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Abstract: Recently, high-dynamic range (HDR) imaging has taken the centre stage because of the drawbacks of low-dynamic
range imaging, namely detail losses in under- and over-exposed areas. In this study, the authors propose an algorithm for
HDR image generation of a low-bit depth from two differently exposed images. For compatibility with conventional devices,
HDR image generations of a large bit depth and bit depth compression are skipped. By using posterior probability-based
labelling, luminance adjusting and adaptive blending, the authors directly blend two input images into one while preserving
the global intensity order as well as enhancing its dynamic range. From the experiments on various test images, results
confirm that the proposed method generates more natural HDR images than other state-of-the-art algorithms regardless of
image properties.
1 Introduction

Generally, commercial digital image sensors fail to capture
scenes visible to humans. Primarily, this is because of the
limited dynamic range of the image sensors; improper
camera settings occasionally cause the problem as well.
Humans can perceive scene luminance varying from 10−3

to 105 cd/m2; however the dynamic range of an ordinary
digital image sensor is only about 102 cd/m2 [1]. In order to
maximise the use of this limitation, digital cameras allow
users to control exposure settings by their preferences.
However, this procedure is not suitable when the scene to
be captured has a much wider dynamic range than the cover
range of the camera.
Various algorithms have been proposed [2–4] for visual

quality improvement of such low-dynamic range (LDR)
images; yet their performances have shown shortcomings
owing to insufficient data in brighter or darker regions.
Consequently, high-dynamic range (HDR) imaging has
taken centre stage in recent years. Compared with LDR
imaging, HDR imaging uses wider dynamic range, larger
bit depth and higher fidelity.
Special sensors and computer graphics have been

developed to capture HDR images. The most widely used
method is weighed summation of multiple LDR images [5–
7]. Although the large-bit depth enables containment of
elaborate data, it has to be compressed to the general bit
depth of LDR images for compatibility with commercial
devices. This process is called tone mapping.
In other words, we have to synthesise an HDR image of a

high-bit depth and compress it through tone mapping to
acquire the low-bit depth version; this is an inefficient
process. In this paper, we propose an image blending
algorithm that directly blends an HDR image of low-bit
depth from two differently exposed images. The main
contribution of our work is avoiding unnatural colour
changes during contrast enhancement and preserving
relative radiance of scenes. In addition, in order to enhance
contrast and generate sharp edges we calculate likelihood
probabilities of all pixels in both images. Afterward, they
are globally optimised with consideration of prior
probabilities. Lastly, two images are adaptively blended into
one. The proposed method directly generates low-bit depth
HDR images, which are visually more natural compared
with results by conventional works.
The remainder of this paper is organised as follows:

Section 2 provides a comprehensive review of conventional
techniques. In Section 3, we introduce the proposed
algorithm in detail. The effectiveness of the system is
compared with other state-of-the-art algorithms in Section
4. Finally, this paper concludes in Section 5.

2 Image quality enhancement

Various algorithms have been developed to enhance the
visual quality of images. This section provides a brief
coverage of some of the techniques that share similar
features with the proposed algorithm.
In the earlier era, image enhancement techniques for LDR

images such as histogram stretching and equalisation were
developed. These methods enhance contrast by modifying
pixel values in rarely used histogram bins. Despite their
simplicity and reliability, excessive colour changes
occasionally occur.
To encounter this problem, Kim [8] divided the LDR

image into two and independently equalised each
histogram. This algorithm is able to enhance image contrast
while preserving the mean brightness of images. Later,
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Menotti et al. [9] have extended Kim’s method. They
decomposed the input image into several sub-images and
equalised each sub-histogram. Wang et al. [4] have found
the flattest target histogram for contrast enhancement
subject to the mean brightness. For estimating the flattest
histogram with brightness preservation, they used convex
optimisation and exacted histogram specification. Im et al.
[10] have proposed a single image-based HDR image
generation algorithm using local histogram stretching. They
also adopted edge-preserving spatially adaptive denoising
algorithm to suppress amplified noise during local
histogram stretching.
Recently, Tsai and Yeh [11] have presented a piecewise

