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Abstract: In this paper, we propose a new 

algorithm for temporally consistent depth map 

estimation to generate three-dimensional video. 

The proposed algorithm adaptively computes 

the matching cost using a temporal weighting 

function, which is obtained by block-based 

moving object detection and motion estima-

tion with variable block sizes. Experimental 

results show that the proposed algorithm im-

proves the temporal consistency of the depth 

video and reduces by about 38% both the flic-

kering artefact in the synthesized view and the 

number of coding bits for depth video coding. 

Key words: three-dimensional television; multi- 

view video; depth estimation; temporal con-

sistency; temporal weighting function 

I. INTRODUCTION 

Due to great advancements in computing 

power, interactive computer graphics, digital 

transmission and immersive displays, we can 

experience and reproduce simulations of real-

ity [1-2]. Technological advances in displays 

have been focused on improving the range of 

vision and immersive feelings, such as wide-

screen displays, high-definition displays, im-

mersive displays and 3D displays. Recently, 

Three-Dimensional Television (3DTV) has been 

in the spotlight as one of the next-generation 

broadcasting services [3-4]. Due to advances 

in 3D displays, 3DTV can now provide users 

with a feeling of presence from the simulation 

of reality [5]. In the near future, we expect 3DTV 

to be realized including 3D content generation, 

coding, transmission and display. 

Figure 1 shows a conceptual framework of 

a 3D video system. A 3D video system in-

cludes the entire process of acquisition, image 

processing, transmission and rendering by 

means of 3D video including N-view colour 

and depth images. A 3D video is produced by 

3D cameras, such as stereoscopic cameras, dep-

th cameras or multi-view cameras. Depth cam-

eras allow direct acquisition of depth data; oth-

erwise, depth in the video is generated by de-

pth estimation algorithms. A 3D video can be 

rendered by various types of display systems, 

such as stereoscopic displays, M-view 3D dis-

plays or even 2D displays. It can be compati-

ble with a conventional 2D display by select-

ing a single viewing angle according to user 

preference. 

Given the increasing diversity of 3D ser-

vices and display systems, proper rendering 

techniques for 3D video are required, particu-

larly for multi-view video. If the number of 

views, N, in the multi-view video is fewer than 

that of the input viewpoints, M, of the 3D dis-

play system, rendering is impossible. Fur-

thermore, if the distance between multi-view 

cameras is too large, viewers may feel visual 

fatigue ― the recommended camera baseline 

is 50-80 mm; thus, intermediate view synthe-

sis is necessary. Intermediate views are syn-

thesized images generated at intermediate vir-

tual viewpoints between 2 real cameras. 

Natural rendering of 3D video is beneficial in 

reducing eye discomfort. 
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Fig.1 3D video system 
 

To synthesize intermediate views from vir-

tual viewpoints, depth information is required. 

Many studies have been conducted on depth 

acquisition [6-9]. However, the output depth 

maps have numerous errors due to the inherent 

sensor problem, boundary mismatch and oc-

clusion/disocclusion. Particularly, because the 

depth map is estimated independently for each 

frame, depth values fluctuate. In other words, 

we notice inconsistent depth values in static 

regions as the frame changes. This temporal 

inconsistency problem may cause flickering 

artefacts in the synthesized views. 

In the present paper, we propose a new al-

gorithm for improving temporal consistency 

of the depth in the video. Specifically, we add 

a temporal weight to the existing matching 

function using a motion-compensated depth 

map. To obtain the reconstructed depth map, 

we detect moving objects and estimate motion 

using variable block sizes. Motion estimation 

and motion compensation are performed be-

tween the current and previous images. 

The present paper is organized as follows. 

In Section II, we introduce related works in 

detail. We represent the proposed algorithm 

for temporally consistent depth estimation in 

Section III. After evaluating and analysing the 

proposed algorithm with several experiments 

in Section IV, we draw the conclusion in Sec-

tion V. 

