
îðïî ×ÛÛÛ ×²¬»®²¿¬·±²¿´

Ý±²º»®»²½» ±² Í·¹²¿´ Ð®±½»·²¹ô

Ý±³³«²·½¿¬·±² ¿²¼ Ý±³°«¬·²¹

ø×ÝÍÐÝÝ îðïî÷

Ì¸» Ð±´§¬»½¸²·½ Ë²·ª»®·¬§ ±º Ø±²¹ Õ±²¹ô Ý¸·²¿

ïîóïë ß«¹«¬ îðïî

FOR SEMI-AUTOMATIC 2D TO 3D IMAGE CONVERSION
Author : Xuyuan Xu; Lai-Man Po; Ka-Ho Ng; Ka-Man Wong; Chi-Wang Ting -

City University of Hong Kong, China
Kwok-Wai Cheung - Chu Hai College of Higher Education, China

Abstract : Depth map estimation from a single image is the key problem for the 2D to 3D
image conversion. Many 2D to 3D converting processes, either automatic or
semi-automatic, are proposed before. Quality of the depth map from automatic
methods is low and there exists wrong depth values due to errors estimation in
depth cue extraction. The semi-automatic approaches can generate a better
quality of depth map based on the user-defined labels, which indicate a rough
estimation of depth values in the scene, to generate the rest of depth value and
reconstruct the stereoscopic image. However, they require complexity system
and are very computational intensive. A simplified approach is to combine the
depth maps from Graph Cuts and Random Walks to persevering the sharp
boundary and fine detail inside the objects. The drawback is the time consuming
of the energy minimization in the Graph Cuts. In this paper, a fast Watershed
segmentation based on the priority queue, which indicates the neighbor distance
relationship, is used to replace the Graph Cuts to generate the hard constraints
depth map. It is appended to the neighbor cost in the Random Walks to generate
the final depth map with hard constraints in the objects boundaries regions and
fine detail inside objects. The Watershed and Random Walks are low
computational intensive and can achieve approximate real time estimation which
results in a fast stereoscopic conversion process. Experimental results
demonstrate that it can produce good quality stereoscopic image in very short
time.

Session Code : SP2L.4 - Paper ID 0091
Paper Title : PARALLEL VIEW SYNTHESIS PROGRAMMING FOR FREE

VIEWPOINT TELEVISION
Author : Jung, Jae-Il; Ho, Yo-Sung - Gwangju Institute of Science And Technology,

Korea
Abstract : View synthesis is one of the important techniques for free-viewpoint 3D image

services. Unfortunately, computational complexity of depth image-based view
synthesis is high, since it includes numerous matrix calculations and complex
filters. In this paper, we implement the depth image-based rendering algorithm
on a graphics processing unit (GPU) using the compute unified device
architecture (CUDA). We perform memory uploads to the global memory of the
GPU, and compute matrix calculations of all pixels in parallel. We also simplify
the filters of rendering to reduce complexity and analyze performance according
to block and image sizes. Experimental results show that our implementation is
faster than conventional methods while preserving visual quality.

Session Code : SP2L.5 - Paper ID 0072
Paper Title : QUALITY-EFFICIENT DE-INTERLACING FOR H.264-CODED

VIDEOS
Author : Wei-Jen Yang; Kuo-Liang Chung; Le-Chung Lin - National Taiwan University

of Science and Technology, Taiwan;
Yong-Huai Huang - Jinwen University of Science And Technology, Taiwan

Abstract : In this paper, we propose an efficient de-interlacing method for H.264-coded
video sequences with different resolutions. In our proposed method, using the
syntax elements (SEs) in the H.264 bitstreams, two new strategies are delivered
to improve the deinterlacing quality. The first strategy is based on the intra mode
to improve the quality of the regions with skewed edges. The second strategy is
based on the inter mode to refine the quality of de-interlaced videos as well as
alleviate the error propagation side effect. Experimental results on popular test
video sequences with the resolutions of common international format (CIF),
quarter CIF (QCIF), standard- definition (SD), and full highdefinition (HD)

PARALLEL VIEW SYNTHESIS PROGRAMMING
FOR FREE VIEWPOINT TELEVISION

Jae-Il Jung and Yo-Sung Ho
School of Information and Communications

Gwangju Institute of Science and Technology (GIST)
Gwangju, Republic of Korea

{jijung, hoyo}@gist.ac.kr

Abstract—View synthesis is one of the important techniques for
free-viewpoint 3D image services. Unfortunately, computational
complexity of depth image-based view synthesis is high, since it
includes numerous matrix calculations and complex filters. In
this paper, we implement the depth image-based rendering
algorithm on a graphics processing unit (GPU) using the compute
unified device architecture (CUDA). We perform memory
uploads to the global memory of the GPU, and compute matrix
calculations of all pixels in parallel. We also simplify the filters of
rendering to reduce complexity and analyze performance
according to block and image sizes. Experimental results show
that our implementation is faster than conventional methods
while preserving visual quality.

