
Circuits Syst Signal Process (2012) 31:813–825
DOI 10.1007/s00034-011-9338-1

S H O RT PA P E R

Efficient Differential Pixel Value Coding in CABAC
for H.264/AVC Lossless Video Compression

Jin Heo · Yo-Sung Ho

Received: 18 September 2010 / Revised: 28 June 2011 / Published online: 27 July 2011
© Springer Science+Business Media, LLC 2011

Abstract Since context-based adaptive binary arithmetic coding (CABAC) as the en-
tropy coding method in H.264/AVC was originally designed for lossy video compres-
sion, it is inappropriate for lossless video compression. Based on the fact that there
are statistical differences of residual data between lossy and lossless video compres-
sion, we propose an efficient differential pixel value coding method in CABAC for
H.264/AVC lossless video compression. Considering the observed statistical proper-
ties of the differential pixel value in lossless coding, we modified the CABAC encod-
ing mechanism with the newly designed binarization table and the context-modeling
method. Experimental results show that the proposed method achieves an approxi-
mately 12% bit saving, compared to the original CABAC method in the H.264/AVC
standard.

Keywords H.264/AVC · Context-based adaptive binary arithmetic coding
(CABAC) · Lossless video compression

1 Introduction

The latest international video coding standard, H.264/AVC, was developed by the
Joint Video Team (JVT) of the ITU-T Video Coding Experts Group (VCEG) and the
ISO/IEC Moving Picture Experts Group (MPEG). For higher compression efficiency,
H.264/AVC has adopted several powerful coding tools by mainly focusing on lossy
video compression [12, 16].

J. Heo (�) · Y.-S. Ho
School of Information and Communications, Gwangju Institute of Science and Technology (GIST),
261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712, Republic of Korea
e-mail: jinheo@gist.ac.kr

Y.-S. Ho
e-mail: hoyo@gist.ac.kr

mailto:jinheo@gist.ac.kr
mailto:hoyo@gist.ac.kr

814 Circuits Syst Signal Process (2012) 31:813–825

To date, since the H.264/AVC standard has been developed by mainly focusing
on lossy coding, it does not provide good coding performance for lossless coding.
Thus, in order to provide improved functionality for lossless coding, JVT developed a
pulse-code modulation (PCM) macroblock coding mode and then a transform-bypass
lossless mode in the fidelity range extensions (FRExt) [13].

Recently, instead of developing a block-based intra prediction, new intra predic-
tion methods called sample-wise differential pulse-code modulation (DPCM) [6, 9]
were introduced for lossless intra prediction, and they have been shown to provide
better coding performance. As a result, one contribution [6] was adopted as a part of
the new draft amendment for the H.264/AVC standard.

In lossy coding, residual data are quantized transform coefficients [7], and they are
encoded by the entropy coder. However, in lossless coding, residual data do not rep-
resent quantized transform coefficients, but rather differential pixel values between
the original and predicted pixel values, because neither transform nor quantization
is used. In other words, prediction residuals are directly coded by the entropy coder.
Therefore, there are significant statistical differences of residual data between lossy
and lossless coding. This means that the current residual data coding method in
context-based adaptive binary arithmetic coding (CABAC) [8] originally designed
for lossy coding is inappropriate for lossless coding.

In our previous work, we introduced improved CAVLC for lossless intra coding
[3, 4] based on the conventional CAVLC [10] in H.264/AVC. Although CAVLC in
available for all profiles in H.264/AVC, the main scope of CAVLC is the baseline pro-
file and the application areas of which include video telephony, video conferencing,
and wireless communications. Thus, the use of the proposed CAVLC was limited in
a small range of applications.

In this paper, we proposed a new differential pixel value coding method in CABAC
for lossless intra coding by modifying the semantics and the decoding process with-
out requiring any other syntax elements in the H.264/AVC standard. In order to
efficiently encode differential pixel values, we modified the binarization table and
context-modeling method based on their statistical characteristics. Experimental re-
sults show that the proposed method improves coding performance, compared to the
conventional CABAC in H.264/AVC.

The rest of this paper is organized as follows. In Sect. 2, we briefly present an
overview of CABAC encoder structure and then explain the structure of CABAC for
residual data coding. In Sect. 3, the proposed differential pixel value coding method
is explained. In Sect. 4, coding performance of the proposed method is compared to
that of the conventional CABAC and well-known lossless coding method. Finally,
conclusion is presented in Sect. 5.

