H.264/AVC	

CABAC

An Improved CABAC for H.264/AVC Lossless Intraframe Coding

Jin Heo · Yo-Sung Ho

H.264/AVC			(CABAC:
Context-based Adaptive	Binary Arithmetic Coding)	(lossy)	
H.264/AVC	(Advanced 4:4:4)		(transform-bypass lossless mode)
	CABAC (lossl	ess)	
	H.264/AVC		
가			CABAC
			CABAC
CABAC	19%		
: H.264/AVC	, ,	,	

Context-based Adaptive Binary Arithmetic Coding (CABAC) as the entropy coding tool in the H.264/AVC standard was originally designed for lossy video coding. Moreover, since the transform-bypass lossless mode supported in the current H.264/AVC high profile kept to use the original CABAC method designed for lossy video coding in lossless video coding, it might not provide the best coding performance for lossless video coding. In this paper, after we confirmed that there were significant differences in the statistics between residual data of lossy and lossless coding, we proposed an improved CABAC method for lossless intra coding by considering the statistical characteristics of residual data in lossless intra coding. Experimental results showed that the proposed method achieved bit saving by 19%, compared to the original CABAC for lossless intra coding.

Keywords: H.264/AVC, Lossless coding, Context-based adaptive binary arithmetic coding, Intra coding

I.		H.264/AVC
		(lossy)
H.264	I/AVC	(lossless)
	MPEG-2/4, H.263	Lossless Joint Photographic Experts
	가	Group(JPEG-LS)[3] .
,	, 1/4	H.264/AVC
,		(transform-
	[1],[2].	bypass lossless mode)[4]

:TR10-089, :2010.10.27, :2011.05.24, :2011.06.07 , :

1. CABAC

(FRExt: Fidelity Range Extensions)[5],[6] П H.264/ (transform) AVC CABAC 111 (quantization)[7] CABAC IV 가 . V [8],[9].

(DPCM: Differential Pulse-Code Modulation)

. . 가 H.264/AVC 가 : (CAVLC: Context-based Adaptive Variable Length Coding)[10],[11]

(CABAC: Context-Based Adaptive Binary Arithmetic Coding)[12],[13]

CAVLC CAVLC [14],[15]. 가 H.264/AVC

> CAVLC [16].

2. CABAC

 4×4 2 CABAC CABAC

II. H.264/AVC CABAC

1. CABAC

CABAC : 1 CABAC

가

2. CABAC

(coded block flag) 0 가 : coeff_abs_level_minus1 0 가 abs_level_minus1 significance map .

> 1 . coeff_sign_flag 1

0

coeff_sign_flag

1

coeff_

0

coeff_abs_level_minus1 /0 Golomb(Unary/0th order Exponential Golomb)

III. CABAC

- 1.
- 가
 - 가 .

- 1 significance map 4×4 1 coded_block_flag 0
- coded_block_flag 0 가
- coded_block_flag significance map 1 .
- coded_block_flag가 0 가 significance map significance map
- 1 significant_coeff_flag 0
- significant_coeff_flag 1 1 last_significant_coeff_flag 0 가

4. CABAC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 9 0 -5 3 0 -7 4 0 8 -11 6 0 3 1 0 0 significant_coeff_flag 1 0 1																	
9 0 -5 3 0 -7 4 0 8 -11 -6 0 3 1 0 0 significant_coeff_flag 1 0 1 1 1 0 1 <t< td=""><td></td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td><td>10</td><td>11</td><td>12</td><td>13</td><td>14</td><td>15</td><td>16</td></t<>		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
significant_coeff_flag 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1		9	0	-5	3	0	-7	4	0	8	-11	-6	0	3	1	0	0
last-significant_coeff_flag 0 0 0 0 0 0 0 0 0 1	significant_coeff_flag	1	0	1	1	0	1	1	0	1	1	1	0	1	1		
	last-significant_coeff_flag	0		0	0		0	0		0	0	0		0	1		

signi

5.