linear transformation enhancing image contrast to avoid
non-linear approaches of the algorithms based on
histograms. Jha et al. [3] have proposed a stochastic
resonance-based approach to enhance very low contrast
images with reducing artefacts and colour loss.
The above mentioned algorithms successively improve

contrast of LDR images, but their performances are limited
when input images have under- and over-exposed regions.
Therefore HDR imaging technologies have been actively
researched as an alternative. The main challenge of HDR
image-based approaches is the bit depth compression; the
bit depth of HDR images should be effectively compressed
to the bit depth compatible with conventional electronic
devices.
In literature, tone mapping algorithms are divided into

global and local approaches. Global approaches adopt a
spatially invariant mapping curve to accelerate process and
generate natural results. Tumblin and Rushmeier [12] have
proposed a sensation-preserving display converter based on
observer models. They defined the relation between display
luminance and real-world luminance. Larson et al. [13]
have developed a histogram adjustment technique
considering contrast and colour sensitivities to match
viewing experience.
To emphasise local contrast, several tone mapping

algorithms have exploited local approaches as the human
visual system operates. Such approaches use spatially
variant mapping curves by referring to neighbouring pixels.
Drago et al. [14] have developed logarithmic compression
imitating the human response to light, proposing improved
gamma correction for contrast enhancement in dark regions.
Fattal et al. [15] have manipulated a gradient field and
produced LDR images by soling a Poisson equation.
Recently, various tone mapping algorithms have been

proposed considering the human visual system to reduce
unnatural artefacts. Reinhard and Devlin [16] have proposed
dynamic range reduction with consideration of the
adaptation processes which occur in the human visual
system. Physiological evidence suggests that adaptation
already occurs in photoreceptors, leading to a
straightforward model that can be easily adapted for tone
reproduction.
Mantiuk et al. [17] have suggested a tone mapping

algorithm that minimises visible contrast distortions. This
algorithm covers various output devices such as e-paper to
HDR displays. The distortions are also predicted by the
model of the human visual system. Krawczyk et al. [18]
have proposed a tone reproduction method based on the
theory of lightness perception. This method is inspired by
the anchoring theory related to lightness constancy and its
spectacular failure.
Some researchers have proposed image fusing algorithms

[19–22]. Since these algorithms insufficiently consider
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relative radiance of scenes and only fuse high contrast
regions, they provide unnatural output images because of
the wrong intensity order. In addition, these algorithms
require multiple images (generally more than two), which
can induce the ghost artefact, which means object
boundaries are misaligned in the fused image.
Further, in the current trend, HDR imaging has been

extended to three-dimensional image processing. Ning et al.
[23] have proposed HDR stereo image generation algorithm
from differently exposed stereoscopic images. They estimate
disparities between pairs and mix two images. Sharma et al.
[24] have developed multi-view multi-exposure image
synthesis and HDR stereo reconstruction.

3 Posterior probability-based image blending

The existing approaches only focus on local contrast
enhancement since they can induce excessive colours, halo
artefacts and intensity order inversion. In this paper, we
propose an image blending algorithm of two differently
exposed images, which naturally enhances local details and
preserves the intensity order. Although more than two
images have been used for HDR imaging, capturing
multiple images of dynamic scenes is challenging. Motions
in scenes induce the ghost effect, meaning object
boundaries are misaligned in the fused image. Thus, we use
two images to effectively minimise this artefact.
Unlike conventional HDR tone mapping algorithms, an

HDR image of a high-bit depth is not generated during the
process. To this end, the proposed algorithm exploits
several steps as shown in Fig. 1. Since we adjust luminance
components and map chrominance components during the
process, we adopt the YUV colour domain. This allows to
independently adjust luminance components and to
calculate magnitude of chrominance components.
The most important tasks are identifying well-exposed

textures from two inputs and blending them naturally.
Finding well exposed region from two images is regarded
as the labelling problem for assigning a label s to each
pixel, where s = {L, H}. By applying the Bayes rule, the
posterior probability of S can be expressed as

P S|IL, IH
( ) = P IL, IH |S

( )
P(S)

P IL, IH
( ) (1)

where P(S) is the prior probability of the labelling set S. P(IL,
IH|S) is the conditional probability density function of IL and
IH given S. P(IL, IH) is ignorable since unknowns are not
contained; this is a constant when IL and IH are given.
Therefore the maximum a posterior is equivalently found by

argmax
S

P IL, IH |S
( )