II. RELATED WORKS 

2.1 Disparity-depth relationship 

Figure 2 illustrates the disparity-depth rela-

tionship. Let us assume that two pinhole cam-

eras are located at Cl and Cr, and the optical 

axes of these two cameras are parallel to the 

z-axis. In addition, we assume that a certain 

3D point is located at P and projected onto 

(xl, y) on the left image plane and (xr, y) on the 

right image plane. Then, the relationship be-

tween the disparity value d and the depth val-

ue Z can be defined by: 

 
l r

Bf Bf
Z

x x d
 


 (1) 

where B and f represent the camera baseline 

and the focal length, respectively. Eq. (1) shows 

that the disparity estimation process will de-

termine the real depth value. 

2.2 Disparity computation using 
multi-view images 

In general, the multi-view depth estimation 
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Fig.2 Disparity-depth relationship 
 

algorithm consists of three main steps: dispar-

ity computation, error minimization and dis-

parity-to-depth conversion. 

The first step is to compute the matching 

cost for each pixel in the target view. Since 

there are three or more views in the multi- 

view images, the disparity can be calculated 

by comparing the target view to the left and 

right views simultaneously. The matching func-

tion is defined by: 

data smooth( , , ) ( , , ) ( , , )sE x y d E x y d E x y d   

  (2) 

where d and λs denote disparity candidates and 

the weighting factor for Esmooth(x,y,d), respec-

tively. Edata(x,y,d) represents the difference 

between intensities in the target and reference 

views. Edata(x,y,d) is defined by: 

 data ( , , ) min ( , , ), ( , , )L RE x y d E x y d E x y d  

  (3) 

 ( , , ) | ( , ) ( , ) |L C LE x y d I x y I x d y    (4) 

 ( , , ) | ( , ) ( , ) |R C RE x y d I x y I x d y    (5) 

where EL(x,y,d) and ER(x,y,d) represent the 

absolute differences between the target and 

two reference views, respectively. I(x, y) indi-

cates the intensity value at the pixel coordinate 

(x, y). The minimum matching cost among the 

two absolute differences is determined by 

Eq. (3). 

Esmooth(x,y,d) denotes the difference between 

disparity candidates and neighbouring pixels: 

 smooth
( , )

( , , ) ( , ) ( 1, )
x y

E x y d D x y D x y     

  ( , ) ( , 1)D x y D x y  
 

(6) 

where ρ indicates the monotonically increas-

ing function of the disparity difference, and 

D(x,y) represents the disparity at (x,y). 

The second step is the error minimization 

process. The optimal disparity values are de-

termined in this step by comparing matching 

costs of neighbouring pixels. There are several 

error minimization techniques, such as 

Graph-cuts, belief propagation and dynamic 

programming. In the present paper, we employ 

Graph-cuts for the optimization process. 

The final step is the disparity-to-depth 

conversion. The disparity map obtained in the 

second step is transformed to the depth map, 

represented by an 8-bit greyscale image. The 

distance information from each camera ranges 

from 0 to 255, specifying the farthest to the 

nearest, respectively. The depth value Z of the 

pixel position (x,y) is transformed into an 8-bit 

grey value v by: 

 

near

far near

255( )
255 0.5

Z Z
v

Z Z

 
    

 

(7) 

where Zfar and Znear represent the farthest and 

the nearest depth values, respectively. 

2.3 Temporally consistent depth 
estimation 

Ideally, for static regions, depth values are 

identical in each frame if the configuration of 

the multi-view cameras is fixed. However, since 

depth estimation is conducted independently 

on a frame basis, depth values for the static 

regions fluctuate. The temporal depth incon-

sistency problem of the video affects the ren-

dering quality of the synthesized views, be-

cause flickering artefacts cause viewer discom-

fort. In addition, performance degradation of 

temporal prediction occurs in depth coding. 

Figure 3 shows average depth values in the 

static region. Figure 3 (a) shows the static re-

gion for 100 frames, and Figure 3 (b) shows the 

average depth values. As shown in Figure 3 (b), 

the average depth values fluctuate severely. 

There are two major approaches for handl-

ing temporal inconsistencies in the depth map: 

dynamic depth estimation [10-17] and depth 

video filtering [18-19]. 
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Fig.3 Depth fluctuation of static regions for “Book Arrival” 
 

For dynamic depth map estimation there are 

several different methods. In Ref. [10], a seg-

ment-based dynamic depth estimation algo-

rithm was introduced based on the assumption 

that a 3D scene is composed of many piece-

wise planes. Because a certain segment takes 

some segments from the previous and next 

frames into account iteratively, it provides 

reliable depth in the video. Also, because this 

method is sensitive to depth errors during ex-

traction of initial segments, a temporally con-

sistent depth reconstruction algorithm using 

enhanced belief propagation was proposed in 

Ref. [11]. Another approach presented in Ref. 