2 Overview of CABAC in H.264/AVC

The encoding process of CABAC consists of four coding steps: binarization, con-
text modeling, binary arithmetic coding, and probability update. In the first step, a
given nonbinary valued syntax element is uniquely mapped to a binary sequence (bin
string). When the binary valued syntax element is given, the first step is bypassed. In

Circuits Syst Signal Process (2012) 31:813–825 815

Fig. 1 CABAC encoding
structure for residual data
coding

the regular coding mode, each binary value (bin) of the binary sequence enters the
context modeling stage, where a probability model is selected based on the previously
encoded syntax elements. Then, the arithmetic coding engine encodes each binary
value with its associated probability model. Finally, the selected context model is up-
dated according to the actual coded binary value. Alternatively, in the bypass coding
mode, each binary value is directly encoded via the bypass coding engine without
using an explicitly assigned model.

Figure 1 illustrates the CABAC encoding structure for a 4 × 4 subblock of quan-
tized transform coefficients. First, for each subblock, a 1-bit symbol coded_block_flag
is transmitted to indicate that a subblock has significant coefficients. If coded_block_
flag is zero, no further information is transmitted for the current subblock; other-
wise, the significance map and level information coding processes are sequentially
encoded.

If coded_block_flag indicates that a subblock has significant coefficients, a binary-
valued significance map is encoded. For each coefficient, a 1-bit syntax element sig-
nificant_coeff_flag is encoded in scanning order. If significant_coeff_flag is one, i.e.,
if a nonzero coefficient exists at this scanning position, a further 1-bit syntax element

816 Circuits Syst Signal Process (2012) 31:813–825

last_significant_coeff_flag is encoded. This syntax element states whether the current
significant coefficient is the last coefficient inside the subblock or not.

After the encoded significance map determines the locations of all significant co-
efficients inside a subblock, the values of the significant coefficients are encoded by
using two syntax elements: coeff_abs_level_minus1 and coeff_sign_flag in reverse
scanning order. The syntax element coeff_sign_flag is encoded by a 1-bit symbol,
whereas the Unary/0th-order Exponential Golomb (UEG0) binarization method is
used to encode the values of coeff_abs_level_minus1 representing the absolute value
of the level minus 1.

3 Proposed Differential Pixel Value Coding Method

In this section, we describe a new differential pixel value coding method for lossless
intra coding by reflecting the statistical properties of residual sample values. In Fig. 1,
the gray shaded processes are modified in the proposed method.

3.1 Binarization for Differential Pixel Value Coding

For the absolute value of the quantized transform coefficient (abs_level) in lossy
coding, the Unary/kth-order Exp-Golomb (UEGk) binarization method is applied.
The design of the UEGk binarization method is motivated by the fact that the unary
code is the simplest prefix-free code to implement, and it permits the fast adaptation
of individual symbol probabilities in the subsequent context modeling stage. These
observations are only accurate for small abs_levels; however, for larger abs_levels,
adaptive modeling has limited functionality. Therefore, these observations lead to the
concept of concatenating an adapted truncated unary (TU) code as a prefix and a
static Exp-Golomb code [14] as a suffix.

UEGk binarization of abs_level has a cutoff value S = 14 for the TU prefix and
the order k = 0 for the Exp-Golomb (EG0) suffix. Previously, Golomb codes have
been proven to be optimal prefix-free codes for geometrically distributed sources [2].
Moreover, EG0 used in lossy coding is the optimal code for a probability density
function (pdf) as follows:

p(x) = 1/2 · (x + 1)−2 for x ≥ 0 (1)

The statistical properties of the absolute value of the differential pixel value
(abs_diff_pixel) in lossless coding are quite different from those of abs_level in lossy
coding. In lossy coding, the statistical distribution of abs_level is highly skewed on
small level values.

However, in lossless coding, the statistical distribution of abs_diff_pixel is quite
wide; note the large variation and wide tails, as shown in Fig. 2. Moreover, from
Fig. 2, we can also observe that the TU code is a fairly good model for the statistical
distribution of abs_level in lossy coding, whereas, it is not appropriate for the statisti-
cal distribution of abs_diff_pixel in lossless coding. Therefore, as UEG0 binarization
was originally designed for lossy coding, it is not appropriate for lossless coding.