P(S)
{ }

(2)

Since the model of S is designed via the Markov random field,
the posterior probability P(S|IL, IH) can be characterised by
the Gibbs distribution [25], which is expressed as

P S|IL, IH
( ) = Z−1 × exp − 1

T
E S|IL, IH
( )( )

where Z =
∑
S

exp − 1

T
E S|IL, IH
( )( ) (3)

where Z is a normalising constant called the partition
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Fig. 1 Schematic of the proposed algorithm

www.ietdl.org
function, and T is a constant representing the temperature. E
(S|IL, IH) is the energy function. Therefore (2) is replaced
by the minimisation problem of the energy function E as

argmin
S

E IL, IH |S
( )+ E(S)

{ }
(4)
3.1 Cost calculation

The likelihood energy E(IL, IH|S) measures the disagreement
between estimated and observed data. The proposed
algorithm considers not only gradient values but also
magnitude values of chrominance components as observed
data. In general, well-exposed regions carry larger gradient
values and more vivid colours than over- or under-exposed
regions. Based on such characteristics, the sum of cost
values is used for the likelihood energy as

E IL, IH |S
( ) = ∑

x, y

costS(x, y)(x, y) (5)

The cost value is defined as

costs(x, y) = 2k − grads(x, y)

+ lC{2
k−1 −max |Us(x, y)− 2k−1|,(

|Vs(x, y)− 2k−1|)}
(6)

where k is a bit depth for grey representation and the
subscription S is the label. The second term penalises the
cost for small chrominance values, U or V. λc is a
weighting constant grad returns the largest gradient value
among four-connected neighbours in the luminance domain,
Y, as

gradS(x, y) = max(|YS(x, y)− YS(x+ 1, y)|,
|YS(x, y)− YS(x− 1, y)|,
|YS(x, y)− YS(x, y+ 1)|,
|YS(x, y)− YS(x+ 1, y− 1)|)

(7)
where wc x, y, x′, y′
( ) = exp − Dc x, y, x′, y′

( )
gc

+
((

0

⎧⎪⎨
⎪⎩
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These cost values for IH and IL are normalised and shown in
Fig. 2a. Since the cost values are calculated pixel-by-pixel,
the individual value has low correlation among
neighbouring pixels. In addition, cost values of
homogeneous regions do not have enough discernment.

3.2 Cost aggregation and optimisation

To enhance the spatial correlation and propagate discernment,
cost values are aggregated with consideration of their
neighbours and corresponding colours. We adopt a
joint-bilateral filter (JBF) to the cost maps since the surface
of the labelling set is piecewise smooth and the close pixels
with similar colours tend to have similar costs. In this
paper, JBF used is designed as

costts(x, y) =
∑

x′[Nx

∑
y′[Ny wc x, y, x′, y′

( )
costt−1

s x′, y′
( )

∑
x′[Nx

∑
y′[Ny wc x, y, x′, y′

( )
(8)

Δc(x, y, x′, y′) is the Euclidean distance between pixels at (x,
y) and (x′, y′) in the colour domain. Similarly, Δg(x, y, x′, y′) is
the Euclidean distance in the image domain. t is the iteration
number and N represents neighbours in a 10 × 10 local block.
γc and γg are set to 0.1 and 5 in this system. To prevent
undiscerning cost propagation, we add a conditional
statement as (9). This constraint excludes costs lower than
the current cost from references, preventing undiscerning
cost propagation.
We design the prior term in (4) considering the smoothness

constraint that neighbourhoods of images present some
coherence and do not change abruptly except at boundaries.
We characterise the prior model by the multilevel logistic as

E(S) = lp
∑
x, y

∑
x′, y′[N4

1− d S(x, y), S x′, y′
( )( )

(10)