[12] describes a spatial-temporal-consistent 

multi-view depth estimation algorithm. After 

obtaining the initial disparity map by loopy 

belief propagation and segmentation based on a 

plane-fitting process, the spatial-temporal co-

herence constraint for both the colour and 

disparity data is defined by a Gaussian distri-

bution. Dynamic depth estimation using a 

trinocular video system has been recently pro-

posed in Ref. [13]. From the detection process 

for dynamic regions, spatial-temporal depth 

optimization is performed adaptively by bundle 

optimization for static regions and temporal 

optimization for dynamic regions. 

In 3D MPEG video coding, many works have 

performed temporally consistent depth estima-

tion. A temporal consistency enhancement alg-

orithm was proposed at the 85th and 86th 

MPEG meetings in 2008 [14-15]. Many ex-

perts agreed on the importance of temporal 

consistency in the depth map, and it was im-

plemented in the depth estimation software 

[16-17]. However, this algorithm only consid-

ers static regions. 

Other methods using depth video filtering 

perform data-adaptive kernel filtering on the 

depth video. Joint bilateral filtering is the most 

popular method in this category [18]. The 

Joint Bilateral Filter (JBF) uses spatial and 

range weighting functions derived from the 

coordinate distance and photometric similarity 

between the target pixel and its neighbours. 

In the depth map, suppose there exists a target 

pixel p and one of its neighbours q. Sp and Sq 

are depth values at p and q, respectively, and 

Ip and Iq are the associated colour values at p 

and q, respectively. The new depth value pS  

via JBF is computed by: 
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(8) 

where f and g indicate the spatial and range 

filters, respectively, and Ω is the local kernel 

size. If a Gaussian distribution is used to 

model the weighting function, they are repre-

sented by: 
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 (9) 

where σf and σg are the standard deviations of f 
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 and g, respectively. 

Recently, a new method based on 3D-JBF 

has been proposed to enhance temporal con-

sistency [19]. Specifically, filtering is ex-

tended to the temporal domain to reduce tem-

poral fluctuation. Range filters for colour and 

depth data are applied adaptively based on 

depth distribution inside the filter kernel. 

However, the lack of a method for handling 

temporal motion causes motion blur artefacts. 

III. PROPOSED METHOD 

Figure 4 shows a block diagram of the pro-

posed algorithm. After the matching costs are 

computed using the current left, centre, and 

right views, IL
t, IC

t, and IR
t, costs are updated 

by the temporal weighting function using the 

reconstructed depth map D'C
t. The depth map 

is reconstructed by variable block partitioning, 

motion estimation and motion compensation. 

To calculate the motion vector, the current and 

the previous centre views, IC
t and IC

t1 are 

used. 

As mentioned above, the depth video is tem-

porally inconsistent because the conventional 

depth estimation algorithm operates indepen-

dently on a frame basis. Therefore, we mo-

dified the matching function using a temporal 

weighting function. The temporal weighting 

function using a truncated linear model refers 

to the reconstructed depth map when estimat-

ing the current depth values as described in Eq. 

(10). The motion estimation process may oc-

casionally fail, resulting in depth errors in the 

reconstructed depth map. In this case, the tem-

poral weighting function is inefficient. There-

fore, we define the temporal weighting func-

tion by the truncated linear model to reject 

outliers. The temporal weighting function 

Etemp(x,y,d) and the modified matching func-

tion are defined by: 

 temp ( , , ) min | ( , ) |,t
CE x y d d D x y L    (10) 

data smooth( , , ) ( , , ) ( , , )sE x y d E x y d E x y d   

temp ( , , )t E x y d  (11) 

where λt indicates the weighting factor for 

 

 
 

Fig.4 Block diagram of the proposed algorithm 
 

Etemp(x,y,d), L is a constant for outlier rejection 

and DC
t

 (x,y) represents the reconstructed depth 

value at (x,y). 
Since flickering artefacts are most notice-

able in the static regions, the proposed method 
applies a simple block-based object detection 
method. After the Mean Absolute Difference 
(MAD) is calculated for each block, the thre-
shold determines whether the block is static. 
Figure 5 shows the result of moving object 
detection for the “Book Arrival” sequence. 