Circuits Syst Signal Process (2012) 31:813–825 817

Fig. 2 Probability distribution of the absolute value of residual data and the optimal pdf of the TU code

In order to efficiently encode abs_diff_pixel in lossless coding, we adjusted the
cutoff value S of the TU prefix in UEG0 binarization. In Fig. 2, the optimal pdf curve
for the TU code and the statistical distribution curve for abs_diff_pixel in lossless
coding intersect at an absolute value of 5. Moreover, as the absolute value increases,
the statistical difference between the TU code and abs_diff_pixel in lossless coding
becomes larger. Therefore, we determined a new cutoff value S = 5 for the TU prefix
in the proposed binarization method.

In order to provide a good prefix-free code for lossless coding, we also determined
an appropriate parameter k for the EGk code. The prefix of the EGk codeword con-
sists of a unary code corresponding to the value l(x) = �log2(x/2k + 1)�. The suffix
is then computed as the binary representation of x + 2k(1 − 2l(x)) using k + l(x) sig-
nificant bits. Consequently, for EGk binarization, the number of symbols having the
same code length of k +2l(x)+1 grows geometrically. Then, by inverting Shannon’s
relationship between the ideal code length and the symbol probability, we can find
each pdf corresponding to an EGk having an optimal code according to a parameter k:

pk(x) = 1/2k+1 · (x/2k + 1
)−2 for x ≥ 0 (2)

where pk(x) is the optimal pdf corresponding to the EGk code for a parameter k.
This implies that for an appropriately chosen parameter k, the EGk code represents a
fairly good prefix-free code for tails of typically observed pdfs.

Figure 3 presents the probability distribution of pk(x) for k = 0, 1, 2, and 3 and
the probability distribution of abs_diff_pixels from 6 to 20, where abs_diff_pixels
up to 5 are specified by the TU code. In the figure, the probability distribution of
pk(x) for k = 3 is well matched to the probability distribution of abs_diff_pixel. This

818 Circuits Syst Signal Process (2012) 31:813–825

Fig. 3 Probability distribution
of the optimal pdf corresponding
to the EGk code for k = 0, 1, 2,
and 3 and the probability
distribution of the absolute value
of the differential pixel value

Table 1 Proposed UEG3
binarization for encoding the
absolute value of the differential
pixel value

abs_diff_pixel Bin string

TU prefix EG3 suffix

1 0

2 1 0

3 1 1 0

4 1 1 1 0

5 1 1 1 1 0

6 1 1 1 1 1 0 0 0 0

7 1 1 1 1 1 0 0 0 1

8 1 1 1 1 1 0 0 1 0

9 1 1 1 1 1 0 0 1 1

10 1 1 1 1 1 0 1 0 0

11 1 1 1 1 1 0 1 0 1

12 1 1 1 1 1 0 1 1 0

13 1 1 1 1 1 0 1 1 1

14 1 1 1 1 1 1 0 0 0 0 0

15 1 1 1 1 1 1 0 0 0 0 1

16 1 1 1 1 1 1 0 0 0 1 0

17 1 1 1 1 1 1 0 0 0 1 1
.

bin 1 2 3 4 5 6 7 8 9 10 11 . . .

result implies that the EG3 code represents a fairly good approximation of the ideal
prefix-free code for encoding abs_diff_pixel in lossless coding.

Based on these observations, we designed an efficient binarization method to en-
code abs_diff_pixel in lossless coding. In the proposed algorithm, UEGk binarization
of abs_diff_pixel is specified by the cutoff value S = 5 for the TU prefix and the
order k = 3 for the EGk suffix. Table 1 shows the proposed UEG3 binarization for
abs_diff_pixel.