E(S) penalises the labels which have different values than
four-connected neighbours, N4 and λp means a weighting
factor for the prior energy. When S(x, y) is equal to S(x′,
y′), δ returns one, otherwise returns zero. The posterior
probability is optimised via belief propagation to infer
Dg x, y, x′, y′
( )

gg

))
costt−1

s (x, y) ≤ costt−1
s x′, y′

( )
otherwise

(9)
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Fig. 2 Initial cost maps for the likelihood model and refined maps

a Initial cost maps of IL and IH
b Refined cost maps

Fig. 3 Luminance relation between inputs and additional bits k’
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the optimised S [26]. The final label set S is shown in Fig. 5,
and the two input images are selectively blended according
to S.
Fig. 4 Input luminance images, YL and YH and the adjusted images, Y’
The centre line is the entire dynamic range of the scene, and the two lines with gr
The dotted lines mean the unused ranges in (b)
a Initial lumiance images
b Adjusted luminance images

IET Image Process., 2013, Vol. 7, Iss. 6, pp. 606–615
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3.3 Luminance adjusting

Although the label set was estimated using various factors,
simple copy referring to the label set can cause problems
such as grey inversion and boundary mismatch. To solve
this problem, we conduct additional steps to match radiance
levels of inputs and adaptively blend them.
Although conventional algorithms acquire exposure

information from metadata of input images, the proposed
algorithm automatically measures it by analysing luminance
differences between correspondences. Initially, co-located
luminance values are extracted from inputs, which are
regarded as correspondences. The correspondences whose
luminance values are greater than 0.95 × 2k or less than
0.05 × 2k are excluded to reduce influence of under- or
over-exposed regions.
L and Y’H
adations represent the coverage with k bits
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Fig. 5 Schematic illustration of image blending based on the label set S
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The luminance relation between inputs is defined as
(11), considering gain, offset and gamma of capturing
conditions

YH = fd YL, �C
( )

= Cgain YL/ 2k − 1
( ){ }Cgamma× 2k − 1

( )+ Coffset (11)

where Cgain, Coffset and Cgamma represent coefficients for each
camera property and �C stands for the coefficient vector.
Owing to the non-linearity of fd, we estimate these
coefficients via the Levenberg-Marquardt algorithm [27].
Fig. 6 Example of CGs and the blending results

a Current pixel i and its two neighbours, n1 and n2
b Cumulative gradients for n1 and n2
c Copying method
d Averging method
e Proposed blending method

610
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Fig. 3 demonstrates the luminance relation between the
luminance levels of IH and IL. The black and white dots
represent the correspondences and estimated values,
respectively. Since IH was captured with high exposure,
additional k′ bits are required to represent IL in the same
luminance level as

k+ = k + k ′ where k ′ = log2 f 2k , �C
( )− k (12)

This process is inefficient since the extended bit depth has to
be compressed again for compatibility. Therefore we adjust
bit representation of two inputs so that each image covers
IET Image Process., 2013, Vol. 7, Iss. 6, pp. 606–615
doi: 10.1049/iet-ipr.2012.0614



Table 1 Consumed time

Step Time, s Ratio, %

image loading 0.02 0.43
luminance adjusting 0.80 17.13
gradient calculation 0.06 1.28
cost aggregation 2.32 49.68
optimisation 0.43 9.20
blending 0.92 19.70
image saving 0.12 2.57
total 4.67 100

www.ietdl.org

the entire dynamic range of the scene with k bits. Fig. 4a
shows the luminance images of the inputs, the black line is
the entire dynamic range of the scene, and the blue lines
represent the coverage of the images with k bits. Depending
on the exposure settings, the coverage of bits becomes
different.
By using (13) derived from (11) and (12), we modify the

luminance components of inputs so that each image covers
the entire dynamic range of the scene even though some
bits are unused

Y ′
L(x, y) = scaling× Cgain × YL(x, y)Cgamma + Coffset

( )gamma

Y ′
H (x, y) = scaling× YH (x, y)gamma

where scaling = 2k/2k+

(13)

In (13), gamma is a parameter for gamma correction, set to
0.8. Fig. 4b shows the adjusted results and the red lines
represent the unused bits. These unused bits are blending
margins and filled during the following blending process.
3.4 Blending and chroma mapping