Keywords-Depth image-based rendering; GPU; parallel
programming; CUDA

I. INTRODUCTION
A 3D image provides immersive and realistic feelings to

viewers and leads the next generation multimedia services.
With the speedy growths of image processing, sensing and
displaying, a lot of 3D products are releasing in the market
such as TVs, games, PCs, and mobile products. This tendency
will be continued for a long time [1, 2].

People cannot directly perceive the world in 3D, since the
3D world projects onto the curved surface, the retina, at the
back of the eye. We estimate depth information based on some
clues, and such clues are called depth cues. They are
categorized into two types: binocular and monocular depth
cues [3-5]. The binocular depth cues are activated when
viewing a scene with both eyes and include stereopsis and
convergence.

Unlike the binocular depth cues, the monocular depth cues
help us to perceive depth when viewing a scene with one eye.
Such a cue includes linear perspective, aerial perspective, focus
effects, and so on. Since we can perceive relative depth
feelings using the monocular depth cues from 2D pictures, such
cues are often called pictorial cues.

On the basis of those two cues, 3D broadcasting services
and we can enjoy 3D contents at home as shown in Fig. 1. The

main factor of 3D image services is viewing comfort, and
various researches focus on it for various applications. Among
them, the free viewpoint television providing free-view
navigation has been actively developed.

Figure 1. 3D video serivce and special display devices

The best way to get the images at various view positions is
capturing with a lot of cameras, but it is practically impossible.
Therefore, the images are generally synthesized from a few
captured images. For view synthesis, the color images and their
corresponding depth information are required, and the
technology synthesizing intermediate views is called the depth
image-based rendering (DIBR) [6].

Because the depth information represents the distance
between camera and objects in a scene, it is possible to
synthesize images at required view positions. Therefore we can
reduce the number of viewpoints to be sent for 3D broadcasting.
For instance, instead of transmitting ten-view videos, we are
able to reconstruct them with only two color and depth videos.
Exploiting this concept, the moving picture expert group
(MPEG) researched 3D video systems using DIBR [7, 8].

In DIBR, it is very important to get an accurate depth image,
since the quality of depth image directly affects visual quality
of synthesized images. Although, a lot of stereo matching
algorithms have been researched by huge number of works, it
is still a hard problem for texture-less or periodic regions in
images [9]. Therefore some hardware approaches take center
stage such as structured light patterns and depth cameras [10].
After getting the depth information, we synthesize the virtual
view images using DIBR. DIBR is a time consuming process,

978-1-4673-2193-8/12/$31.00 ©2012 IEEE

88

since it is has a lot of matrix calculations and pixel-wise image
processing.

In this paper, we accelerate the DIBR process by using
graphics processor unit (GPU), which has evolved into an
absolute computing workhorse. The GPUs offer incredible
resources for both graphics and non-graphics processing,
because they have multiple cores driven by very high memory
bandwidth.

II. PARALLEL PROGRAMMING ON GPU
Recently, the programmable GPU has evolved into an

absolute computing workhorse. Since GPUs have multiple
cores with high memory bandwidth, they can be proper
resources for various processes [11].

Since GPU has many transistors for data processing, it can
intensively compute with parallel structures. Therefore, the
GPU is especially suited to address problems which are
expressed as parallel computations with high arithmetic
intensity. Data-parallel processing sends data elements to
parallel threads. For accelerating, many applications having
process large data sets adopt such a data-parallel programming
model.

It is very effective especially for 3D image processing;
because it contains many pixels and vertices to be calculated.
In addition, this structure shows powerful results for
conventional image and media processing applications such as
video encoding and decoding, image scaling, stereo vision, and
pattern recognition [12, 13]. Even if some applications have no
pixel or vertex structures, they can be accelerated by data-
parallel processing.

A lot of programming languages and libraries, such as
OpenMP, CUDA, and MPI, for data-parallel processing have
been developed. Among them, CUDA developed by NVIDIA
is a powerful library and has a simple structure. CUDA
intensively decreases computational times via various threads
in GPUs. We can easily access to the virtual instruction set and
memory of GPUs via CUDA. In other words, we can freely use
GPUs as CPUs for complex applications.