3.2 Context Modeling for Differential Pixel Value Coding

Each model can be identified by the unique context index, as the entirety of proba-
bility models used in CABAC can be arranged in a linear fashion. The context in-

Circuits Syst Signal Process (2012) 31:813–825 819

Table 2 Block types with the
number of coefficients and
associated context category
(ctx_cat)

Block type MaxNumCoeff Context

category

Luma DC block for Intra16 × 16 16 0

Luma AC block for Intra16 × 16 15 1

Luma block for Intra4 × 4
16 2

Luma block for Inter

U- and V-Chroma DC block 4 3

U- and V-Chroma AC block 15 4

Luma block for 8 × 8 64 5

Fig. 4 Distribution of average
absolute level value according to
the scanning position

dex for all syntax elements of residual data (γS), except for the syntax element of
coded_block_pattern, is specified by

γS = ΓS + ΔS(ctx_cat) + χS (3)

where ΓS represents the context index offset, which is defined as the lower value of
the range of a given syntax element S, and χS denotes the context index increment of
a given syntax element S. In addition, ΔS(ctx_cat) is the context category (ctx_cat)
dependent offset ΔS and is determined based on the block type, as shown in Table 2.

In lossless coding, since neither transform nor quantization is performed, the dif-
ferential pixel values within a subblock do not separate dc and ac coefficients. As a
result, only block type corresponding to a context category of 2 is used in lossless in-
tra coding. Therefore, we can fix the context category value in the context modeling
stage for the absolute value of the differential pixel minus 1 (abs_diff_pixel_minus1).

In order to determine the context index increment for coeff_abs_level_minus1
(χCoeff) in lossy coding, we used two adequately designed sets of context models;
one for the first bin (bin index 1, χCoeff(i,bin_index = 1)) and the other for the bins
(bin indices 2 to 14, χCoeff(i,bin_index)) remaining in the UEG0 prefix. In lossy cod-
ing, at the end of the scanning position, abs_level is likely to observe the occurrence
of successive ±1, called trailing ones. In addition, abs_level is going to be larger
as the scanning position decreases, as shown in Fig. 4. Based on these observations,
χCoeff is determined according to the accumulated number of encoded trailing ones

820 Circuits Syst Signal Process (2012) 31:813–825

Table 3 Encoding parameters
Parameter Setting

ProfileIDC 244 (High 4:4:4)

IntraPeriod 1 (only intra coding)

QPISlice 0 (lossless)

SymbolMode 1 (CABAC)

QPPrimeYZeroTransformBypassFlag 1 (lossless)

(NumT1(i)) and the accumulated number of encoded levels with an absolute value
greater than one (NumLgt1(i)), where i is the scanning position.

However, the figure shows that abs_diff_pixel in lossless coding is independent of
the scanning position. Therefore, we designed an adaptive context modeling method
for abs_diff_pixel_minus1 in lossless coding.

In lossy coding, selection of the context model is based on the expectation that
abs_level is likely to increase at low frequencies. Thus, χCoeff(i,bin_index) increases
based on the assumption that the next abs_level to be coded is going to be larger.
However, since the next abs_diff_pixel does not necessarily increase at lower fre-
quencies in lossless coding, we cannot assume that the next abs_diff_pixel is larger
than the current abs_diff_pixel. Therefore, in lossless coding, the context index incre-
ment for the remaining bins (bin indices 2 to 5, χDiffPix(i,bin_index)) applied the new
cutoff value S = 5 is selected by considering the previously encoded abs_diff_pixel,
due to the fact that we cannot predict whether the next abs_diff_pixel will increase or
not.

In order to efficiently encode the remaining bins with 2 ≤ bin index ≤ 5 in lossless
coding, as shown in the gray shaded columns in Table 1, the corresponding context
index (γDiffPix(i,bin_index)) is determined by

γDiffPix(i,bin_index) = ΓDiffPix + ΔDiffPix(ctx_cat = 2) + χDiffPix(i,bin_index)

(2 ≤ bin_index ≤ 5) (4)

χDiffPix(i,bin_index) = 5 + ctx

ctx =
{

min(4,NumLgt1(i − 1) + 1) if AbsDiff ≥ PrevAbsDiff

min(4,NumLgt1(i − 1)) otherwise
(5)

where AbsDiff and PrevAbsDiff represent the absolute values of the current differen-
tial pixel value and the previous differential pixel value, respectively.

4 Experimental Results

The proposed algorithm was implemented on JM13.2 [5]. We performed experi-
ments on several test sequences of YUV 4:2:0 and 8 bits per pixel (bpp) with QCIF,
CIF, and HD resolutions. Table 3 shows the encoding parameters for the reference
software.

