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Abstract — Depth images are essential data for high-

quality three-dimensional (3D) video services, but the 
resolution of depth images captured by commercially 
available depth cameras is lower than that of the 
corresponding color images, owing to technical limitations. A 
depth image up-sampling method that uses a confidence-based 
Markov random field is proposed for enhancing this 
resolution. An initial high-resolution depth image and 
confidence values are generated with consideration of 
boundaries and textures in the corresponding color images. 
These are used as the base for a new likelihood and prior 
model design. The energy function derived from this model is 
optimized by using a graph cut algorithm, and subsequent 
experiments show that the proposed algorithm provides 
sufficiently good up-sampled depth images compared to other 
state-of-the-art algorithms1. 
 

Index Terms — Confidence, depth camera, depth image, 
interpolation, Markov random field (MRF). 

I. INTRODUCTION 

Three-dimensional (3D) video services are attracting 
considerable attention due to the commercial success of 3D 
movies, and multi-view and free viewpoint services are in 
the spotlight as the next generation of 3D video services. 
Such formats provide various images from different 
viewpoints simultaneously [1]-[3]. 

However, it is physically impossible in practice to 
capture all images. Therefore, depth image-based rendering 
(DIBR), which synthesizes images at desired viewpoints, 
has been proposed [4]. Using this concept, the Moving 
picture experts group (MPEG) has investigated an 
advanced 3D video system, and the depth image plays an 
important role in this system [5], [6]. 

Depth images represent distances between a camera and 
objects. They have been widely used owing to their diverse 
potential applications, including DIBR [7]-[9], with a 
number of range-measuring technologies for obtaining 
accurate depth images currently being explored.  

To this end, depth cameras are a popular technology 
because they are able to capture dynamic depth images in 
real-time. However, although depth cameras are convenient 
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to use and generally provide good performance, the current 
generation of depth cameras is limited in terms of their 
resolution. Moreover, recent demands require even higher 
image resolution, so various resolution enhancement 
methods have been proposed. 

For this task, common up-sampling approaches initially 
implemented included bilinear and bicubic interpolations.  
However, despite being simple and reliable, the output of 
these approaches is erroneous with respect to depth 
discontinuities. Therefore, alternative algorithms for depth 
images, which consider not only a depth image but also its 
corresponding color image, have been developed. 

Diebel et al. proposed a Markov random field (MRF) 
approach for integrating low-resolution depth and its 
corresponding high-resolution color images [10]. The MRF 
model integrates depth and color data and provides a 
probability distribution. The model is optimized using the 
conjugate gradient algorithm. Yang et al. adopted a bilateral 
filter for low-resolution depth images [11]. In this approach, 
the filter was applied to the weighted cost volume, which 
was followed by sub-pixel refinement. Their method 
refines a low-resolution depth image iteratively in terms of 
both its spatial resolution and depth precision. 

Although the above-mentioned algorithms improve 
output quality in comparison with conventional up-
sampling methods, their performance decreases markedly, 
when the resolution of depth images is significantly lower 
than that of the color images. In this case, edges are 
severely blurred, and accuracy is decreased as well. 

In this paper, a relatively efficient depth image up-
sampling method that uses a confidence-based MRF model 
is proposed to resolve these problems. Conventional MRF-
based approaches use only a similar model for stereo 
matching, but the proposed model for depth image up-
sampling is designed taking into account the properties of a 
depth image. After conducting depth image up-sampling 
with two local interpolation algorithms, the proposed 
method measures the confidence of each pixel. To cover 
inaccurate regions, new likelihood and prior functions are 
designed for the MRF model that consider the confidence 
of the initial depth image and. This model is optimized via 
a graph cut algorithm. 

II. MARKOV RANDOM FIELD MODELING 

MRF modeling can provide a powerful solution for depth 
image up-sampling; a high-resolution depth image can be 
generated effectively from a low-resolution depth image using 
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a maximum a posteriori (MAP) framework. According to 
Bayes’ rule, the posterior probability can be computed as 
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where DH, DL, and IC are high- and low-resolution depth 
images and the corresponding high-resolution color image, 
respectively. P(DH) is the prior probability of the depth image 
DH, and P(IC, DL|DH) is the conditional probability density 
function of IC and DL given DH. P(IC, DL) can be ignored 
because it does not contain unknowns; it is a constant when IC 
and DL are given. Therefore, the posterior probability is 
proportional to the joint distribution, and MAP is equivalently 
determined as 
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Note that the first term P(IC, DL|DH) is the likelihood 
probability and the second term P(DH) is the prior probability 
of the depth image interpolation. In this paper, a new posterior 
probability is proposed, with a confidence value that supports 
this probability model in reducing the uncertainty of low-
resolution depth images. 

