black cup has
to sustain a near-constant depth in the scene; however, the ac-
quired depth values are unpredictable and random. The reason is
that dark or black colors absorb light of all frequencies and the
depth camera uses near IR rays.

Although we perform the depth calibration to correct the
acquired depth map, there are still limitations in the depth values
acquired from the depth camera. To obtain the high-quality multi-
view depth maps, we need to refine the acquired depth value using
an efficient stereo matching algorithm.

4. 3-D video generation

4.1. Initial depth computation of the multi-view image

We generate initial depth of the multi-view image by perform-
ing 3-D warping of the depth values obtained from the depth cam-
era. First, we project pixels of the depth map into the 3-D world



Fig. 3. Acquisition of the planar check pattern for depth calibration.

Fig. 4. Depth accuracy test using the acquired depth map and calibrated depth map.

Fig. 5. Depth inconsistency of a static scene.
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Fig. 6. 3-D warped depth map.
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coordinate using the depth values. We then reproject the 3-D
points into each view. Let us assume that Ds(psx, psy) is the depth
intensity at the pixel position (psx, psy) in the depth map. Ps((psx,
psy, Ds(psx, psy)) is a 3-D point corresponding to Ds. The backward
projection for moving Ds to the world coordinate is carried out by

Ps ¼ K�1
s � ps ð7Þ

where K�1
s indicates the intrinsic matrix of the depth camera. In the

backward 3-D warping, since rotation and translation matrices of
the depth camera are the identity matrix I and zero matrix O in
Fig. 7. Block-based se

Fig. 8. Segmentation results
Eq. (4), respectively, we only consider its intrinsic matrix. Thereaf-
ter, we project the 3-D points Ps into the each view to get its corre-
sponding pixel position p0kðuk; vkÞ of the kth-view image by

p0k ¼ eP 0k � Ps ð8Þ

where P0k indicates the projection matrix of the kth-view video cam-
era. Fig. 6 shows the result of 3-D warping using the acquired depth
maps.
4.2. Region separation

To estimate depth maps of multiple video cameras using the
warped depth information, we segment the multi-view image by
a mean-shift color segmentation algorithm [22]. However, we can-
not control the maximum segment size because there is no param-
eter to control the maximum segment size.

When we perform the segment-based stereo matching, one seg-
ment has one depth value. If the size of segment is too large, we
cannot get a smooth depth map. The other way, if the size of seg-
ment is too small, it is hard to overcome textureless problem dur-
ing the stereo matching. To solve this problem, we split one image
into 16 � 16 block segments, so that we can limit the maximum
segment size.

Fig. 7 shows the procedure of the segment merging. A block can
have two or more color segments. Before merging the segment, we
split the segmented image into block-based segment again. If each
segment is smaller than half size of the block, we merge it into one
segment by searching adjoined blocks to find the same
indexed segment. If the size of the merged block is larger than
threshold, the merging procedure is finished; otherwise we repeat
the same process until merging condition is satisfied.
gment merging.

in the temporal domain.



Fig. 9. Moving object detection using color difference between frames.

Fig. 10. Boundary mismatching problem.

Fig. 11. Set of multiple initial depth values.
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The searching order of connected blocks is right, bottom, left,
and top including the diagonal directions because left and top
blocks are merged before and right and bottom blocks will be
merged. For example, Segment A is divided into many block-based
segments and Block (i, j) have four segments. Since the size of Seg-
ment A in Block (i, j) is smaller than the predefined threshold value
in Fig. 7, the same indexed segment of Segment A is the block in (i,
j + 1) by the searching order. We merge the current Segment A and
the same indexed segment in (i, j + 1).

Before we estimate depth maps, we separate moving object
using color difference between frames. To extract the moving ob-
ject in the current frame, we calculate color differences between
the previous frame n � 1 and the current frame n by using the
threshold which indicates the current position is foreground or
not. We cannot directly use the segment-based moving object
detection because shape of each segment can be varied in the tem-
poral domain as shown in Fig. 8.