With the adjusted images, Y′L and Y′H and the label set S, we
are able to synthesise the blended luminance image YB as
shown in Fig. 5. The black and grey regions of S are filled
with the textures of the Y′L and Y′H, respectively.
However, simple copying can induce unnatural boundaries

as shown Fig. 6c, and averaging of labels over local blocks
causes halo artefacts as shown in Fig. 6d. Therefore we
Fig. 7 Final results of the proposed algorithm and enlarged parts

a Input image Io
b Enlarged parts: IL, Io and IH

IET Image Process., 2013, Vol. 7, Iss. 6, pp. 606–615
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adopt an adaptive weight for a local block to naturally
blend two luminance components of Y′L and Y′H as

YO(x, y) =
∑

x′[Nx

∑
y′[Ny wb x, y, x′, y′

( )
YS x′, y′( ) x′, y′

( )
∑

x′[Nx

∑
y′[Ny wb x, y, x′, y′

( )
(14)

where N means the neighbours in a local block of 10 × 10. wb

represents the weighting coefficient considering a cumulative
gradient (CG) value of the shortest path between (x, y) and (x′,
y′). CG is the sum of the gradient values over the path.
Figs. 6a and b shows the concept of CG. In Fig. 6a, there
are the two neighbours, n1 and n2, of current pixel i, they
have the same length of the shortest paths but different CGs
as shown in Fig. 6b. With CGs, we allocate greater
weighting values to neighbouring labels which might be on
the same objects. The weighting value wb considering CG
is calculated as
611
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Fig. 8 Input and result images

a Fattal
b Krawczyk
c Mertens
d Mantiuk
e Reinhard
f Proposed
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wb x, y, x′, y′
( ) = exp −CG x, y, x′, y′

( )
gCG

( )
where CG(x, y, x′, y′)

=
∑

(x′, y′)[path(x, y−x′, y′)
max gradL(x

′, y′), gradH x′, y′
( ){ }

(15)

where γCG is set to 10. Fig. 6e shows the result of the
proposed method. For observation, we did not apply the
luminance adjusting step in Figs. 6c–e. Although copying
612
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and averaging methods fail to generate natural boundaries,
the proposed method produces clear boundaries and smooth
homogenous regions without halos.
Following blending, chroma components are added to YB.

For reconstructing vivid colours, larger chrominance values
between the inputs are selected and referred. This process is
conducted pixel-by-pixel, and represented as

UO(x, y) = max |UH (x, y)− 2k−1|, |UL(x, y)− 2k−1|{ }
VO(x, y) = max |VH (x, y)− 2k−1|, |VL(x, y)− 2k−1|{ }

(16)
IET Image Process., 2013, Vol. 7, Iss. 6, pp. 606–615
doi: 10.1049/iet-ipr.2012.0614



Fig. 9 Enlarged parts of Fig. 8

a Fattal
b Krawczyk
c Mertens
d Mantiuk
e Reinhard
f Proposed
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4 Experimental results

To evaluate the performance of the proposed algorithm, a
series of experiments were conducted on a 3.2 GHz CPU. t,
λc and λp were set to 3, 0.1 and 0.3, respectively. These
empirically determined parameters were used for all
experiments. Since only two labels exist, image blending of
a 800 × 600 image can be achieved in 4.7 s on average.
Table 1 shows the processing times for each step. The cost
aggregation using JBF and view blending process is
relatively lengthier time than other processes. These steps
can be accelerated by simplifying algorithms [28] for some
special applications that require little computational time.
Fig. 7a shows the IL, IH and output image IO, and Fig. 7b

exhibits the enlarged parts of A and B. The proposed
algorithm successively found well-exposed regions from the
input images, and naturally blended these regions into one.
Especially in part B, IO successively reveals the detail of
leaves of IH and the bottom of the building of IL without
unnatural colour changes.
IET Image Process., 2013, Vol. 7, Iss. 6, pp. 606–615
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For comparison, additional experiments were carried out
with five representative and recent algorithms: (i) Fattal
et al. [15], (ii) Krawczyk et al. [18], (iii) Mertens [20],
(iv) Mantiuk et al. [17] and (v) Reinhard [16]. After
generating HDR images from two input images, we
applied each algorithm to the data. We use 20 HDR
images downloaded from http://www.pauldebevec.com/
Research/HDR/ as test images. Fig. 8 shows the two input
images (left column) and each result, and Fig. 9
demonstrates the enlarged textures of the red boxed regions
of Fig. 8.
Fattal’s and Merten’s algorithms display very impressive

results, but they create halo artefacts around boundaries
between bright and dark regions. Although Krawczyk’s
algorithm loses bright textures, Mantiuk’s and Reinhard’s
algorithms are not efficient at expressing dark regions. Even
though conventional algorithms generate unnatural results
as shown in these tests, the proposed algorithm
demonstrates satisfactory subjective results and successfully
reveals texture details in both bright and dark regions.
613
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Fig. 10 Additional comparisons of the results