significance map

1. ()			
QP	0()	12	24	36
News(QCIF)	14.55	9.84	6.63	4.05
Foreman(QCIF)	14.77	12.55	6.99	2.83
Mobile(CIF)	14.79	12.85	10.45	6.29
Tempete(CIF)	14.79	12.46	9.04	3.81
City_corr(HD)	14.78	10.41	5.67	2.31
Night(HD)	14.57	8.79	4.68	2.59
Crowdrun(HD)	14.82	13.60	6.67	2.62
Parkjoy(HD)	14.79	13.35	7.37	3.14

- 1 : 0 (coded_block_flag). 2 : 0 (significant_diff_pixel_flag). 3 : (abs_diff_pixel_minus1). 4 :
- (diff_pixel_sign_flag)
- 2. Significance Map

가

- 0 significant_coeff_flag last_significant_coeff_flag . 3 つ フト () . 0 () . ,
- last_significant_coeff_flagsignificancemap.
 - 3 0 . 0

significance map last_significant_coeff_ flag 16 significant_diff_ (1) pixel_flag 5 significance map 0 14 5 significant_coeff_flag last_significant_coeff_flag significance map 6 significance map

significance map last_ significant_coeff_flag significant_diff_pixel_flag 6 significant_diff_pixel_flag

significance map

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	9	0	-5	3	0	-7	4	0	8	-11	-6	0	3	1	0	0
significant_diff_pixel_flag	1	0	1	1	0	1	1	0	1	1	1	0	1	1	0	0

significance map

6.

8. k=0, 1, 2, 3 EGk

pdf

ΤU

(TU: Truncated Unary) 가

(abs_level) /k Golomb (UEGk: Unary/kth order Exponential Golomb) .

.

3.

2. UEG3		
abs_diff_pixel		
	TU	EG3
1	0	
2	1 0	
3	1 1 0	
4	1 1 1 0	
5	1 1 1 1 0	
6	1 1 1 1 1	0 0 0 0
7	1 1 1 1 1	0 0 0 1
8	1 1 1 1 1	0 0 1 0
9	1 1 1 1 1	0 0 1 1
10	1 1 1 1 1	0 1 0 0
11	1 1 1 1 1	0 1 0 1
12	1 1 1 1 1	0 1 1 0
13	1 1 1 1 1	0 1 1 1
14	1 1 1 1 1	1 0 0 0 0 0
15	1 1 1 1 1	1 0 0 0 0 1
	1 2 3 4 5	6 7 8 9 10 11

TU	가 Golom	าb [17]		
abs_level	UEGk 0	cutoff Golomb(EG0)	14	ΤU
(UEG	i0) .	abs_level		14
TU	TU	EG0		
Golomb		[18].	E	G0

(probability density (1) function, pdf) .

$$p(x) = 1/2 \cdot (x+1)^{-2} \text{ with } x \quad 0 \tag{1}$$

vel 가 .

.

3.	
ProfileIDC	244 (High4:4:4)
IntraPeriod	1(Only intra)
QPISlice	0(Lossless)
SymbolMode	1(CABAC)
ContextInitMethod	1(Adaptive)
LosslessCoding	1(Lossless)

abs_level							
_		abs_d	iff_pixel				
7	ΤU	abs_	level	•			
		abs_diff_pixel					
		abs_di	ff_pixel	·			
	UEG0		TU	cutoff			
		7	TU				
pdf			abs_d	liff_pixel			
			5	5			
			가	ΤU			
abs_diff_p	oixel			가	•		

TU cutoff 5 .