Since color segmentation is performed frame by frame, it is hard
to find the same segment in the temporal domain. Therefore, we
use the Euclidean distance between frames to extract the moving
objects as

Enðx;yÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRn�1ðx;yÞ�Rnðx;yÞÞ2þðGn�1ðx;yÞ�Gnðx;yÞÞ2þðBn�1ðx;yÞ�Bnðx;yÞÞ2

q
ð9Þ

where R, G, and B indicate the pixel values in RGB color domain. To
find the moving object, we compute the En(x, y) at each pixel loca-
tion for all pixels. If we subtract the RGB value between frames,
camera noises can be mixed up. To remove them, we calculate
the average RGB value for 3 � 3 block. If the average is larger than



Fig. 12. Results of occlusion and disocclusion detection in Camera 3.
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the threshold value, we set the center pixel of each 3 � 3 block as
the foreground pixel. From our experiments, the threshold value
of Euclidean distance, 10 is used. Fig. 9 (a) and (b) present 78th
frame and 79th frame images in Camera 3 and Fig. 9(c) shows the
result of the extracted moving objects.
Fig. 13. Smoothness with gradient of the refined depth values.
4.3. Segment-based multi-view depth estimation

We define the initial depth of each segment as 3-D warped
depths in the segment; the assumption is that each segment has
one depth value [6]. However, there is one problem to set the ini-
tial depth using warped depth value. The 3-D warping is performed
from the small resolution depth map to the HD image in our sys-
tem. Since there are many errors such as camera calibration error
and depth error acquired from the depth camera, the warped result
is not exactly matched with the HD image as shown in Fig. 10.

To obtain the accurate initial depth value, we use the warped
results as multiple initial depth values for stereo matching. If we
start the stereo matching with the initial depth, we can reduce
the search range for finding the matched region. In addition,
depending on search range reduction, we can overcome the mis-
matched problem in the textureless regions. However, if the given
initial depth is the error value, we could find wrong areas which
has local minimum. Therefore, the assignment of the correct initial
depth is crucial in using the depth camera. Because there are cor-
rect initial depths around the currently warped position, which are
not exactly matched with the original image, we increase the can-
didates of the initial depth value to resolve this problem. Fig. 11
shows the position of the initial depth in two directional regions,
horizontal and vertical regions. One or more initial depth values
usually exist in a 3 � 3 area because of the difference of the reso-
lution. In this case, we set the horizontal search region as 30 � 5
and the vertical search region as 5 � 30. By using the multiple ini-
tial depths, we can set initial depth for the depthless regions in the
boundary of objects as shown in Fig. 11.

To increase the depth accuracy for stereo matching, we utilize a
pairwise stereo matching method. When the current view is Cam-
era 1, there is no left image. Therefore, we use the input images of
Camera 2 and Camera 3 for current view. For input image of Camera
3, we use the value of the initial depth multiply by 2. When we per-
form the stereo matching operation twice with the left and right
images for one depth, we can find the occlusion and disocclusion
Table 1
Specification of the hybrid camera system.

Device Specifications

Stereo camera
(Cannon XL-HI)

Output
format

Depth camera (Zcam) Depth range
Field of view
Output
format

Sync. generator
(LT443D)

Output signal
regions. If some regions are not observed in one view while they
are visible in the other views, those areas are occluded in one view
and disocclued in the other views. From the fact, we can determine
the reliable and unreliable regions. After getting corresponding val-
ues with the multiple initial depth information in small search
range, we also determine the occlusion and disocclusion regions
using the calculated depth value.

Since stereo matching measures the difference between the cor-
responding points of two or more images, called as the disparity,
we convert the initial depth into its disparity for stereo matching
by

InitDispðx; yÞ ¼ K � B
InitDepthðx; yÞ ð10Þ

where InitiDisp(x,y) is the converted disparity at the pixel position
(x,y) from the corresponding initial depth InitDepth(x,y). B and K
are the distance between neighboring video cameras and the focal
length of the current video camera, respectively. After performing
stereo matching with the initial disparity, we convert again the cal-
culated disparity into its depth value to produce the depth map. Be-
fore performing bi-directional stereo matching, we need to set the
candidate of the initial depth value. For determining the disparity
of each segment, we calculate the mean of absolute difference
(MAD) values between the segment in the current view image
and its matched region in the left and right view images by

FG diðInitDispÞ ¼ min min
Xa

j¼0

MADðjÞ
 !

;min
Xb

k¼0

MADðkÞ
 ! !

ð11Þ
Details

NTSC or PAL (16:9 ratio, high
definition)

0.5–7.0 m
40�
NTSC or PAL (4:3 ratio, standard
definition)

SD/HD video generation



Fig. 14. Test sequences: multi-view image and its depth map.
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where i is the index of the segment, j and k means index of the mul-
tiple initial depth. a and b are the number of the initial depth in the
horizontal and vertical regions, respectively. FG_di(InitDisp) is the
refined initial depth value from pairwise stereo matching. Search
range to estimate disparities of the current view image is from Init-
Disp � 5 to InitDisp + 5. The disparity with the minimum MAD in the



Fig. 15. Results of multi-view disparity map generation for Newspaper.