III. DEPTH IMAGE INTERPOLATION METHOD 

A. Initial Depth Image and Confidence Map 

Since the MRF model estimates labels based on observed 
data, these data are very important. In the conventional 
algorithm [10], only low-resolution depth images are regarded 
as observed data even though there is a lack of information for 
explicitly designing the MRF model. To supplement observed 
data, the proposed method generates an initial high-resolution 
depth image and confidence map and regards them as 
observed data. Two local algorithms are used complementarily 
to generate it: color-based and bilinear interpolation. 

Bilinear interpolation is a well-known algorithm in the field 
of image processing. The color-based interpolation algorithm 
estimates depth values by considering neighbors having 
similar color values, as follows. 
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In (3), Nc is a pixel set whose Euclidean distances to pixel i 
in the RGB domain are less than Thc, and dRj is its depth value. 
In addition, fS(i, j) is the exponential weighting function based 
on the Euclidean distance in the spatial domain between two 
pixels i and j, and W is the sum of fS(i, j). The reference 
samples j are found in raster scan order from their co-located 
positions in the low-resolution depth image, and the number of 
reference samples is limited to four. Furthermore, in contrast 
to a bilateral filter, the ratio of color differences is not used to 
prevent intermediate value generation—a very important 
factor for obtaining high-quality depth images [12]. 

The results of the two interpolation methods are shown in 
Figs. 1(a) and 1(b). These show that whereas the color-based 
interpolated depth image has relatively precise values around 
the discontinuities, it has significantly less accurate values 
than the linearly interpolated depth image in the non-boundary 
and high-textured regions of color images. 

 

 
(a)                 (b) 

  
(c)                 (d) 

Fig. 1. (a) Color-based interpolated depth image, (b) linearly interpolated 
depth image, (c) confidence map, and (d) initial depth image. 

 
A confidence map is generated by calculating the difference 

between the two interpolated depth images and inverting the 
result, as shown in Fig. 1(c). Then, depth values having high 
confidence (> 200) are selected. Subsequently, an initial high-
resolution depth image is generated. The initial depth image 
also includes the depth values of the color-based interpolated 
depth image around its discontinuities. Fig. 1(d) shows the 
initial depth image, and the black regions represent holes that 
cannot be estimated from the two interpolated images. The 
initial depth image needs an additional refining process using 
MAP estimation. 

B. Likelihood Model 

The MAP estimate is similarly found by minimizing the 
energy function U(DH|IC, DL). The energy function is the sum 
of the likelihood energy U(IC, DL|DH) and the prior energy 
U(DH) in the MRF model for depth image interpolation. 

The energy function for the likelihood probability is modeled 
to measure the disagreement between estimated and observed 
data, and then to compensate for it. Note also that although the 
initial depth image still has many holes, the existing values are 
relatively accurate. As such, it is regarded in the MRF model as 
the observed depth image DO. Therefore, the proposed 
algorithm compares the current estimated depth value with the 
co-located value in the initial depth image. This comparison is 
conducted only when the depth value at the current position in 
the initial depth image is available. Accordingly, the energy 
function for the likelihood probability is defined as 
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As shown in (4), the likelihood energy function is the 
summation of the cost function fL of the estimated depth 
values di at position i. In the cost function fL, dinit_i is the depth 
value in the initial depth image, u[ ] is the unit step function, 
and wL is a weighting factor of the likelihood energy.  

 

 
(a) 

 
(b)                          (c) 

Fig. 2. Example of the likelihood energy function: (a) depth values to be 
estimated, da and db, and the likelihood energy functions for (b) da and (c) 
db. 

 
When the initial depth image has a valid value at the current 

position i, fL is used to evaluate the accuracy of pixel value 
matching. However, if the depth value is invalid, fL only 
restricts the range of the depth values from the minimum 
depth value dOmin to the maximum depth value dOmax in a 
search range. Fig. 2 illustrates the properties of the likelihood 
energy. In Fig. 2(a), da is a pixel having a corresponding depth 
value, and db has no corresponding depth value in the initial 
depth image. Figs. 2(b) and 2(c) show examples of each 
energy function. While fL(da) penalizes differences between 
current and corresponding depth values, fL(db) allocates low 
penalty values to the range from the minimum depth value 
dOmin to the maximum depth value dOmax of neighbors in DO for 
mobility. 