4.			1		1
	(bits)		(bits)		(%)
		H.264/AVC	13941080	2.1815	0
News(QCIF, 176×144) 100frames	30412800	1	12563136	2.4208	9.884
		2	12197216	2.4934	15.639
		H.264/AVC	14344176	2.1202	0
Foreman(QCIF, 176×144) 100frames	30412800	1	12857928	2.3653	10.361
		2	12572368	2.4190	12.352
		H.264/AVC	22032608	1.3804	0
Stefan(QCIF, 176×144) 100frames	30412800	1	20533296	1.4811	6.805
		2	16202112	1.8771	26.463
		H.264/AVC	91371512	1.3314	0
Mobile(CIF, 352×288) 100frames	121651200	1	85034984	1.4306	6.935
		2	68152408	1.7850	25.412
Tempete(CIF, 352×288) 100frames		H.264/AVC	79063136	1.5387	0
	121651200	1	72756080	1.6720	7.977
		2	60830560	1.9998	23.061
		H.264/AVC	89969768	1.3521	0
Flowergarden(CIF, 352×288) 100frames	121651200	1	84104624	1.4464	6.519
		2	65517600	1.8568	27.178
		H.264/AVC	565080864	1.9571	0
City_corr(HD, 1280×720) 100frames	1105920000	1	507403880	2.1796	10.207
		2	470393024	2.3511	16.757
		H.264/AVC	455951136	2.4255	0
Night(HD, 1280×720) 100frames	1105920000	1	411091016	2.6902	9.839
		2	408736112	2.7057	10.355
		H.264/AVC	1250235376	1.9903	0
Crowdrun(HD, 1920×1080) 100frames	2488320000	1	1120777696	2.2202	10.355
		2	1047171240	2.3762	16.242
		H.264/AVC	1283550664	1.9386	0
Parkjoy(HD, 1920×1080) 100frames	2488320000	1	1155350512	2.1537	9.988
		2	1043186200	2.3853	18.727
		H.264/AVC		1.8216	0
		1		2.0060	8.887
		2		2.2249	19.219

TU				
	EGk			k
	х	EGk		
		l(x) =	log ₂ ($x/2^{k} + 1$)
		k + l((<i>x</i>)	
$x + 2^k (1 - 2^{l(x)})$				k
		E	Gk	pdf
(2)				

$$p_k(x) = 1/2^{k+1} \cdot (x/2^k + 1)^{-2} \text{ with } x \quad 0 \tag{2}$$

$p_k(x)$	EGk		pdf		
8		k	0, 1, 2, 3	$p_k($	<i>x</i>)
6	20	abs	_diff_pixel		
	5	al	os_diff_pixel		
TU				8	
	k	3	$p_3(x)$		가

abs_diff_pixel 가 EG3 가 6~20 abs_diff_pixel 가

abs_diff_pixel . abs_diff_pixel UEGk cutoff 5 TU 3 Golomb(EG3) (UEG3) . 2 UEG3 .

IV.

H.264/AVC JM 16.2 [19] . 71 3 QCIF , 3 CIF , 4 HD 4:2:0

. 3 · LosslessCoding '

> 1: significance map 2: 1+

(2) JPEG-LS JPEG [20] () H.264/AVC

(3) (4) . JPEG-LS (3)

(3)

5. JPEG	JPEG-LS			
Nowe	JPEG-LS	2.0872		
INEWS		2.4934		
Foreman	JPEG-LS	1.8179		
Foreman		2.4190		
Ctofon	JPEG-LS	1.5575		
Stelan		1.8771		
Mahila	JPEG-LS	1.4865		
WIODITE		1.7850		
Tompoto	JPEG-LS	1.6556		
Tempete		1.9998		
Eloworgordon	JPEG-LS	1.6201		
Flowergarden		1.8568		
City orr	JPEG-LS	1.9079		
City_con		2.3511		
Nisht	JPEG-LS	2.2583		
Night		2.7057		
Crowdrup	JPEG-LS	1.6802		
Clowarun		2.3762		
Darkiev	JPEG-LS	1.8664		
Раткјоу		2.3853		
	JPEG-LS	1.7938		
		2.2249		

 $= \frac{H.264/AVC}{H.264/AVC} \times 100 \quad (4)$

가 .

(scanning pattern) V.