Circuits Syst Signal Process (2012) 31:813–825 821

Table 4 Comparison of bit savings for the conventional CABAC and the proposed methods with QCIF
(176 × 144) resolution sequences

Sequence Image size Method Encoding Stuffing Occurrence Saving bits

(bits) bits (bits) Bytes (bits) frequency of (%)

stuffing bytes

Foreman 91238400 CABAC 42062024 4217672 300 0

Method I 38599072 1145688 300 8.2330

Method II 38580912 1082824 300 8.2761

News 91238400 CABAC 41683584 4957960 300 0

Method I 36464336 906120 300 12.5211

Method II 36420544 821776 300 12.6262

Container 91238400 CABAC 43565952 6384336 300 0

Method I 38447512 2226112 300 11.7487

Method II 38439072 2186368 300 11.7681

Stefan 91238400 CABAC 67131824 19222240 300 0

Method I 53908696 9101360 300 19.6973

Method II 53888896 9051488 300 19.7268

Salesman 91238400 CABAC 48875168 7833048 300 0

Method I 44032176 3374928 300 9.9089

Method II 44015016 3301656 300 9.9440

Average CABAC 0

Method I 12.4218

Method II 12.4682

For applications such as content-contribution, content-distribution, and studio
editing, JVT developed extensions to the original standard—known as the fidelity
range extensions (FRExt) [13]. The FRExt supports a suite of four new profiles col-
lectively called the High profiles: High profile, High 10 profile, High 4:2:2 profile,
and High 4:4:4 profile. The High 4:4:4 profile supports up to 4:4:4 chroma sampling
format, up to 12 bpp, efficient lossless coding, and integer residual color transform
for coding RGB video sequence. Therefore, although we used the test sequences of
YUV 4:2:0 and 8 bpp for experiments, we selected the High 4:4:4 profile for lossless
coding.

In order to evaluate coding performance of each proposed method, we experi-
mented with two parts, based on the following settings:

(1) Method I: use modified binarization table.
(2) Method II: Method I + use new context modeling method.

In order to verify coding efficiency, we performed two kinds of experiments. In the
first experiment, we have compared coding performance of the proposed methods to
that of the conventional CABAC, as shown in Tables 4, 5, and 6. In the experiment, we

822 Circuits Syst Signal Process (2012) 31:813–825

Table 5 Comparison of bit savings for the conventional CABAC and the proposed methods with CIF
(352 × 288) resolution sequences

Sequence Image size Method Encoding Stuffing Occurrence Saving bits

(bits) bits (bits) Bytes (bits) frequency of (%)

stuffing bytes

Flowergarden 182476800 CABAC 136699464 41942256 150 0

Method I 108328768 20586112 150 20.7541

Method II 108297232 20507576 150 20.7771

Mobile 182476800 CABAC 139668256 38233120 150 0

Method I 113776160 18320456 150 18.5383

Method II 113723104 18142776 150 18.5763

Tempete 182476800 CABAC 117918224 28731408 150 0

Method I 100282024 14026776 150 14.9563

Method II 100240728 13908752 150 14.9913

Paris 182476800 CABAC 97911392 15504928 150 0

Method I 85348872 5691776 150 12.8305

Method II 85312184 5525176 150 12.8680

Football 182476800 CABAC 121390696 29013992 150 0

Method I 107143952 16146032 150 11.7363

Method II 107125568 16010928 150 11.7514

Average CABAC 0

Method I 15.7631

Method II 15.7928

encoded 300 frames, 150 frames, and 100 frames in QCIF, CIF, and HD sequences,
respectively. In the second experiment, we have compared coding performance of
the proposed method (Method II) to that of lossless joint photographic experts group
(JPEG-LS) [11, 15] with only one frame (first frame) encoding, as shown in Table 7.

Comparisons were made in terms of bit-rate percentage differences in Tables 4,
5, and 6 and compression ratio differences in Table 7 with respect to H.264/AVC
CABAC and JPEG-LS, respectively. These changes were calculated as follows:

Saving Bits(%) = BitrateH.264/AVC − BitrateMethod

BitrateH.264/AVC
× 100 (6)

Compression Ratio = Image size

BitrateMethod
(7)

Tables 4, 5, and 6 show that the proposed method provides an approximately 12%,
15%, and 8% bit savings with QCIF, CIF, and HD resolution sequences, compared
to the conventional CABAC in H.264/AVC. In Table 7, we show that the proposed
method provides better coding performance than JPEG-LS in lossless coding.