Then, block-based motion estimation and 
compensation techniques are used to deal with 
moving objects. Notice that the block size for 
motion estimation is smaller in moving object 
detection for more accurate and reliable mo-
tion search. We can reconstruct the current 
depth map from the previous depth map by 
detecting moving objects using a larger block 
size and estimating motion using a smaller 
block size. Finally, matching costs can be up-
dated by the temporal weighting function us-
ing the reconstructed depth map, as described 
in Eqs. (10-11). Figure 6 shows the recon-
structed depth map for the “Book Arrival” 
sequence. 

IV. EXPERIMENTAL RESULTS AND 
ANALYSIS 

To evaluate the performance of the proposed 
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Fig.5 Moving object detection for “Book Arrival” 
 
 

 
 

Fig.6 Reconstructed depth map for “Book Arrival” 
 

 
 

Fig.7 Depth estimation results for “Lovebird1” 

algorithm, we tested four sequences: “Alt Mo-
abit” and “Book Arrival”, provided by the Hei-
nrich-Hertz-Institut (HHI) [20], “Lovebird1” 
provided by MPEG-Korea Forum [21], and 
“Newspaper” provided by Gwangju Institute 
of Science and Technology (GIST) [22]. These 
sequences are distributed for 3D video testing 
in MPEG. To obtain depth videos and synthe-
size virtual views, we used Depth Estimation 
Reference Software (DERS) 5.0 and View 
Synthesis Reference Software (VSRS) 3.5 [16]. 
We compared the proposed method with DERS 
and 3D-JBF [19]. The number of frames was 
100, and the block sizes were 32 × 32 for the 
static region and 8 × 8 for the moving object. 
The search range for motion estimation was 
from −16 to +16. The weighting factors, λs and 
λt, and the threshold for moving object detec-
tion were sequence-dependent. Through sev-
eral experiments, we have determined the 
block sizes and threshold values for moving 
object detection that obtain reliable rendering 
quality. 

4.1 Depth estimation and view 
synthesis 

Figures 7 and 8 show the depth sequences for 
“Lovebird1” and “Newspaper”, respectively. 
From Figure 7 (a) and (b) and Figure 8 (a) and 
(b), we noticed that the depth sequences have 
inconsistent depths in the static regions, whe-
reas the depth sequences in Figures 7 (c) and 8 
(c) are temporally consistent. 

To verify the rendering quality of the pro-

posed method quantitatively, we checked the 
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 amount of depth fluctuation by calculating the 

average depth values in static regions; smaller 

depth fluctuation guarantees higher rendering 

quality. Figure 9 shows static regions of 100 

frames for each sequence. 

Figure 10 shows the average depth values 

of the static regions, as indicated in Figure 9. 

The dotted line, dashed line and solid line 

represent the results of DERS, 3D-JBF and the 

proposed method, respectively. As shown in 

Figure 10, the average depth values fluctuated 

in the conventional work, whereas the pro-

posed method reduced depth fluctuation. 

4.2 Depth video coding 

To evaluate the performance of the proposed 

method for depth video coding, we encoded sev-

eral different depth videos using the H.264/AVC 

reference software, JM 14.0 [23]. The number 

of frames for each sequence was 100, and the 

coding structure was IPPP...P. The Quantiza-

tion Parameters (QP) were determined inde-

pendently for each sequence to indicate noti-

ceable quality drops. 

Figure 11 and Table I show the depth video 

coding results. The Picture Signal-to-Noise 

Ratio (PSNR) was calculated from the original 

view and the synthesized view. From Figure 11 

and Table I, we can see that the rendering qual-

ity of the proposed algorithm was preserved, 

while the bitrates were reduced by 38.19% on 

average. 
We examined the mode information change 

of the depth video coding with QP 22. As 

shown in Figure 12, intra modes were changed 
to inter modes, and larger blocks were selected. 

