Depth Image Interpolation Using Confidence-based Markov Random Field

Jae-II Jung and Yo-Sung Ho, Senior Member, IEEE

Abstract — Depth images are essential data for high-quality three-dimensional (3D) video services, but the resolution of depth images captured by commercially available depth cameras is lower than that of the corresponding color images, owing to technical limitations. A depth image up-sampling method that uses a confidence-based Markov random field is proposed for enhancing this resolution. An initial high-resolution depth image and confidence values are generated with consideration of boundaries and textures in the corresponding color images. These are used as the base for a new likelihood and prior model design. The energy function derived from this model is optimized by using a graph cut algorithm, and subsequent experiments show that the proposed algorithm provides sufficiently good up-sampled depth images compared to other state-of-the-art algorithms.

Index Terms — Confidence, depth camera, depth image, interpolation, Markov random field (MRF).

I. INTRODUCTION

Three-dimensional (3D) video services are attracting considerable attention due to the commercial success of 3D movies, and multi-view and free viewpoint services are in the spotlight as the next generation of 3D video services. Such formats provide various images from different viewpoints simultaneously [1]-[3]. However, it is physically impossible in practice to capture all images. Therefore, depth image-based rendering (DIBR), which synthesizes images at desired viewpoints, has been proposed [4]. Using this concept, the Moving picture experts group (MPEG) has investigated an advanced 3D video system, and the depth image plays an important role in this system [5], [6].

Depth images represent distances between a camera and objects. They have been widely used owing to their diverse potential applications, including DIBR [7]-[9], with a number of range-measuring technologies for obtaining accurate depth images currently being explored.

To this end, depth cameras are a popular technology because they are able to capture dynamic depth images in real-time. However, although depth cameras are convenient to use and generally provide good performance, the current generation of depth cameras is limited in terms of their resolution. Moreover, recent demands require even higher image resolution, so various resolution enhancement methods have been proposed.

For this task, common up-sampling approaches initially implemented included bilinear and bicubic interpolations. However, despite being simple and reliable, the output of these approaches is erroneous with respect to depth discontinuities. Therefore, alternative algorithms for depth images, which consider not only a depth image but also its corresponding color image, have been developed.

Diebel et al. proposed a Markov random field (MRF) approach for integrating low-resolution depth and its corresponding high-resolution color images [10]. The MRF model integrates depth and color data and provides a probability distribution. The model is optimized using the conjugate gradient algorithm. Yang et al. adopted a bilateral filter for low-resolution depth images [11]. In this approach, the filter was applied to the weighted cost volume, which was followed by sub-pixel refinement. Their method refines a low-resolution depth image iteratively in terms of both its spatial resolution and depth precision.

Although the above-mentioned algorithms improve output quality in comparison with conventional up-sampling methods, their performance decreases markedly, when the resolution of depth images is significantly lower than that of the color images. In this case, edges are severely blurred, and accuracy is decreased as well.

In this paper, a relatively efficient depth image up-sampling method that uses a confidence-based MRF model is proposed to resolve these problems. Conventional MRF-based approaches use only a similar model for stereo matching, but the proposed model for depth image up-sampling is designed taking into account the properties of a depth image. After conducting depth image up-sampling with two local interpolation algorithms, the proposed method measures the confidence of each pixel. To cover inaccurate regions, new likelihood and prior functions are designed for the MRF model that consider the confidence of the initial depth image and. This model is optimized via a graph cut algorithm.

II. MARKOV RANDOM FIELD MODELING

MRF modeling can provide a powerful solution for depth image up-sampling; a high-resolution depth image can be generated effectively from a low-resolution depth image using
a maximum a posteriori (MAP) framework. According to Bayes’ rule, the posterior probability can be computed as

\[P(D_H | I_C, D_L) = \frac{P(I_C, D_L | D_H) P(D_H)}{P(I_C, D_L)}, \]

where \(D_H \), \(D_L \), and \(I_C \) are high- and low-resolution depth images and the corresponding high-resolution color image, respectively. \(P(D_H) \) is the prior probability of the depth image \(D_H \), and \(P(I_C, D_L | D_H) \) is the conditional probability density function of \(I_C \) and \(D_L \) given \(D_H \). \(P(I_C, D_L) \) can be ignored because it does not contain unknowns; it is a constant when \(I_C \) and \(D_L \) are given. Therefore, the posterior probability is proportional to the joint distribution, and MAP is equivalently determined as

\[D_H^* = \arg \max_B \{ P(I_C, D_L | D_H) P(D_H) \}. \]

Note that the first term \(P(I_C, D_L | D_H) \) is the likelihood probability and the second term \(P(D_H) \) is the prior probability of the depth image interpolation. In this paper, a new posterior probability is proposed, with a confidence value that supports this probability model in reducing the uncertainty of low-resolution depth images.