Fig. 16. Results of multi-view disparity map generation for Delivery.
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search range is chosen as the refined initial disparity of the segment
in the current view image. Since the acquired depth map is only for
foreground regions, there is no depth information for background
areas. We define that the background has no initial depth or the
number of the included initial depth in the segment is less than
10% of the size of the segment. In estimating depth of background,
we set the minimum and maximum depth/disparity value. We then
find the minimum MAD as the initial disparity of the current seg-
ment in the background by

BG diðInitDispÞ ¼ min
XmaxDisp

i¼minDisp

MADðiÞ
 !

ð12Þ

where BG_di(InitDisp) is the disparity for background, minDisp and
maxDisp mean minimum and maximum disparity search range for
background. The disparity with the minimum MAD is chosen as
the initial disparity di(Initdisp) of the segment i in the target view
image n by
diðInitDispÞ ¼ minðFG diðInitDispÞ;BG diðInitDispÞÞ ð13Þ

To detect the occlusion and disocclusion regions, we set the thresh-
old value for reliable and unreliable areas. The threshold value of
MAD is 20 in our experiments. Fig. 12 is the detection of the occlu-
sion and disocclusion regions: the red circles mean the unreliable
regions from the occlusion and disocclusion area.

4.4. Multi-view depth map refinement

In stereo matching, depth refinement usually enhances depth
accuracy through iteration at the cost of long processing time, lots
of memory requirement, and heavy computation. However, it has
challenges when our target is to generate high-resolution 3-D vi-
deo based on multi-view depth maps. We therefore propose a sim-
plified depth refinement approach using the proposed cost
function for the depth map refinement, which has the following
features: low memory consumption, fast processing time, and no
iteration steps.



Fig. 17. Results comparison with the previous works.

Fig. 18. Results depth maps from 8th to 48th frame.

Table 2
Objective quality comparison of synthesized intermediate views.

Sequence Average PSNR

Belief propagation Zhu’s algorithm Proposed method

Delivery 29.892 26.373 31.961
Newspaper 29.911 26.449 31.707

Table 3
Comparison of the processing time.

Sequence Processing time (s)

Belief propagation Zhu’s algorithm Proposed method

Delivery 836.26 528.74 337.21
Newspaper 845.68 541.07 350.59
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In order to enhance the multi-view depth map along the bound-
ary of the objects, we refine it for two regions: moving region and
static region. We have already defined the moving regions using
color difference between frames as shown in Fig. 9. If there is no
variance of a pixel in the time domain, we assume that pixel is sta-
tic. In that case, we can refer the previous depth value for the static
pixel. Otherwise, we just use the refined disparity value without
referring the previous one.
Eðx; y; dÞ ¼

wsfsðx; y;dsðx; yÞÞ þwdfdðx; y; ddðx; yÞÞ
if mov obj ¼ 1

wsfsðx; y;dsðx; yÞÞ þwdfdðx; y; ddðx; yÞÞ
þwtftðx; y; dtðx; yÞÞ if mov obj ¼ 0

8>>><>>>: ð14Þ

where ws, wd, wt are the weighting factors for depth refinement. fs(x,
y, ds(x, y) is the smoothness term with gradient of the refined depth
value in this refinement step. fd(x, y, dd(x, y) is the data term for the
refined initial depth value in the segment-based stereo matching
step and ft(x, y,dt(x, y) is the temporal term for depth value of the
previous frame for the static pixel. From our experiments, the
weighting factors of the cost function, ws, wd, and wt are 0.3, 0.5,
and 0.2. mov_obj(x, y) indicates the result of the moving object
detection. If mov_obj(x, y) is 0, this pixel is not moved. Then, we
can refer the depth value of the previous frame.

fd(x, y, dd(x, y) means the minimum MAD with the refined initial
depth value in the search range from InitDisp � 5 to InitDisp + 5.
fs(x, y, ds(x, y) is the depth difference with neighborhood depth in
the same segment and calculated by

fsðx; y;dsðx; yÞÞ ¼ medðsaðx; yÞ; sbðx; yÞ; scðx; yÞÞ ð15Þ

We can calculate the smoothness value as shown in Fig. 13. sa(x, y)
is the refined depth difference at positions between (x � 1, y � 1)
and (x � 1, y). sb(x, y) is the refined depth difference at positions be-
tween (x � 1, y � 1) and (x,y � 1). sc(x,y) is the refined depth differ-
ence at positions between (x, y � 1) and (x + 1, y � 1). The function
med() takes the median value among arguments to avoid the wrong



Fig. 19. Intermediate views using generated depth maps for Newpaper.

Fig. 20. Intermediate views using generated depth maps for Delivery.
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depth selection, so that it maintains depth continuity along the ver-
tical and horizontal direction. If the selected smoothness gradient is
a vertical direction, this depth difference is calculated from (x,
y � 1). Otherwise, the depth difference is computed from (x � 1, y).