Circuits Syst Signal Process (2012) 31:813–825 823

Table 6 Comparison of bit savings for the conventional CABAC and the proposed methods with HD
(1280 × 720 and 1920 × 1080) resolution sequences

Sequence Image size Method Encoding Stuffing Occurrence Saving bits

(bits) bits (bits) Bytes (bits) frequency of (%)

stuffing bytes

City_corr
(1280 × 720)

1105920000 CABAC 565080864 91459600 100 0
Method I 521989336 48017288 100 7.6257

Method II 521736264 47234600 100 7.6705

Night
(1280 × 720)

1105920000 CABAC 455951136 40631984 100 0
Method I 424775144 11798360 100 6.8376

Method II 424531640 11100448 100 6.8910

Crowdrun
(1920 × 1080)

2488320000 CABAC 1250235376 192383640 100 0
Method I 1152830408 101425120 100 7.7909

Method II 1152640992 100236808 100 7.8061

Parkjoy
(1920 × 1080)

2488320000 CABAC 1283550664 227556528 100 0
Method I 1163176784 119618112 100 9.3782

Method II 1162938240 118485224 100 9.3968

Average CABAC 0

Method I 7.9081

Method II 7.9411

There is an important issue, the so-called stuffing mechanism in H.264/AVC when
we are tinkering with CABAC for lossless coding. This mechanism was incorpo-
rated into the standard to guarantee a certain upper limit on the bin-to-bit ratio per
picture with the intention to limit the worst-case bin processing rate in CABAC.
To fulfill this requirement, the standard encoder must insert a sufficient number of
cabac_zero_words, a byte-aligned sequence of two bytes equal to 0x0000, into the
last part of each slice whenever the bin-to-bit ratio exceeds the given limit. More pre-
cisely, each cabac_zero_word is represented by a 3-byte sequence 0x000003 to avoid
an emulation of the start code (0x000001).

The stuffing mechanism occurs frequently in lossless or near-lossless coding
(quantization parameter (QP) < 10). In Tables 4, 5, and 6, we can observe that
although the stuffing bytes occur in all frames of all test sequences, the proposed
method reduces the bit rate used for generating the stuffing bytes. As a result, the
proposed method enhances coding efficiency. Since the stuffing bytes are used to
guarantee the upper limit on the bin-to-bit ratio per picture which is very important
for applications, bit saving calculation method excluding the stuffing bytes is not
suitable. Therefore, we give bit-saving results by taking stuffing bytes into consider-
ation. Note that more details pertaining to this stuffing mechanism are explained in
subclause 7.4.2.10 of the H.264/AVC recommendation [1].

824 Circuits Syst Signal Process (2012) 31:813–825

Table 7 Comparison of
compression ratio for JPEG-LS
and the proposed method

Resolution Sequence Method Compression ratio

QCIF Foreman JPEG-LS 1.81785

Method II 2.36486

News JPEG-LS 2.08716

Method II 2.50514

Container JPEG-LS 1.90297

Method II 2.37358

Stefan JPEG-LS 1.55746

Method II 1.69308

Salesman JPEG-LS 1.68685

Method II 2.07289

CIF Flowergarden JPEG-LS 1.62005

Method II 1.68496

Mobile JPEG-LS 1.48648

Method II 1.60457

Tempete JPEG-LS 1.58259

Method II 1.82039

Paris JPEG-LS 1.72034

Method II 2.13893

Football JPEG-LS 1.60613

Method II 1.70339

HD City_corr JPEG-LS 1.90791

Method II 2.11969

Night JPEG-LS 2.25829

Method II 2.60504

Crowdrun JPEG-LS 1.68024

Method II 2.15880

Parkjoy JPEG-LS 1.86636

Method II 2.13968

Average JPEG-LS 1.77005

Method II 2.07036

5 Conclusions

In this paper, we proposed an efficient differential pixel value coding method in
CABAC for H.264/AVC lossless video compression. Considering the observed sta-
tistical properties of the differential pixel values in lossless coding, we changed the
binarization table based on the Unary/kth-order Exp-Golomb (UEGk) binarization
and then modified the context-modeling method. Experimental results show that the
proposed method provides an approximately 12% bit saving, compared to the con-
ventional CABAC in the H.264/AVC standard.