III. Depth Image Interpolation Method

A. Initial Depth Image and Confidence Map

Since the MRF model estimates labels based on observed data, these data are very important. In the conventional algorithm [10], only low-resolution depth images are regarded as observed data even though there is a lack of information for explicitly designing the MRF model. To supplement observed data, the proposed method generates an initial high-resolution depth image and confidence map and regards them as observed data. Two local algorithms are used complementarily to generate it: color-based and bilinear interpolation.

Bilinear interpolation is a well-known algorithm in the field of image processing. The color-based interpolation algorithm estimates depth values by considering neighbors having similar color values, as follows.

\[d_i = \frac{1}{W} \sum_{j \in N_i} f_s(i, j) d_j, \]

where

\[f_s(i, j) = \exp \left(-\frac{(i_i - i_j)^2 + (i_j - j_j)^2}{\sigma^2} \right) \]

In (3), \(N_i \) is a pixel set whose Euclidean distances to pixel \(i \) in the RGB domain are less than \(T_h \), and \(d_j \) is its depth value. In addition, \(f_s(i, j) \) is the exponential weighting function based on the Euclidean distance in the spatial domain between two pixels \(i \) and \(j \), and \(W \) is the sum of \(f_s(i, j) \). The reference samples \(j \) are found in raster scan order from their co-located positions in the low-resolution depth image, and the number of reference samples is limited to four. Furthermore, in contrast to a bilateral filter, the ratio of color differences is not used to prevent intermediate value generation—a very important factor for obtaining high-quality depth images [12].

The results of the two interpolation methods are shown in Figs. 1(a) and 1(b). These show that whereas the color-based interpolated depth image has relatively precise values around the discontinuities, it has significantly less accurate values than the linearly interpolated depth image in the non-boundary and high-textured regions of color images.

![Fig. 1. (a) Color-based interpolated depth image, (b) linearly interpolated depth image, (c) confidence map, and (d) initial depth image.](image-url)

A confidence map is generated by calculating the difference between the two interpolated depth images and inverting the result, as shown in Fig. 1(c). Then, depth values having high confidence (> 200) are selected. Subsequently, an initial high-resolution depth image is generated. The initial depth image also includes the depth values of the color-based interpolated depth image around its discontinuities. Fig. 1(d) shows the initial depth image, and the black regions represent holes that cannot be estimated from the two interpolated images. The initial depth image needs an additional refining process using MAP estimation.

B. Likelihood Model

The MAP estimate is similarly found by minimizing the energy function \(U(D_H | I_C, D_L) \). The energy function is the sum of the likelihood energy \(U(I_C, D_L | D_H) \) and the prior energy \(U(D_H) \) in the MRF model for depth image interpolation.

The energy function for the likelihood probability is modeled to measure the disagreement between estimated and observed data, and then to compensate for it. Note also that although the initial depth image still has many holes, the existing values are relatively accurate. As such, it is regarded in the MRF model as the observed depth image \(D_L \). Therefore, the proposed algorithm compares the current estimated depth value with the co-located value in the initial depth image. This comparison is conducted only when the depth value at the current position in the initial depth image is available. Accordingly, the energy function for the likelihood probability is defined as

\[U(I_C, D_L | D_H) = w_i \sum f_l(d_l) \]

where

\[f_l(d_l) = \begin{cases} \exp \left(-\frac{(d_l - d_{\text{max}})^2}{\sigma^2} \right) & \text{if } d_l \in D_L \\ 1 - \left(\frac{d_l - d_{\text{max}}}{d_{\text{max}} - d_{\text{min}}} \right) & \text{otherwise.} \end{cases} \]
As shown in (4), the likelihood energy function is the summation of the cost function \(f_L \) of the estimated depth values \(d_i \) at position \(i \). In the cost function \(f_L \), \(d_{init,j} \) is the depth value in the initial depth image, \(u[] \) is the unit step function, and \(w_L \) is a weighting factor of the likelihood energy.

![Figure 2](image1.png)

Fig. 2. Example of the likelihood energy function: (a) depth values to be estimated, \(d_a \) and \(d_b \), and the likelihood energy functions for (b) \(d_a \) and (c) \(d_b \).

When the initial depth image has a valid value at the current position \(i \), \(f_L \) is used to evaluate the accuracy of pixel value matching. However, if the depth value is invalid, \(f_L \) only restricts the range of the depth values from the minimum depth value \(d_{omin} \) to the maximum depth value \(d_{onax} \) in a search range. Fig. 2 illustrates the properties of the likelihood energy. In Fig. 2(a), \(d_a \) is a pixel having a corresponding depth value, and \(d_b \) has no corresponding depth value in the initial depth image. Figs. 2(b) and 2(c) show examples of each energy function. While \(f_L(d_a) \) penalizes differences between current and corresponding depth values, \(f_L(d_b) \) allocates low penalty values to the range from the minimum depth value \(d_{omin} \) to the maximum depth value \(d_{onax} \) of neighbors in \(D_0 \) for mobility.