C. Prior Model 

The likelihood model alone is insufficient for accurately 
estimating depth values that do not have a corresponding 
depth value in the initial depth image. Therefore, we define an 
additional constraint based on prior knowledge that the depth 
values of the high-resolution depth image are piecewise 
continuous; hence, it is modeled to compensate for any 
variation in smoothness, such that 
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where N is the set of edges in a four-connected image grid 
graph. Here, wC(i, j) is a weighting factor with respect to 

the color difference and the confidence value and is defined 
as 

)).,min(exp(),(

)(

exp1)(,(),( },,{

2

jip

p

bgrc
ji

C

confconfwjiconfwhere

CC

jiconfjiw

















 






   (6) 

The weighting factor is based on the Euclidean distance 
between pixel i and j in the RGB domain, and wp controls the 
effect of the confidences. If both confidence values confi and 
confj are greater than a sufficiently large value (in this paper, 
this value is 250), the prior constraint can be ignored; that is, 
the prior model does not change the depth values of high 
confidence in the initial depth image. 

IV. EXPERIMENTAL RESULTS 

Experiments were performed on Middlebury datasets, and 
the proposed MRF model was optimized using a graph cut 
algorithm [13]. The ground-truth depth images were down-
sampled by factors of 4 and 8 for each axis, and then up-
sampled using the proposed algorithm. Throughout test runs, 
the algorithm parameters were set to constant values: {Thc, wL, 
wp} = {10, 15, 13}. The search range was set to 16. 

 

 
Fig. 3. Input (a scaling factor of 8) depth images, up-sampled depth 
images, corresponding error maps, and ground-truth depth images for 
Tsukuba, Teddy, Venus, and Cones. 

 
Fig. 3 shows the interpolation results for the datasets for a 

down-sampling factor of 8. The first column contains the input 
depth images, and the second column shows the results. The 
third column shows the corresponding error maps between the 
up-sampling results and the ground truth in the last column. 
Despite the large down-sampling factor, the proposed 
interpolation method efficiently reconstructed depth borders.  

For an objective evaluation, the proposed algorithm was 
compared with two traditional interpolation algorithms, the 
bilinear and bicubic algorithms, and two state-of-the-art 
algorithms, Diebel’s [10] and Yang’s [11]. Table I 
summarizes the proportion of bad pixels according to the 
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different down-sampling factors. Estimating bad pixels is a 
standard measure of depth image accuracy in which an 
estimated depth is considered correct if it is within the ground-
truth depth ±1. In the table, the proposed algorithm offers 
more accurate depth values than the others do, especially for 
severely down-sampled depth images. 

 
TABLE I 

COMPARISON OF PROPORTION OF BAD PIXELS 

% Tsukuba Teddy Venus Cone 

Factor 4 8 4 8 4 8 4 8 

Bilinear 8.64 14.98 11.04 18.89 1.63 3.33 14.04 23.61 

Bicubic 7.96 13.03 10.42 17.33 1.35 2.77 12.81 22.27 

Diebel’s 5.12 9.68 8.33 14.50 1.24 2.69 7.52 14.40 

Yang’s 2.56 6.95 5.95 11.50 0.42 1.19 4.76 11.00 
Proposed 1.62 2.81 5.01 7.33 0.52 1.02 5.59 8.78 

 
These results confirm that the proposed likelihood and prior 

models based on confidence are well defined in the energy 
functions. The accuracy of the proposed algorithm makes it 
possible to use it in practical applications. For instance, Fig. 4 
shows the reconstructed models using the up-sampling results 
(a scaling factor of 8). The proposed algorithm supports 
synthesis of various images from different viewpoints without 
considerable visual distortions, even though the resolution of 
input depth images is very small. Optimizing the parameters in 
the MRF model is expected to lead to further improvements. 

 

 
Fig. 4. 3D mesh models using the proposed up-sampling method. 

V. CONCLUSION 

The resolution of depth images captured by depth cameras 
is normally smaller than that of the corresponding color image 
owing to technical limitations. In this paper, an MRF model-
based depth image interpolation method was proposed. To use 
observed data more efficiently, the proposed method generates 
the initial depth image using two local interpolation methods, 
and subsequently defines a confidence map. Based on the 
initial depth image and confidence values, the proposed MRF 
model was designed and optimized via a graph cut algorithm. 
Experimental results showed that the proposed algorithm 
exhibits better performance for depth image interpolation than 
conventional methods. The proposed method can be useful in 
various commercial applications that use low-resolution depth 
cameras. 
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