)

(CABAC: Context-based Adaptive Binary Arithmetic Coding)

significance map

1

CABAC H.264/AVC CABAC 19%

- ſ
- [1] A. Luthra, G. J. Sullivan, and T. Wiegand, "Introduction to the special issue on the H.264/AVC video coding standard," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, Jul. 2003, pp. 557-559.
- G. J. Sullivan and T. Wiegand, "Video compression-[2] from concepts to the H.264/AVC standard," Proceedings of the IEEE, Vol. 93, issue 1, Jan. 2005, pp. 18-31.
- M. J. Weinberger, G. Seroussi, and G. Sapiro, [3] "The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS," IEEE Transactions on Image Processing, Vol. 9, No. 8, Aug. 2000, pp. 1309-1324.
- [4] S. Sun, Intra Lossless Coding and QP Range Selection, ISO/IEC JTC1/SC29/WG11 and ITU-T Q.6/SG16

Joint Video Team Document JVT-C023, May 2002.

- G. J. Sullivan, T. McMahon, T. Wiegand, and [5] A. Luthra, Draft Text of H.264/AVC Fidelity Range Extensions Amendment to ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC, ISO/IEC JTC1/SC29/WG11 and ITU-T Q.6/SG16 Joint Video Team Document JVT-L047, Jul. 2004.
- G. J. Sullivan, P. Topiwala, and A. Luthra, [6] "The H.264/AVC Advanced Video Coding Standard: Overview and Introduction to the Fidelity Range Extensions," SPIE conference, Special Session on Advances in the New Emerging Standard: H.264/AVC, Aug. 2004.
- [7] H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, "Low-Complexity transform and quantization in H.264/AVC," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, Jul. 2003, pp. 598-603.
- [8] Y.-L. Lee, K.-H. Han, and G. J. Sullivan, "Improved lossless intra coding for H.264/MPEG-4 AVC," IEEE Transactions on Image Processing, Vol. 15, No. 9, Sep. 2006, pp. 2610-2615.
- [9] J.-H. Nam, D.-G. Sim, Y.-L. Lee, S.-J. Oh, C.-B. Ahn, J.-I. Seo, K.-O. Kang, and K.-H. Kim, "Lossless Video Coding Based on Selective Residual DPCM," PCS 2006, Apr. 2006.
- [10] Context-Adaptive VLC (CVLC) Coding of Coefficients, Document JVT-C028.doc, Joint Video Team of ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16, May 2002.
- [11] I.E. G. Richardson, "H.264/MPEG-4, part 10," in H.264 and MPEG-4 Video Compression, New York: Wiley, 2003.
- [12] D. Marpe, H. Schwarz, and T. Wiegand, "Contextbased adaptive binary arithmetic coding in the H.264/AVC video compression," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, Jul. 2003, pp. 620-636.
- [13] , "H.264/AVC CAVLC/CABAC ." .2009.
- [14] J. Heo and Y.-S. Ho, "Efficient level and zero coding methods for H.264/AVC lossless intra coding," IEEE Signal Processing Letters, Vol. 17, No. 1, Jan. 2010, pp. 87-90.
- [15] J. Heo, S.-H. Kim, and Y.-S. Ho, "Improved CAVLC for H.264/AVC lossless intra-coding," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 20, No. 2, Feb. 2010, pp. 213-222.
- [16] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, "Overview of the H.264/AVC video coding

(

standard," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, Jul. 2003, pp. 560-576.

- [17] J. Teuhola, "A compression method for clustered bit-vectors," Information processing letters, Vol. 7, Oct. 1978, pp. 308-311.
- [18] R.G. Gallager and D.C. Van Voorhis, "Optimal source codes for geometrically distributed integer alphabets," IEEE Transactions on Information Theory, Vol. 21, No. 2, Mar. 1975, pp. 228-230.
- [19] Joint Video Team, Reference Software Version 16.2 http://iphome.hhi.de/suehring/tml/download/old_ jm/jm16.2.zip, Joint Video Team, Reference Software Version 16.2.
- [20] http://www.t2-project.org/packages/jasper.html

/Jin Heo)

2004. 8: 2006. 8: 2006. 9~ :

:

E-mail: jinheo@gist.ac.kr Tel: +82-62-970-2258 Fax: +82-62-970-3164