C. Prior Model

The likelihood model alone is insufficient for accurately estimating depth values that do not have a corresponding depth value in the initial depth image. Therefore, we define an additional constraint based on prior knowledge that the depth values of the high-resolution depth image are piecewise continuous; hence, it is modeled to compensate for any variation in smoothness, such that

\[
U(D_H) = w_p \sum_i \sum_{j \in N} f_p(d_i, d_j)
\]

where \(f_p(d_i, d_j) = w_c(i, j) \cdot (d_i - d_j)^2 \),

where \(N \) is the set of edges in a four-connected image grid graph. Here, \(w_c(i, j) \) is a weighting factor with respect to the color difference and the confidence value and is defined as

\[
w_c(i, j) = \text{conf}(i, j)(1 - \exp \left(-\frac{\sum (C_i - C_j)^2}{\sigma_p} \right))
\]

where \(\text{conf}(i, j) = \exp(-w_p \cdot \min(\text{conf}_i, \text{conf}_j)) \).

The weighting factor is based on the Euclidean distance between pixel \(i \) and \(j \) in the RGB domain, and \(w_p \) controls the effect of the confidences. If both confidence values \(\text{conf}_i \) and \(\text{conf}_j \) are greater than a sufficiently large value (in this paper, this value is 250), the prior constraint can be ignored; that is, the prior model does not change the depth values of high confidence in the initial depth image.

IV. Experimental Results

Experiments were performed on Middlebury datasets, and the proposed MRF model was optimized using a graph cut algorithm [13]. The ground-truth depth images were downsampled by factors of 4 and 8 for each axis, and then upsampled using the proposed algorithm. Throughout test runs, the algorithm parameters were set to constant values: \(\{ T_h, w_L, w_p \} = \{ 10, 15, 13 \} \). The search range was set to 16.

![Figure 3](image2.png)

Fig. 3. Input (a scaling factor of 8) depth images, up-sampled depth images, corresponding error maps, and ground-truth depth images for Tsukuba, Teddy, Venus, and Cones.

Fig. 3 shows the interpolation results for the datasets for a down-sampling factor of 8. The first column contains the input depth images, and the second column shows the results. The third column shows the corresponding error maps between the up-sampling results and the ground truth in the last column. Despite the large down-sampling factor, the proposed interpolation method efficiently reconstructed depth borders.

For an objective evaluation, the proposed algorithm was compared with two traditional interpolation algorithms, the bilinear and bicubic algorithms, and two state-of-the-art algorithms, Diebel’s [10] and Yang’s [11]. Table I summarizes the proportion of bad pixels according to the
different down-sampling factors. Estimating bad pixels is a standard measure of depth image accuracy in which an estimated depth is considered correct if it is within the ground-truth depth ±1. In the table, the proposed algorithm offers more accurate depth values than the others do, especially for severely down-sampled depth images.

These results confirm that the proposed likelihood and prior models based on confidence are well defined in the energy functions. The accuracy of the proposed algorithm makes it possible to use it in practical applications. For instance, Fig. 4 shows the reconstructed models using the up-sampling results (a scaling factor of 8). The proposed algorithm supports synthesis of various images from different viewpoints without considerable visual distortions, even though the resolution of input depth images is very small. Optimizing the parameters in the MRF model is expected to lead to further improvements.

<table>
<thead>
<tr>
<th>%</th>
<th>Tsukuba</th>
<th>Teddy</th>
<th>Venus</th>
<th>Cone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Bilinear</td>
<td>8.64</td>
<td>14.98</td>
<td>11.04</td>
<td>18.89</td>
</tr>
<tr>
<td>Bicubic</td>
<td>7.96</td>
<td>13.03</td>
<td>10.42</td>
<td>17.33</td>
</tr>
<tr>
<td>Diebel’s</td>
<td>5.12</td>
<td>9.68</td>
<td>8.33</td>
<td>14.50</td>
</tr>
<tr>
<td>Yang’s</td>
<td>2.56</td>
<td>6.95</td>
<td>5.95</td>
<td>11.50</td>
</tr>
<tr>
<td>Proposed</td>
<td>1.62</td>
<td>2.81</td>
<td>5.01</td>
<td>7.33</td>
</tr>
</tbody>
</table>

Table I: COMPARISON OF PROPORTION OF BAD PIXELS

Fig. 4. 3D mesh models using the proposed up-sampling method.

V. CONCLUSION

The resolution of depth images captured by depth cameras is normally smaller than that of the corresponding color image owing to technical limitations. In this paper, an MRF model-based depth image interpolation method was proposed. To use observed data more efficiently, the proposed method generates the initial depth image using two local interpolation methods, and subsequently defines a confidence map. Based on the initial depth image and confidence values, the proposed MRF model was designed and optimized via a graph cut algorithm. Experimental results showed that the proposed algorithm exhibits better performance for depth image interpolation than conventional methods. The proposed method can be useful in various commercial applications that use low-resolution depth cameras.