Figure 2. Structures of CPU and GPU

In general, GPUs have parallel structures that emphasize
executing many concurrent threads slowly, rather than
executing a single thread very quickly. It is the main difference
between CPU and GPU. Figure 2 shows the different structures
between CPU and GPU. While CPU has a limited number of
memories and logic units for a fast single thread, GPU has a lot

of memories and units which are suitable for parallel
programming.

III. PARALLEL DIBR ON GPU
In this paper, we accelerate the DIBR process by using

GPU explained in Sec. 2. In this section, we explain our
implementation with the general procedure of DIBR. Figure 3
shows the overall procedure of DIBR and parallel types. The
red and blue boxes represent pixel- and column-wise structures.

Figure 3. Procedure of DIBR with parallel types

A. Depth image warping
At first, we read input color and depth images of left and

right views, and upload them to a global memory of GPU. We
design our implementation so that the CPU and GPU do not
exchange unnecessary data, because the speed of data
exchange between Host and Device units is very slow.

Then, in order to fill the holes caused by round off error,
we generate a depth image for the target viewpoint instead of
direct color mapping. If all camera parameters are given, we
can find pixel correspondences between two cameras [14].
When a point M in world coordinate is projected to a camera,
a pixel m in the image can be found by (1). The
representations of a single point M = [X Y Z 1]T and a
projected point m = [x y 1]T are the homogeneous form of a
position.

89

m = A[R | t]M (1)

where A is the intrinsic camera parameter, and R and t are
the extrinsic camera parameters. The detail elements of the
intrinsic parameter are shown in (2), and f, contained in a and
b, relates to the focal length.

lfbkfawhere

vb
uaa

==

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

,,
100

sin/0
cot

0

0

θ
θ

A (2)

In (2), u0 and v0 define the position of the principal point in
the retinal coordinate system, k and l represent a pixel
dimensions, and θ is the angle between the two image axes.

When we find the corresponding pixel between a reference
and target images, we project a pixel mr in the reference
image to the world coordinate using Eq. (3).

Mr = Rr
-1⋅Ar

-1⋅mr⋅d(mr)-Rr
-1⋅tr (3)

where the representations of Ar, Rr, and tr stand for
camera parameters of the reference view. d(mr) is a depth
value of the pixel of mr. After projection of mr, we project Mr
onto the required view position using (4).

mt = At[Rt|tt]Mr (4)

If we conduct this process serially on CPU, it takes a very
long time. Especially 3D warping and texture mapping
processes are respectively conducted two times for left and
right images. Therefore we parallelize this process on GPU
and calculate the four sets of homography matrices for every
depth value to reduce the total amount of matrix calculations.
Then, we upload the matrices to a global memory. To prevent
pixel overlapping caused by depth values, we use a column-
wise structure and conduct this process in the proper directions.

B. Depth filtering
Since the warped depth image has holes from round off

errors and inaccurate boundaries, the textures of foreground
objects can remain in background regions after texture calling.
This phenomenon degrades visual quality. Therefore we fill
the holes and dilate depth image with consideration the
direction of desired view position as (5).

1

)|(|
0

+

<−

⎩
⎨
⎧

+

⎩
⎨
⎧

=
∑

vnb

N

nbcurnb
cur

Dilated N
else

ThDDifD
D

Depth
D

(5)

where Dcur and Dnb are the depth values of current and
neighboring pixels, respectively. N is the set of neighboring
pixels, and Nvnd means the number of valid neighbors whose
absolute difference is smaller than threshold Th. In this paper,
we set Th with 10.

C. Texture mapping and hole filling
After depth filtering, the next step is texture mapping for

the target viewpoint image. In the same manner as depth
warping, we can call the color information for every pixel at
the required view position. Unlike depth warping, this process
does not need a column-wise structure, because it shows the
same result regardless of a processing order. Therefore we use
a pixel-wise structure for parallelizing.

The hole regions in the warped depth image, which are
newly exposed regions cause by viewpoint change, still exist in
the mapped color image. The reference image has no
information on the appeared areas, but we can find the
corresponding information of the hole area in the other input
image. Copying those information is our strategy to fill in the
hole areas. After hole filling, we blend two synthesized view
into one according to view distances. Such processes are
perfectly independent of neighboring pixels, thus we parallelize
them with pixel-wise structures. Finally, we call the blended
image in the global memory of GPU to CPU.

IV. EXPERIMENTAL RESULTS
In order to evaluate the performance of our method, we

synthesized an intermediate view of MPEG sequences: café
and bookarrival. For the experiment, we used the desktop
computer which is equipped with an Intel Core 2 Quad CPU
running at 2.4 GHz and NVIDIA Geforce GTX 580 GPU. The
GPU has 512 CUDA cores and 1.5 GB standard memory. It
works on 772 MHz core clock and on 1,544 shader clock.