The left column is input, and right six images are results of
a Fattal
b Krawczyk
c Mertens
d Mantiuk
e Reinhard
f Proposed

www.ietdl.org
Fig. 10 shows the additional results of comparisons. Since
each image has six results of different algorithms, showing all
images at once is not practical because of limited space.
Therefore we only demonstrate mpi_office, mpi_atrium_1
and forest_path images in this paper.
To objectively evaluate the performances of the algorithms,

we carried out performance assessment using HDR-VDP2
proposed by Mantiuk et al. in 2011 [29]. The goal of this
metric is to perceptually linearise the differences between
614
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original and generated images so that the magnitude of
distortion corresponds to visibility.
The test results are demonstrated in Table 2. The numerical

values in the table are predicted mean opinion (MOS) where
higher score means higher visual quality. Although the
performances of conventional algorithms depend on the
properties of test images, the proposed system shows stable
and reliable results. Although the proposed algorithm is not
ranked the highest in some images, the deficit is small.
IET Image Process., 2013, Vol. 7, Iss. 6, pp. 606–615
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Table 2 Results of objective quality assessment (predicted MOS)

Test image Fattal Krawczyk Mertens Mantiuk Reinhard Proposed

bristolb 42.3304 39.9851 49.9726 50.8560 46.3572 48.5475
crowfoot 40.3690 38.5353 56.1322 52.3816 45.5012 56.8019
oaks 39.1662 37.6295 46.0742 37.1183 37.3698 47.5341
tahoe1 33.0130 31.6127 36.7107 38.7137 36.4856 42.3622
clockbui 35.8344 25.9374 28.0123 33.7731 37.5946 43.8491
cornellbox 40.2365 28.2286 37.1308 44.2388 46.2619 44.8753
forest_path 39.5635 26.2078 36.8605 38.9511 42.0696 54.3236
wreathbu 29.5184 25.1278 24.6304 20.8994 43.2991 38.4862
mpi_atrium_1 36.7680 22.5142 35.8331 33.3559 34.6483 51.2068
mpi_atrium_3 34.2463 25.7163 36.5917 37.9166 39.1768 54.1262
mpi_office 30.4818 26.3085 31.7468 42.1761 34.2440 47.3356
nancy_church1 41.1308 35.9137 46.7799 48.0340 50.5980 55.6248
nancy_church2 32.8910 30.6465 37.8534 39.3210 55.0019 51.2351
nancy_church3 36.2526 26.1955 35.9851 34.1162 41.2974 52.2524
rosette 45.9246 43.7334 51.5579 48.5431 49.8788 54.6399
seymour_park 33.9708 30.0670 31.6821 34.1723 37.5549 50.2861
sunrendering 53.8374 58.7357 63.8519 65.3691 70.2631 81.2672
vinesunset 52.1495 30.7488 42.0351 44.0778 40.2243 51.6706
groveC 44.9451 33.8804 40.4261 43.7578 51.7301 52.1861
tinterna 33.6177 21.5131 30.8206 31.4535 28.0914 41.0550
average 38.8124 31.9619 40.0344 40.9613 43.3824 50.9833
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Other than these, the proposed algorithm was given the
highest rating in every dataset.

5 Conclusion

In this paper, we have proposed the algorithm to generate a
low-bit depth-HDR image by blending two LDR images. In
order to preserve the global intensity order and blend two
image naturally, we adopted various techniques including
cost aggregating, luminance adjusting and CG-based
blending. From the experiments, results confirmed that the
proposed algorithm generates more natural and vivid results
than the state-of-the-art algorithms. In addition, the
proposed algorithm achieved the highest score in objective
evaluation. Hence, this technique is expected to be widely
applied to various capturing and editing tools.
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