5. Experimental results and analysis

In order to generate the high-quality multi-view depth maps,
we have constructed a hybrid camera system with one depth cam-
era and five HD video cameras. The specification of the hybrid cam-
era system is shown in Table 1. The measuring distance of the
depth camera was from 0.5 m to 7.0 m. The baseline distances
among multi-view HD cameras are 20 cm. The proposed camera
system’s baseline distance depends on the physical volume of each
HD video camera as shown in Fig. 1. Therefore, it is hard to reduce
the baseline between HD cameras at current configuration. Fig. 14
shows the multi-view test sequences, Newspaper and Delivery, cap-
tured by the hybrid camera system.

In this paper, we use two types of sequences for generation of
multi-view depth maps using the proposed hybrid camera system.
In order to obtain the high-resolution depth maps, we capture the
multi-view images from multiple video cameras and one depth
map with a depth camera. Our experiments are performed for
two types of sequences: one has small motion including complex
objects and textureless regions in natural scenes; the other has fast
motion changes in dynamic scenes. Since 3-D video contents have
the depth impression in the scenes, we also have configured vari-
ous depth differences from the white wall to the table. The resolu-
tion of the multi-view video sequences is full HD of 1920 � 1080,
and the resolution of the depth maps is SD of 720 � 486.

Figs. 15 and 16 show the finally generated multi-view depth
maps for the 93rd, 157th frames of Newspaper and 87th, 149th
frames of Delivery. As shown in Fig. 15, we can observe that depths
for the orchid in the flowerpot in the scene of Newspaper were
generated successfully, although the boundary of the orchid is
sharp. In addition, as shown in Fig. 16, the depth quality of the yel-
low bear doll was good, although the color of the bear was
monotonous.

From the shown results, we have overcome the main problems
of passive depth sensing: poor depth estimation on the occluded
and textureless regions, based on the proposed hybrid camera
system.

To compare the quality of depth map generated by the proposed
method with previous works, we depicted the depth map gener-
ated by the BP algorithm [23] and Zhu’s method [14] with the ac-
quired initial depth information for the 3rd view image of the 93th
frame in Newspaper. The generated depth maps using previous
methods and the proposed one are shown in Fig. 17. We can check
that some regions of the depth maps generated by the previous ap-
proaches had mismeasured depths, which are marked as red circles
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in Fig. 17. This is because of the boundary mismatching problem as
described in Section 4.3. However, the proposed method has over-
come the problem using the two directional multiple initial depth
values. From the result, the proposed method have outperformed
the previous ones. Fig. 18 shows the result of the depth maps in
Camera 3 from the 8th to 48th frame in every eight frames.

In order to measure the performance of our scheme objectively,
we generated the synthesized views using the depth maps gener-
ated for Camera 2 and Camera 4. Table 2 presents that the average
peak signal-to-noise ratio (PSNR) of the synthesized images gener-
ated by the BP algorithm, Zhu’s method, and the proposed method,
respectively. The synthesized views produced by our hybrid cam-
era system shows higher PSNR values than those obtained by the
previous methods.

Table 3 shows the comparison of the processing time in the
depth refinement step. Since each algorithm have different pro-
cessing step to generate the depth map, it is hard to measure the
exact processing time in the same condition. Therefore, we com-
pare the processing time for the depth map refinement step. As
shown in Table 3, the proposed method is faster than others with-
out the accuracy reduction for depth map generation. From the re-
sult, it is useful for the high-resolution multi-view depth map
generation.

We have also produced intermediate views using the finally
depth maps and multi-view images using a view synthesis algo-
rithm [24] for Delivery and Newspaper. In this experiment, we have
generated 15 intermediate views between Camera 3 and Camera 4
by moving a virtual camera with one degree interval. As shown in
Figs. 19 and 20, we could generate intermediate views successfully
without noticeable artifacts subjectively.

6. Conclusions

In this paper, we have presented a new approach to generate
multi-view HD depth maps corresponding to HD color images
using the proposed hybrid camera system. We have used depth
information acquired by a depth camera to generate the initial
depth maps of multi-view images. We then have generated the fi-
nal depth maps using a segmentation-based pairwise stereo
matching and the proposed cost functions. Experimental results
have shown that our scheme produced more reliable depth maps
compared with previous methods. With the proposed hybrid cam-
era system, we could solve the two main problems in the current
passive depth sensing, which is depth estimation on occluded
and textureless regions. Finally, we have generated high-resolution
and high-quality multi-view depth maps from our system.
Therefore, our proposed system could be useful for various 3-D
multimedia applications.
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