Before checking processing times, we found the optimal
block size for DIBR. We had tests on five block sizes: 2, 4, 6, 8,
and 10. On our system, the block size of eight shows the best
performance, thus we set the block size with eight for further
experiments.

Table I shows the comparison result of the processing times
between CPU and GPU implementations, according to image
sizes. For every image size, our implementation shows faster
results than CPU implementation.

90

TABLE I. COMPARISON OF PROCESSING TIMES

Image Size
(10 frames) CPU (s) GPU (s)

640 x 480 16.48 0.21
1024 x 768 22.44 0.33
1280 x 960 28.01 0.52
1920 x 1080 33.18 0.82

Our method is about 40 times faster than the conventional
DIBR on CPU, and it can synthesize more than 10 frames for
full-HD images. Figure 4 demonstrates the visual quality of
synthesized images. Our method provides similar results with
ground truth images, and their PSNR values are greater than
32dB. The results of objective quality measure depend on the
depth quality.

left image right image

 ground truth synthesized image

(a) Café sequence (32.03dB)

left image right image

 ground truth synthesized image

(b) Bookarrival sequence (34.14dB)
Figure 4. visual quality of the synthesized images

V. CONCLUSION
In order to synthesize images at various view positions, we

utilize the DIBR techniques, but it is a time-consuming process.
In this paper, we accelerate the DIBR process by using GPU
and modifying the DIBR part. To reduce processing time, we
minimize unnecessary date exchanges between Host and
Device units, and design the optimal parallel structure for the
filters and matrix calculations. We analyzed the processing
time according to grid and block sizes. Experimental results
show that our implementation is about 40 times faster than the
conventional DIBR on CPU.

ACKNOWLEDGMENT
This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (No. 2011-0030822).

REFERENCES
[1] A. Kubota, A. Smolic, M. Magnor, M. Tanimoto, T. Chen, and C. Zhang,

"Multi-View Imaging and 3DTV (Special Issue Overview and
Introduction)," IEEE Signal Processing Magazine, vol. 24, no. 6, pp. 10-
21 2007.

[2] M. Tanimoto, "Overview of free viewpoint television," Signal Processing:
Image Communication, vol. 21, no. 6, pp. 454-461, 2006.

[3] V. De Silva, A. Fernando, S. Worrall, H. Kodikara Arachchi, and A.
Kondoz, "Sensitivity Analysis of the Human Visual System for Depth
Cues in Stereoscopic 3-D Displays," IEEE Transactions on Multimedia,
vol. 13, no. 3, pp. 498-506, 2011.

[4] S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, "Depth cues in
human visual perception and their realization in 3D displays," p. 76900B,
2010.

[5] A. Saxena, M. Sun, and A. Y. Ng, "Make3d: Learning 3d scene structure
from a single still image," Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 31, no. 5, pp. 824-840, 2009.

[6] C. Fehn, "Depth-image-based rendering (DIBR), compression, and
transmission for a new approach on 3D-TV," p. 93, 2004.

[7] A. Smolic and D. McCutchen, "3DAV exploration of video-based
rendering technology in MPEG," IEEE Transactions on Circuits and
Systems for Video Technology, vol. 14, no. 3, pp. 348-356, 2004.

[8] A. Smolic, K. Mueller, P. Merkle, C. Fehn, P. Kauff, P. Eisert, and T.
Wiegand, "3d video and free viewpoint video-technologies, applications
and mpeg standards," in IEEE International Conference on Multimedia
and Expo pp. 2161-2164, 2006.

[9] D. Scharstein and R. Szeliski, "A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms," International journal of
computer vision, vol. 47, no. 1, pp. 7-42, 2002.

[10] E. K. Lee and Y. S. Ho, "Generation of high-quality depth maps using
hybrid camera system for 3-D video," Journal of Visual Communication
and Image Representation, vol. 22, no. 1, pp. 73-84, 2011.

[11] D. Kirk, "NVIDIA CUDA software and GPU parallel computing
architecture," in the 6th international symposium on Memory management,
pp. 103-104, 2007.

[12] J. Woetzel and R. Koch, "Real-time multi-stereo depth estimation on
GPU with approximative discontinuity handling," in the 1st European
Conference on Visual Media Production, pp. 245-254, 2004.

[13] A. Brunton, C. Shu, and G. Roth, "Belief propagation on the GPU for
stereo vision," in the 3rd Canadian Conference on Computer and Robot
Vision, pp. 76-76, 2006.

[14] R. Hartley, A. Zisserman, and I. ebrary, Multiple view geometry in
computer vision. 2: Cambridge Univ Press, 2003.

91

	Cover
	Paper Index
	0091