Acknowledgements This research was supported by the MKE (The Ministry of Knowledge Economy),
Korea, under the ITRC (Information Technology Research Center) support program supervised by the
NIPA (National IT Industry Promotion Agency) (NIPA-2011-(C1090-1111-0003))

Circuits Syst Signal Process (2012) 31:813–825 825

References

1. Editors’ draft revision to ITU-T Rec. H.264|ISO/IEC 14496-10 Advanced Video Coding—in prepa-
ration for ITU-T SG17 AAP Consent, Document JVT-AD205.doc, Joint Video Team of ISO/IEC
14496-10 AVC, ISO/IEC JTC1/SC29/WG11 and ITU-T Q.6/SG16, 2009

2. R.G. Gallager, D.C. Van Voorhis, Optimal source codes for geometrically distributed integer alpha-
bets. IEEE Trans. Inf. Theory 21(2), 228–230 (1975)

3. J. Heo, Y.-S. Ho, Efficient level and zero coding methods for H.264/AVC lossless intra coding. IEEE
Signal Process. Lett. 17(1), 87–90 (2010)

4. J. Heo, S.-H. Kim, Y.-S. Ho, Improved CAVLC for H.264/AVC lossless intra coding. IEEE Trans.
Circuits Syst. Video Technol. 20(2), 213–222 (2010)

5. Joint Video Team, Reference Software Version 13.2 [Online]. Available: http://iphome/hhi.de/
shehring/tml/download/old_jm/jm13.2.zip

6. Y.-L. Lee, K.-H. Han, G.J. Sullivan, Improved lossless intra coding for H.264/MPEG-4 AVC. IEEE
Trans. Image Process. 15(9), 2610–2615 (2006)

7. H. Malvar, A. Hallapuro, M. Karczewicz, L. Kerofsky, Low-complexity transform and quantization
in H.264/AVC. IEEE Trans. Circuits Syst. Video Technol. 13(7), 598–603 (2003)

8. D. Marpe, H. Schwarz, T. Wiegand, Context-based adaptive binary arithmetic coding in the
H.264/AVC video compression. IEEE Trans. Circuits Syst. Video Technol. 13(7), 620–636 (2003)

9. J.-H. Nam, D. Sim, Lossless video coding based on pixel-wise prediction. Multimed. Syst. 14(5),
291–298 (2008)

10. I.E.G. Richardson, H.264/MPEG-4, part 10, in H.264 and MPEG-4 Video Compression (Wiley, New
York, 2003), pp. 201–207

11. K. Sayood, Lossless image compression, in Introduction to Data Compression (Morgan Kaufmann,
San Mateo, 2006), pp. 170–172

12. G.J. Sullivan, T. Wiegand, Video compression—from concepts to the H.264/AVC standard. Proc.
IEEE 93(1), 18–31 (2005)

13. G.J. Sullivan, P. Topiwala, A. Luthra, The H.264/AVC advanced video coding standard: Overview and
introduction to the fidelity range extensions, in Proc. SPIE Conf., Special Session Adv. New Emerg.
Standard: H.264/AVC (2004), pp. 454–474

14. J. Teuhola, A compression method for clustered bit-vectors. Inf. Process. Lett. 7, 308–311 (1978)
15. M.J. Weinberger, G. Seroussi, G. Sapiro, The LOCO-I lossless image compression algorithm: Princi-

ples and standardization into JPEG-LS. IEEE Trans. Image Process. 9(8), 1309–1324 (2000)
16. T. Wiegand, G.J. Sullivan, G. Bjøntegaard, A. Luthra, Overview of the H.264/AVC video coding

standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)

http://iphome/hhi.de/shehring/tml/download/old_jm/jm13.2.zip
http://iphome/hhi.de/shehring/tml/download/old_jm/jm13.2.zip

	Efficient Differential Pixel Value Coding in CABAC for H.264/AVC Lossless Video Compression
	Abstract
	Introduction
	Overview of CABAC in H.264/AVC
	Proposed Differential Pixel Value Coding Method
	Binarization for Differential Pixel Value Coding
	Context Modeling for Differential Pixel Value Coding

	Experimental Results
	Conclusions
	Acknowledgements
	References