From these results, we can infer that the tem-

poral prediction accuracy of H.264/AVC was 
increased because the proposed method im-

proved the temporal consistency of the depth 

video and reduced depth fluctuation. As a re-
sult, bitrates were much less than when DERS 

was used. 

To analyse further the relationship between 

depth consistency and rendering quality, we 

encoded the colour and depth videos of the 

“Newspaper” sequence using various QPs. Then, 

we generated synthesized images with every 

possible combination of the encoded colour 

and depth videos. Figure 13 and Table II show 

the experimental results of the video coding 
 

 
 

Fig.8 Depth estimation results for “Newspaper” 
 

 
 

Fig.9 Static regions of 100 frames 
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Fig.10 Average depth variation 
 

and view synthesis. From these results, we 
notice that the rendering PSNR does not drop 
steeply as the QP of the depth video increases. 
In other words, the rendering PSNR is rarely 
sensitive to depth quality. Therefore, we infer 
that the proposed method definitely improves 

 

depth consistency and temporal prediction of 

depth video coding while preserving rendering 

quality. 

V. CONCLUSION 

In the present paper, we proposed a temporally 
consistent multi-view depth estimation algo-
rithm. The proposed method exploited the tem-
poral weighting function that takes the motion- 
compensated depth map into account. We used 
moving object detection and motion estima-
tion with variable block sizes to obtain a mo-
tion-compensated depth map. The experimen-
tal results demonstrated that the proposed me-
thod generated temporally consistent depth 
video and reduced flickering artefacts. Conse-
quently, the proposed method preserved good 
rendering quality and reduced the number of 
coding bits by about 38% on average. 

 
 

Fig.11 Rate-rendering distortion curves for depth video coding 
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 Table I Results of depth video coding 

DERS Proposed method 

Sequence QP Average 
bitrate/(kb·s1) 

Average rendering
PSNR/dB 

Average 
bitrate/(kb·s1)

Average rendering 
PSNR/dB 

Bitrate 
reduction/%

ΔPSNR/dB

25 1 047.98 35.42 401.55 35.49 61.68 0.07 

31 490.33 35.44 206.01 35.47 57.99 0.03 

40 138.67 35.36 86.01 35.39 37.98 0.03 

Alt Moabit 
(Synthesized view: 8, 9) 

(Depth video view: 7, 10) 
43 88.56 35.30 69.16 35.30 21.90 0.00 

22 3 128.92 35.00 1 350.29 35.01 56.84 0.01 

28 1 350.34 34.97 608.28 34.97 54.95 0.00 

34 599.01 34.87 280.66 34.83 53.15 -0.04 

Book Arrival 
(Synthesized view: 8, 9) 

(Depth video view: 7, 10) 

40 264.87 34.65 147.87 34.68 44.17 0.03 

22 375.67 30.77 182.57 30.77 51.40 0.00 

31 81.00 30.76 58.64 30.75 27.60 -0.01 

34 51.47 30.75 43.71 30.74 15.08 -0.01 

Lovebird1 
(Synthesized view: 6, 7) 
(Depth video view: 5, 8) 

37 36.22 30.67 34.54 30.67 4.64 0.00 

28 518.03 24.90 328.18 24.90 36.65 0.00 

37 161.42 24.90 109.22 24.90 32.34 0.00 

40 110.12 24.87 79.37 24.87 27.92 0.00 

Newspaper 
(Synthesized view: 4, 5) 
(Depth video view: 3, 6) 

43 81.04 24.83 59.42 24.84 26.67 0.00 

Average 38.19 0.01 

 

 
 

Fig.12 Mode information change of depth video coding 

 

 
 

Fig.13 Relationship between rendering PSNR and depth quality 
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Table II Results of video coding and view synthesis 

Depth coding 
Rendering PSNR/dB 

QP=22 QP=26 QP=30 QP=34 QP=38 

QP=22 32.62 32.65 32.64 32.65 32.61 

QP=26 32.51 32.54 32.53 32.54 32.50 

QP=30 32.31 32.34 32.33 32.33 32.30 

QP=34 31.93 31.95 31.95 31.95 31.92 

Color 
coding 

QP=38 31.28 31.30 31.29 31.30 31.28 
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